
Certifying Combinatorial Optimization
Using Pseudo-Boolean Reasoning

Andy Oertel

Licentiate Thesis, 2025

Department of Computer Science
Lund University

ii

Funding information: Andy Oertel was funded by the Wallenberg AI,

Autonomous Systems and Software Program (WASP) funded by the Knut and

Alice Wallenberg Foundation.

ISBN 978-91-8104-770-7 (electronic version)

ISBN 978-91-8104-769-1 (print version)

ISSN 1652-4691

Licentiate Thesis 6, 2025

Department of Computer Science

Lund University

Box 118

SE-221 00 Lund

Sweden

E-mail: andy.oertel@cs.lth.se
WWW: aoertel.de

Typeset using LAT
E
X

Printed in Sweden by Tryckeriet i E-huset, Lund, 2025

© 2025 Andy Oertel

mailto:andy.oertel@cs.lth.se
https://aoertel.de

Abstract

Combinatorial optimization provides a powerful framework for solving complex

optimization problems with general-purpose solvers by modelling the problem in

an abstract language. Due to breakthroughs in algorithms to solve combinatorial

optimization problems in last decades, combinatorial optimization has become a

valid approach to solve many real world problems efficiently. Key application areas

are planning, scheduling, computer-aided design, verification, and even theorem

proving. However, the efficiency of the tools to solve these problems comes at the

cost of increased complexity of the solvers. This makes it difficult to trust that the

result computed by a combinatorial optimization solver is correct, which especially

becomes a concern if the correctness of the result is mission-critical.

The main approach to address this issue is certifying algorithms, where an

algorithm has to also generate a certificate that its result is correct, which can

then be checked independently. This thesis demonstrates how pseudo-Boolean

reasoning can be used to provide efficient certification of results returned by

different kinds of combinatorial optimization solvers. We present a unified

multipurpose certification system with a formally verified end-to-end verification

toolchain, which guarantees that the combinatorial optimization problem was

solved correctly. Developing a multipurpose certification system distinguishes

this work from any prior work, which predominantly focused on very specialized

approaches. We also present certification for many algorithms which, prior to our

work, lacked any approach for certifying their result.

iv Abstract

Contribution Statement

The following papers are included in this thesis:

Paper I Stephan Gocht, Jakob Nordström, Ruben Martins, and Andy Oertel.

“Certified CNF Translations for Pseudo-Boolean Solving”. Accepted for

publication in Journal of Artificial Intelligence Research. Preliminary version

in Proceedings of the 25th International Conference on Theory and Applications of

Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

Paper II Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter

Vandesande. “Certified Core-Guided MaxSAT Solving”. In Proceedings of

the 29th International Conference on Automated Deduction (CADE-29), volume

14132 of Lecture Notes in Computer Science, pages 1–22. Springer, July 2023.

Paper III Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias

Paxian, and Dieter Vandesand. “Certifying Without Loss of Generality

Reasoning in Solution-Improving Maximum Satisfiability”. In Proceedings

of the 30th International Conference on Principles and Practice of Constraint

Programming (CP ’24), volume 307 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 4:1–4:28, September 2024.

Paper IV Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström.

“Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs”.

In Proceedings of the 21st International Conference on the Integration of Constraint

Programming, Artificial Intelligence, and Operations Research (CPAIOR ’24),

volume 14742 of Lecture Notes in Computer Science, pages 310–328. Springer,

May 2024.

Paper V Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström,

Andy Oertel, and Yong Kiam Tan. “End-to-End Verification for Subgraph

Solving”. In Proceedings of the 38th AAAI Conference on Artificial Intelligence

(AAAI ’24), pages 8038–8047, Febuary 2024.

Paper VI Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti

Järvisalo, Magnus O. Myreen, and Jakob Nordström. “Certified MaxSAT

Preprocessing”. In Proceedings of the 12th International Joint Conference on

Automated Reasoning (ĲCAR ’24), volume 14739 of Lecture Notes in Computer

Science, pages 396–418. Springer, July 2024.

vi Contribution Statement

There are additional papers that Andy Oertel contributed to, but they are not

included in this thesis:

• Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström,

Andy Oertel, and Konstantin Sidorov. “Pseudo-Boolean Reasoning About

States and Transitions to Certify Dynamic Programming and Decision Di-

agram Algorithms”. In Proceedings of the 30th International Conference on

Principles and Practice of Constraint Programming (CP ’24), volume 307 of Leib-

niz International Proceedings in Informatics (LIPIcs), pages 9:1–9:21, September

2024.

• Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordström, Andy

Oertel, Yong Kiam Tan, Marc Vinyals. “Practically Feasible Proof Logging

for Pseudo-Boolean Optimization”. In Proceedings of the 31st International

Conference on Principles and Practice of Constraint Programming (CP ’25), volume

340 of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–21:27,

August 2025.

The table below indicates the responsibilities Andy Oertel had in writing the

papers. For all papers, there were always ongoing discussion between all authors,

especially at early stages of the project.

Paper Concept Implementation Evaluation Writing

Verifier Solver

I
II
III
IV
V
VI

The dark portion of the circle represents the amount of work and responsibilities

assigned to Andy Oertel for each individual step:

Andy Oertel led and did almost all the work.

Andy Oertel led and did a majority of the work.

Andy Oertel was a contributor to the work.

Andy Oertel was a minor contributor to the work.

Andy Oertel did not contribute, except for proofreading.

vii

Concept Coming up with the ideas and working out the details in theory.

Implementation Writing the software required for the paper.

Evaluation Conducting the experimental evaluation and analysing the data.

Writing Drafting and editing the paper.

The following discusses the contributions by Andy Oertel in more detail.

Paper I
Andy Oertel developed the theory for certifying the binary adder encoding,

with regular discussions with Jakob Nordström, and helped Stephan Gocht in

developing the general framework to certify different encodings. Stephan Gocht

provided prototype implementations for the sequential counter encoding and the

(generalized) totalizer encoding. The final implementation was done by Andy

Oertel with the help of Ruben Martins who implemented the certifying sequential

counter encoding. The benchmark set and data to be measured in the experiments

was discussed with all authors. Andy Oertel wrote the binary adder section of the

paper, provided figures and examples to all sections of the paper and improved the

evaluation section. All authors were involved in discussions about the structure of

the paper and helped to polish the manuscript.

Paper II
Andy Oertel was the lead author of the paper. All authors were involved in

discussions to develop the theoretical foundations to certify core-guided MaxSAT

solvers. Andy Oertel figured out the details to make certification feasible in

practice. Andy Oertel and Dieter Vandesande implemented certification into

CGSS. Dieter Vandesande implemented the certification for the incremental

totalizer encodings and Andy Oertel implemented everything else. Andy Oertel

implemented improvements in VeriPB improve the proof checking performance.

Andy Oertel conducted the experiments and analysed the experimental results.

All authors were involved in discussing benchmark sets and data to be measured.

Andy Oertel found the bug in the original implementation of CGSS and provided

fixes for the bug. The structure of the paper was discussed with all authors. The

preliminaries, the description of how to do certification for core-guided MaxSAT,

and the experimental evaluation were written by Andy Oertel, which were later

improved by all authors.

Paper III
The theoretical idea to certify the dynamic generalized polynomial watchdog

encoding was developed by Bart Bogaerts. This idea was discussed and improved

through discussions with all authors. Jeremias Berg, Bart Bogaerts, and Andy

Oertel discussed alternative approaches and found good reasons that explain why

shadow circuits are required. Tobias Paxian and Dieter Vandesande implemented

viii Contribution Statement

certification in the MaxSAT solver Pacose with assistance from Andy Oertel.

Improvements and additional tracking of proof statistics in the proof checker

were implemented by Andy Oertel. Andy Oertel conducted the experiments

and analysed the experimental results. All authors were involved in discussing

benchmark sets and data to be measured. The structure of the paper was discussed

with all authors. Andy Oertel wrote the preliminaries on pseudo-Boolean proof

logging and the experimental evaluation, which were later improved by all authors.

Paper IV
Most of the certification was developed by Ambros Gleixner, Alexander Hoen,

and Jakob Nordström, while Andy Oertel helped to figure out certification for

some remaining presolving techniques. The need for an objective update rule

was discovered by Alexander Hoen and Andy Oertel. Andy Oertel developed

the objective update rule and implemented it together with further checking

improvements into the proof checker VeriPB. Alexander Hoen implemented

certification in the MIP presolver PaPILO. Alexander Hoen and Andy Oertel jointly

conducted the experiments and Alexander Hoen analysed the experimental data.

The structure of the paper was discussed with all authors. Andy Oertel wrote

the preliminaries on pseudo-Boolean proof logging and about the new objective

update rule, and he helped Alexander Hoen in writing the description on the

certification of presolving reductions.

Paper V
Andy Oertel joined this project after it was running and only the other authors

contributed to the original idea of the project. Andy Oertel developed all elabora-

tion algorithms, which were discussed in meeting with Jakob Nordström. Andy

Oertel improved the elaboration algorithm to achieve the necessary performance.

The prototype implementation of the elaboration in VeriPB was done by Stephan

Gocht. Andy Oertel changed major parts of this preliminary implementation to

accommodate further improvements to the elaboration algorithms and support

for all proof rules. Andy Oertel also implemented checked deletion into VeriPB.

Magnus Myreen and Yong Kiam Tan implemented the formally verified proof

checker CakePB, where Andy Oertel helped to formalize the correctness proof for

strengthening rules. The structure of the paper was discussed with all authors.

Andy Oertel wrote the proof elaboration section, which was later improved by all

authors.

Paper VI
Certification for almost all MaxSAT preprocessing techniques was developed by

Jeremias Berg, Hannes Ihalainen, and Matti Järvisalo. Jakob Nordström and Andy

Oertel helped them to develop certification for the techniques of hardening and

label matching. The proof format for problem reformulation proofs was jointly

ix

developed through discussions with all authors. Hannes Ihalainen implemented

the certification into the MaxSAT preprocessor MaxPre. Support for problem

reformulation was implemented by Andy Oertel into VeriPB and by Magnus

Myreen and Yong Kiam Tan into CakePB. Andy Oertel conducted the experiments

and analysed the experimental results. All authors were involved in discussing

benchmark sets and data to be measured. The structure of the paper was discussed

with all authors. Andy Oertel wrote the preliminaries and the experimental

evaluation, which was later improved by all authors.

x Contribution Statement

Acknowledgements

I would like to take this opportunity to thank my family for always supporting me

on my educational journey. Without my parents, sister, and brother I would not

have made it this far. I especially also want to thank Johanna for all the time we

spent together and will spend together. Thank you for always encouraging me

and your unwavering support. Martin, Max, and Sebastian, I am very happy to

have you as my friends and enjoy every moment we spend together.

When it comes to the work environment, many thanks to Benjamin, Christophe,

David, Duri, Gaia, Jonas, Kilian, Morgan, Noel, Rui, Shuo, Stefan, Wietze, and

Yassine for your company in and outside of office. I would also like to thank the

people in the CP, OR, and SAT communities for welcoming me. I am happy to be

friends with many of you.

I would also like to thank the administration at the Department of Computer

Science of LTH for always being very helpful. Also, thank you, Mikkel and Anne

for creating such a lovely research environment in Copenhagen. I always enjoyed

being at BARC and joining the events you organized.

I would like to thank all my co-authors and everyone who worked on VeriPB

for helping me with this endeavour. I would not have been able to do all this work

I am presenting in this thesis without you. The discussions with all of you were

always fruitful and enlightening. Especially, I would like to thank Bart Bogaerts,

Stefan Gocht, Ciaran McCreesh, and Jakob Nordström for designing the original

VeriPB proof system, which my work builds upon.

I would also like to thank the Wallenberg AI, Autonomous Systems and

Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation

for funding my research and my stay in Berkeley. Additionally, I would like to

thank the SAT association, Zuse Institute Berlin, Landshövding Per Westlings

Minnesfond, COST action EuroProofNet, and CADE conference for providing me

with additional travel funding. For hosting the computational resources to run my

experiments, I would like to thank LUNARC at Lund University.

Last but not least, I thank my PhD supervisor Jakob Nordström for introducing

me to the topic, proposing all kinds of ideas, and making all of this possible. I also

thank my co-supervisor Susanna F. de Rezende for supporting me during my PhD.

Thank you very much!

Tack så mycket!

Vielen Dank!

xii Acknowledgements

Contents

Abstract iii

Contribution Statement v

Acknowledgements xi

Certifying Combinatorial Optimization Using Pseudo-Boolean
Reasoning 1

1 Introduction . 2

2 Background . 4

2.1 Basic Notation . 4

2.2 Combinatorial Optimization 4

2.2.1 Boolean Satisfiability (SAT) 5

2.2.2 Maximum Satisfiability 6

2.2.3 Pseudo-Boolean Optimization 9

2.2.4 Preprocessing . 10

2.3 Proof Complexity Proof Systems 10

2.4 Certifying Algorithms . 13

2.4.1 Certifying Algorithms for SAT 15

3 Related Work . 18

4 Pseudo-Boolean Certificates . 20

4.1 Motivation . 20

4.2 Our Pseudo-Boolean Proof System 22

4.2.1 Rules from Previous Work 24

4.2.2 Extensions to the System by This Thesis 27

4.3 Pseudo-Boolean Proof Checking Tool 30

5 Main Results of This Thesis . 31

5.1 Summary of Paper I . 31

5.2 Summary of Paper II . 32

5.3 Summary of Paper III . 33

5.4 Summary of Paper IV . 34

5.5 Summary of Paper V . 35

5.6 Summary of Paper VI . 37

5.7 Further Contributions Outside Included Papers 37

xiv Contents

6 Conclusions and Future Work . 38

6.1 Short Term Future Work . 38

6.2 Long Term Future Work . 40

References . 41

Included Papers 59

I Certified CNF Translations for Pseudo-Boolean Solving 61
1 Introduction . 61

2 Preliminaries . 64

3 Certified CNF Translation Using the Sequential

Counter Encoding . 66

4 A General Framework for Certifying CNF Translations 72

5 Certifying the Binary Adder Network Encoding 82

6 Certifying the Totalizer and Generalized Totalizer Encodings 84

7 Experimental Evaluation . 85

7.1 Benchmarks . 86

7.2 End-to-End Solving and Verification 87

7.3 Translation and Verification 90

7.4 Overhead of Proof Logging 91

7.5 Comparison with PB Solvers 92

7.6 Certifying MaxSAT Optimal Values 93

8 Concluding Remarks . 96

References . 99

II Certified Core-Guided MaxSAT Solving 107
1 Introduction . 107

1.1 Previous Work . 108

1.2 Our Contributions . 109

1.3 Outline of This Paper . 110

2 Preliminaries . 110

3 The OLL Algorithm for Core-Guided MaxSAT Solving 111

4 Proof Logging for the OLL Algorithm for MaxSAT 113

5 Experimental Evaluation . 119

6 Concluding Remarks . 122

References . 123

III Certifying Without Loss of Generality Reasoning in SIS for MaxSAT 133
1 Introduction . 133

2 Preliminaries . 139

3 The Dynamic Polynomial Watchdog Encoding for SIS 141

3.1 Initialization . 142

3.2 Coarse Convergence Phase 142

3.3 Fine Convergence Phase . 143

Contents xv

3.4 Stratification . 143

4 Certifying Solution-Improving MaxSAT with the DPW Encoding . 144

4.1 Proof Logging for Clauses of the DPW Encoding 144

4.2 Proofs Without Loss of Generality Using Shadow Circuits . 145

4.3 Stratification . 147

4.4 Limiting the Use of Shadow Circuits 148

4.5 Discussion of an Even Simpler Approach and Why It Does

Not Work . 149

5 Experimental Evaluation . 150

6 Conclusion . 152

Appendix A Formalization of the Proof Logging of SIS with the DPW 153

A.1 Coarse Convergence . 153

A.2 Fine Convergence . 154

A.3 Conclusion of Optimality . 155

Appendix B Proof Logging of Additional Techniques Implemented in

Pacose . 156

B.1 TrimMaxSAT . 157

B.2 Hardening . 158

Appendix C Additional Experimental Evaluation 158

C.1 Binary Adder Encoding and Encoding Selection Heuristic . 159

C.2 Coarse Convergence with Assumptions Instead of Unit

Clauses . 160

C.3 Proof Logging Overhead Analysis 161

References . 162

IV Certifying MIP-Based Presolve Reductions for 0–1 ILP 171
1 Introduction . 171

2 Pseudo-Boolean Proof Logging with VeriPB 173

2.1 Pseudo-Boolean Reasoning with the Cutting Planes Method 173

2.2 A New Rule for Objective Function Updates 174

3 Certifying Presolve Reductions . 176

3.1 General Techniques . 176

3.2 Primal Reductions . 177

3.3 Dual Reductions . 180

3.4 Example . 181

4 Computational Study . 181

4.1 Experimental Setup . 182

4.2 Overhead of Proof Logging 182

4.3 Verification Performance on Presolve Certificates 183

4.4 Performance Analysis on Constraint Propagation 184

5 Conclusion . 185

References . 186

xvi Contents

V End-to-End Verification for Subgraph Solving 193
1 Introduction . 193

1.1 Our Contribution . 195

1.2 Comparison to Related Work 196

1.3 Outline of This Paper . 196

2 Preliminaries . 197

3 Formally Verified Graph Proof Checkers 198

3.1 Verified Pseudo-Boolean Proof Checking 198

3.2 Verified Graph Problem Encoders 200

3.3 End-to-End Verification . 201

4 Proof Elaboration . 203

4.1 Lining up Encodings . 203

4.2 Elaborating on Syntactic Sugar 204

5 Experiments . 205

6 Conclusion . 207

References . 208

VI Certified MaxSAT Preprocessing 215
1 Introduction . 215

1.1 Previous Work . 216

1.2 Our Contribution . 217

1.3 Organization of This Paper 217

2 Preliminaries . 217

2.1 Pseudo-Boolean Proof Logging Using Cutting Planes 218

2.2 Maximum Satisfiability . 219

3 Proof Logging for MaxSAT Preprocessing 220

3.1 Overview . 220

3.2 Worked Example of Certified Preprocessing 225

4 Verified Proof Checking for Preprocessing Proofs 226

4.1 Output Section for Pseudo-Boolean Proofs 226

4.2 Verified Proof Checking for Reformulations 227

4.3 Verified WCNF Frontend . 228

5 Experiments . 230

6 Conclusion . 232

Appendix A Complete Overview of Proof Logging for MaxSAT Pre-

processing . 233

A.1 Fixing Variables . 233

A.2 Preprocessing on the Initial WCNF Representation 233

A.3 Preprocessing on Objective-Centric Representation 236

A.4 Conversion to WCNF — Renaming Variables 239

A.5 On Solution Reconstruction and Instances Solved During

Preprocessing . 239

References . 240

Certifying Combinatorial
Optimization Using

Pseudo-Boolean Reasoning

2 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

1 Introduction
In the last couple of decades, combinatorial optimization solvers have been vastly

improved across all paradigms and are able to solve very large optimization

problems efficiently. This revolution led to combinatorial optimization solvers

of all paradigms being used for many commercial and academic applications.

For instance, Boolean satisfiability (SAT) and maximum Boolean satisfiability

(MaxSAT) solving [BHvMW21] are used for, e.g., hardware verification [BCCZ99],

in chip design [CNR21], or to prove theorems [HKM16, SH23]. Constraint pro-

gramming (CP) [RvBW06] is used for solving, e.g., personnel allocation and

timetabling [Wal96], power plant production planning [BBVC13], and sports

league scheduling [Wei25]. Mixed integer programming (MIP) [AW13] is used for,

e.g., supply chain optimization [GGK
+
19], public transport planning [S

+
20], and

investment portfolio optimization [MOS15].

However, the improved performance of solvers comes at the cost of complexity

by using more sophisticated and specialized reasoning techniques. This complexity

naturally raises the question if modern combinatorial solvers are implemented

correctly. Correctness is especially crucial when combinatorial optimization solvers

are used to solve mission-critical problems, like for ambulance dispatch [Sch12],

kidney exchange programs [MO12], or air traffic control [HPRS24]. Specifically,

it well-know that combinatorial optimization solvers for all paradigms and of

different levels of maturity contain bugs and can return incorrect results [BLB10,

CKSW13, AGJ
+
18, GSD19, GS19, BBN

+
23, PB23, WS24]. Since mature solvers

where many people reviewed the code contain bugs, it is even harder to believe

that new cutting edge techniques are implemented correctly. To mitigate this issue

the following approaches are known in software engineering.

The most used approach in software engineering is testing, where a program is

checked to give the correct output given a specific input [MSB11]. However, this

approach is limited to known pairs of input and output, which can be generated

manually or automatically, e.g., by fuzzing [MKL
+
95, ZWCX22, PB23]. Considering

the number of found bugs, the most successful approach for testing in combinatorial

optimization is fuzzing with a structured way to generate instances that triggers the

use of all possible techniques and their interaction in the solver [ABS13, PB23]. To

conclude, testing can only show the existence of a fault, but there are no guarantees

on the correctness of the software.

The other extreme is formal verification of software by formally specifying the

behaviour of the program and proving that the implementation adheres to this

specification [HT15]. This approach fully guarantees that the software adheres

to the specification, but the effort involved in formally verifying a program is

huge and does not scale to the size and complexity of modern solvers. The most

advanced formally verified solver is the SAT solver IsaSAT [FL23], which performs

significantly worse than any other modern solver and SAT solving is the least

complex combinatorial optimization paradigm.

The approach of certifying algorithms [MMNS11], which we will focus on in this

thesis, provides a good middle ground between testing and formal verification.

1. Introduction 3

The idea of certifying algorithms is that an algorithm not just returns an output, but

also a certificate that shows that the output is correct. Using the certificate, it should

be easy to verify that the output is correct for the given input to the algorithm.

Hence, with certifying algorithms we do not need to trust the implementation

or algorithm to trust that the output is correct. We only need to trust a simpler

algorithm that checks that the output is correct using the certificate, which is

typically simple enough so that this implementation can be formally verified to be

correct. Therefore, we obtain the guarantee that the output is correct for the given

input, which is actually the main guarantee that is usually interesting, since we

just want to know that our problem was solved correctly.

While certifying algorithms existed already in the form of the extended Eu-

clidean algorithm [MMNS11] and primal-dual optimization algorithms [Far02], on

a large scale certifying algorithms were first explored in the LEDA project[MN89,

MN95]. The term certifying algorithms was first used by Kratsch et al. [KMMS06].

In combinatorial optimization, certifying algorithms are becoming increasingly

popular in many paradigm [BFT11, CGS17, VS10]. Especially in the community of

SAT solving, certifying algorithms became so mainstream that since 2013 all solvers

competing in the main track of the annual SAT competition require certification.

This interest and the proximity to the theory of proof complexity [BN21] led

to many certification systems for SAT solving [Heu21], like RUP [GN03, Van08],

DRAT [JHB12], FRAT [BCH21], PR [HKB17], and SR [BT21].

In this thesis, we are studying and extend a certification system based on

pseudo-Boolean reasoning called VeriPB [BGMN23, GN21, Goc22]. VeriPB is

inspired by the success of certification in SAT solving and is based on the cutting

planes proof system [CCT87] from the theory of proof complexity [BN21]. This

thesis extends the VeriPB system from the certification of decision problems to

optimization problems by introducing new rules that capture the reasoning in

optimization solvers and making it possible to certify bounds on the optimal value.

This thesis also shows how to certify problem reformulations independent of

solving using VeriPB, where it is possible to certify various guarantees on the

reformulated problem in relation to the original problem. Finally, to provide

formal guarantees that output is correct, we develop a framework for formally

verified certificate checkers called CakePB, which makes it easy to get formally

verified checkers for different combinatorial optimization paradigms.

This thesis makes progress towards the development of a general certi-

fication framework for all combinatorial optimization paradigms using one

unified multipurpose system. Specifically, this thesis shows that VeriPB can

be used to obtain certification for various algorithms to solve MaxSAT, sub-

graph solving algorithms, and preprocessing and presolving techniques for

MaxSAT and 0-1 integer linear programming. Additionally, in related work

it has been shown how to use VeriPB for certification of advanced SAT solv-

ing techniques [GN21, BGMN23], dynamic programming algorithms [DMM
+
24],

constraint programming solvers [EGMN20, GMN22, MM23, MMN24, MM25],

automated planning [DHN
+
25], and pseudo-Boolean optimization [KLM

+
25]. It

has also been proposed to extend the VeriPB certification system to fully support

4 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

certification of mixed integer programming [DEGH23], which would directly

enable certification for any kind of combinatorial optimization.

The first part of this thesis is a comprehensive summary of the work (the

so-called kappa), which is structured as follows. In Section 2, background for the

topics discussed in this thesis is introduced. This includes a review of different

combinatorial optimization paradigms and an introduction to certifying algorithm.

In Section 3, related work is reviewed that also studies certifying algorithms for

combinatorial optimization. The pseudo-Boolean certification system that we

study to certify combinatorial optimization algorithms is presented in Section 4

and is a full description of the certification system including all contributions by

this thesis. In Section 5, the contributions of this thesis are discussed in detail. The

introduction of the thesis ends with some concluding remarks and future work in

Section 6. The second part of this thesis consists of included papers.

2 Background
This section introduces the necessary preliminaries required to understand this

thesis together with the used notation. It is assumed the reader has basic knowledge

in Theoretical Computer Science, including basic computational complexity, logic,

and graph theory. For additional background on computational complexity and

logic see [AB16] and for some background on graph theory see [Die16].

2.1 Basic Notation
It follows some review of standard logic notation, which can be found, e.g.,

in [AB16]. We use⊤ to denote true (tautology) and⊥ to denote false (contradiction).

The symbol ∧ denotes a logical conjunction, ∨ a logical disjunction,⇒ a material

implication, and⇔ a material equivalence. A Boolean variable is a variable with

domain {⊥,⊤}, where often ⊥ is associated with 0 and ⊤ with 1. A literal of a

Boolean variable 𝑥 is either the Boolean variable itself 𝑥 or its negation 𝑥 or also ¬𝑥.

2.2 Combinatorial Optimization
We will start this section with a review of standard notation and definitions that

will be used throughout this thesis, which can be found in, e.g., [Sau24, BN21].

For more history on combinatorial optimization, see [Sch05].

The goal of mathematical optimization is to find an optimal element in a set of

feasible elements [Sau24]. A combinatorial optimization problem is a special case

of mathematical optimization problem where the feasible elements are (at least

partially) from a discrete set. While most of the definitions can be extended to

arbitrary sets, in this thesis we only consider Boolean optimization problems (aka 0–1

optimization problems), i.e., the feasible elements are from a subset of {0, 1}𝑛 . The

optimal value is usually defined by an objective function mapping an element from

the set to a numerical value that without loss of generality should be minimized,

2. Background 5

hence for this thesis the objective function 𝑓 : {0, 1}𝑛 → Z should be minimized.

A constraint to be a function 𝐶 : {0, 1}𝑛 → {⊥,⊤}. The set of feasible elements

is further restricted by a set of constraints so that an element is feasible if and

only if all constraints evaluated on this element return ⊤, i.e., the conjunction of

all constraints evaluates to ⊤. A trivial constraint maps to ⊤ for any input and a

contradictory constraint maps to ⊥ for any input.

A decision problem is a special case of an optimization problem where we are only

interested in knowing if there is a feasible element with respect to the constraint.

Hence, the objective function can be viewed as being constant, e.g., 𝑓 : ®𝑥 ↦→ 0.

Each dimension of the feasible set {0, 1}𝑛 is associated with a Boolean variable.

For a set of constraint 𝐹 or an objective 𝑓 , we use the notation 𝐹(®𝑥) or 𝑓 (®𝑥) to

stress that 𝐹 or 𝑓 is defined over the vector of Boolean variables ®𝑥 = 𝑥1 , . . . , 𝑥𝑛 ,

respectively. We syntactically highlight a partitioning of the vector of Boolean

variables by writing 𝐹(®𝑦, ®𝑧) or 𝐹(®𝑎, ®𝑏, ®𝑐)meaning ®𝑥 = ®𝑦, ®𝑧 or ®𝑥 = ®𝑎, ®𝑏, ®𝑐, respectively.

A (partial) assignment 𝜌 is a (partial) function from variables to {⊥,⊤}. A

substitution 𝜔 is a generalization of an assignment by allowing variables to map

to literals. Hence, we consider a (partial) assignment to be a special case of a

substitution, where all unassigned variables map to themselves. Substitutions are

extended to literals by defining for the negation of a variable that 𝜔(𝑥) = ¬𝜔(𝑥),
and to preserve truth values, i.e., 𝜔(0) = 0 and 𝜔(1) = 1. When denoting a

substitution, then all variables that are not explicitly mentioned are mapped to

themselves, e.g., the substitution {𝑥 ↦→ 𝑦, 𝑧 ↦→ 0} maps 𝑥 to 𝑦, 𝑧 to 0, and all other

variables to themselves.

For a list of variables ®𝑥 = 𝑥1 , . . . , 𝑥𝑛 and a substitution 𝜔, we define that 𝜔(®𝑥) =
𝜔(𝑥1), . . . , 𝜔(𝑥𝑛). A substitution 𝛼 can be composed with another substitution 𝜔 by

applying 𝜔 first and then 𝛼, i.e., (𝛼 ◦ 𝜔)(®𝑥) = 𝛼(𝜔(®𝑥)). We can apply a substitution

𝜔 to a constraint 𝐶(®𝑥), which is denoted by 𝐶(®𝑥)↾𝜔 or 𝐶↾𝜔, by first applying 𝜔
on ®𝑥 and then evaluating 𝐶 on 𝜔(®𝑥), i.e., every variable 𝑥𝑖 of 𝐶 is substituted by

𝜔(𝑥𝑖). A substitution 𝜔 satisfies a constraint 𝐶 if 𝐶↾𝜔 is trivial and falsifies 𝐶 if 𝐶↾𝜔
is contradictory.

There are many paradigms of combinatorial optimization that have been

studied, where each paradigm restricts the combinatorial optimization problem in

some way or takes a different view on how the constraints are formulated. Some

key paradigms that are relevant for this thesis are introduced in the rest of this

section.

2.2.1 Boolean Satisfiability (SAT)

The Boolean satisfiability (SAT) problem is one of the core decision problems in

computer science [BHvMW21] and is the canonical NP-complete problem [Coo71,

Lev73]. To define the SAT problem we need some further notation. A (disjunctive)

clause is a logical disjunction of literal, e.g., 𝑥 ∨ 𝑦 ∨ 𝑧, which is the type of

constraint considered for the SAT problem. Without loss of generality, a Boolean

formula is in conjunctive normal form (CNF), which is a conjunction of clauses, e.g.,

(𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑦).

6 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

The SAT problem is a decision problem that asks if there exists an assignment

that satisfies a Boolean formula. If there exists such an assignment, then the

formula is said to be satisfiable. If there does not exist such an assignment, then the

formula is said to be unsatisfiable.

The SAT problem can also be phrased in terms of a combinatorial decision

problem. An element for in a SAT problem is an assignment, the constraints are the

clauses, and we want to find an assignment that satisfies all clauses. We can also

additionally associate the truth value ⊥with 0 and ⊤with 1 so that the considered

elements are in {0, 1}𝑛 .

At the core of all modern SAT solving algorithms conflict-driven clause learning

(CDCL) is used, which is enhanced with techniques for pre- and inprocessing,

which are discussed in Section 2.2.4. We will briefly review the CDCL algorithm

presented in Algorithm 1, where more detail about the components can be found

in [MSLM21].

One subroutine of the CDCL algorithm is unit propagation. Given a partial

assignment 𝜌, a clause 𝐶 unit propagates the literal ℓ if all literals except ℓ are

mapped to ⊥ by 𝜌. Then the resulting assignment is 𝜌 ◦ {ℓ ↦→ ⊤}. The first step in

the CDCL loop is to do unit propagation on the clauses in 𝐹 starting with the partial

assignment 𝜌. If the current assignment 𝜌 satisfies the formula, then the formula

is satisfiable. Otherwise, we check if there is a clause that is falsified by 𝜌. If there

is no such clause, we assign an unassigned variable to a value. Otherwise, we

learn a new clause based on the propagations and decisions that were responsible

to falsify the clause, which is called conflict analysis. If the learnt clause is the

empty clause, then we know that the formula is unsatisfiable, as the empty clause

cannot be satisfied by any assignment. Otherwise, the learnt clause is added to the

formula and some variables are unassigned, which is called backjumping.

2.2.2 Maximum Satisfiability

The canonical extension of the SAT problem to an optimization problem is the

maximum satisfiability (MaxSAT) problem [BJM21]. Given a set of (weighted) soft

clauses and a set of hard clauses, the MaxSAT problem asks for an assignment that

maximizes the sum of the weights of satisfied soft clauses subject to satisfying all

hard clauses. In practice, the MaxSAT problem is more commonly formulated

as finding an assignment that minimizes an integer linear function over literals

𝑓 subject to satisfying all clauses, where ⊥ and ⊤ are associated with 0 and 1,

respectively. Without loss of generality, all coefficients in the objective function 𝑓
are assumed to be positive by using that 𝑥 = 1 − 𝑥. Hence, we will assume for the

rest of the thesis that a MaxSAT problem is given in the latter formulation.

These two formulations can be translated into each other such that each

solution to one problem is also a solution to the other problem with the same

objective function value. The translation from the second to the first formulation is

straightforward by considering all constraints as hard clauses and for each term

in the objective function the negated literal is added as a soft clause weighted

by the coefficient of the term. The negated literal changes the problem from a

2. Background 7

Algorithm 1: Basic skeleton of the conflict-driven clause learning algo-

rithm, which is the core algorithm of modern SAT solvers. The input is a

Boolean formula 𝐹 in CNF and the output is if 𝐹 is satisfiable or not.

1 conflictDrivenClauseLearning(𝐹):
2 𝜌← ∅;
3 Loop
4 𝜌← unitPropagation(𝐹, 𝜌);
5 if 𝜌 satisfies 𝐹 then
6 return SAT;

7 if 𝜌 falsifies a clause in 𝐹 then
8 𝐶 ← conflictAnalysis(𝐹, 𝜌);
9 if 𝐶 is the empty clause then

10 return UNSAT;

11 𝐹← 𝐹 ∪ 𝐶;

12 𝜌← backjump();
13 else
14 𝜌← decideVariable();

minimization problem to a maximization problem. To translate the first to the

second formulation, we add a new variable 𝑏𝑖 for each soft clause 𝐶𝑖 with weight

𝑤𝑖 and add 𝑏𝑖 ∨ 𝐶𝑖 to the hard clause. Then the resulting hard clauses are the

constraints and the objective is

∑
𝑖 𝑤𝑖𝑏𝑖 .

There are several state-of-the-art solving techniques for MaxSAT that are based

on SAT solvers. The most straightforward algorithm to solve MaxSAT is solution-

improving search (SIS) [ES06, PRB18], which is outlined in Algorithm 2. The idea

is to solve the constraints using a SAT solver. If there is a solution, then we

compute the objective value for this solution and add clauses to the constraints

which enforce to find a solution that has a strictly better objective value. Then

we repeat to solve this problem with a SAT solver until the SAT solver returns

that the constraints is unsatisfiable, which means that the best solution found

so far is the optimal value. There are various encodings known to enforce a

strictly better solution [War98, BB03, ES06, JMM15, PRB18]. An incremental SAT

solvers [ES03] reuses information from previous calls to the solver and can be called

with so-called assumptions, which is a partial assignment that should be extended

to a full assignment by the solver. Such a solver helps to speed up SIS MaxSAT

solvers and allows efficient encodings that only change the used assumptions from

one call to the next.

Incremental SAT solvers also make core-guided MaxSAT solvers [MDM14, IBJ21]

possible. Another feature of incremental SAT solvers is that if the assumptions

cannot be extended to a complete solution, then the solver returns a subset of the

variables assigned in the assumptions where at least one variable should be set

8 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

Algorithm 2: Basic skeleton of the solution-improving search algorithm

to solve the MaxSAT problem with objective 𝑓 and Boolean formula 𝐹 in

CNF. The output is the optimal value of the MaxSAT problem, where the

optimal value∞means that 𝐹 is unsatisfiable.

1 solutionImprovingSearch(𝐹, 𝑓):
2 𝑣 ←∞;

3 Loop
4 (sat?, 𝜌) ← solveSAT(𝐹);
5 if sat? = UNSAT then
6 return 𝑣;

7 𝑣 ← 𝑓 (𝜌);
8 𝐹← 𝐹 ∪ asCNF(𝑓 ≤ 𝑣 − 1);

to the opposite value to satisfy the formula. This subset {ℓ1 , . . . , ℓ𝑛} is a so-called

core and expresses a clause ℓ1 ∨ · · · ∨ ℓ𝑛 that is satisfied if at least on variable is

assigned to the opposite value than used in the assumptions. We will focus on the

state-of-the-art OLL algorithm [AKMS12, MDM14] to handle the core clause, but

there are other algorithms like PMRes [NB14] that differentiate on how they treat

the core clause. A general skeleton of the core-guided algorithm to solve MaxSAT

is outlined in Algorithm 3, where we use lits(𝑓) to denote the set of literals in the

objective.

The OLL algorithm first calls the SAT solver with the assumptions that set

every literal in the objective to ⊥, which is the partial assignment that leads to the

smallest possible objective value. If SAT solver is able to extend these assumptions

to a complete assignment that satisfies all constraints, then we found an optimal

solution, as the assumptions enforce the smallest possible objective value that can

be achieved with this objective. If the SAT solver is not able to do this, it will return

a core clause 𝐶. We say that the weight w(𝐶, 𝑓) of a core 𝐶 is the smallest coefficient

of a literal in 𝐶 in the objective 𝑓 . We will introduce as many new variables

𝑐1 , . . . , 𝑐𝑛 as there are literals in 𝐶 and add clauses enforcing that 𝑐𝑖 ⇔
∑
𝑖 ℓ𝑖 ≥ 𝑖

for 𝑖 = 1, . . . , 𝑛, i.e., 𝑐𝑖 is true if at least 𝑖 literals of 𝐶 are true. There is now an

equivalence between ℓ𝑖 literals and 𝑐𝑖 variables, so that

∑
𝑖 ℓ𝑖 =

∑
𝑖 𝑐𝑖 , which can be

used to substitute the expression

∑
𝑖 w(𝐶, 𝑓)ℓ𝑖 in 𝑓 by

∑
𝑖 w(𝐶, 𝑓)𝑐𝑖 resulting in the

reformulated objective 𝑓ref . This process is then repeated with the reformulated

problem.

There are many other approaches used to solve MaxSAT, which are not of

interest for this thesis. Additional approaches to solve MaxSAT using incremental

SAT solvers are implicit hitting set (IHS) search [DB13] or branch and bound MaxSAT

solvers [AH14, LXC
+
21]. Furthermore, there are approaches that do not rely on

SAT solvers at all to solve the MaxSAT problem like integer-linear programming (ILP)

solvers [Ach07].

2. Background 9

Algorithm 3: Basic skeleton of the core-guided algorithm for solving the

MaxSAT problem with objective 𝑓 and Boolean formula 𝐹 in CNF. The

output is the optimal value of the MaxSAT problem, where the optimal

value∞means that 𝐹 is unsatisfiable.

1 coreGuidedSearch(𝐹, 𝑓):
2 Loop
3 𝛼← {ℓ ↦→ 0|ℓ ∈ lits(𝑓)};
4 (sat?, 𝜌, 𝜅) ← solveWithAssumptionsSAT(𝐹, 𝛼);
5 if sat? = UNSAT then
6 if 𝜅 = ∅ then
7 return∞;

8 (𝐹, 𝑓) ← reformulateProblem(𝐹, 𝑓 , 𝜅);
9 else

10 return 𝑓 (𝜌);

2.2.3 Pseudo-Boolean Optimization

A further generalization of SAT and MaxSAT is pseudo-Boolean optimization (PBO)

problem [RM21]. In pseudo-Boolean optimization the constraints are pseudo-

Boolean (PB) constraints, which are integer-linear inequalities over literals and the

objective function is an integer linear function over literals. Here we are again

using that convention that ⊥ and ⊤ are associated to 0 and 1, respectively, and

that the negation 𝑥 = 1 − 𝑥. Without loss of generality, these constraints are in

normalized form

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴, where the coefficients 𝑎𝑖 and the right-hand side

𝐴 are non-negative integers and the literals ℓ𝑖 are over distinct variables. The

right-hand side 𝐴 is also referred to as the degree (of falsity). We use � to denote

syntactic equivalence and to avoid confusion with the operator =. SAT is a special

case of PB solving, as a clause

∨
𝑖 ℓ𝑖 has the same semantics as the pseudo-Boolean

constraint

∑
𝑖 ℓ𝑖 ≥ 1.

Pseudo-Boolean optimization is equivalent to 0–1 ILP, where negative literals

are turned into positive literals using that 𝑥 = 1− 𝑥. Hence, any ILP solver [Ach07]

can be used to solve PBO. However, there are also specialized PB solvers that

follow the idea of CDCL presented in Algorithm 1, which gives rise to solve the PB

decision problem [LP10, EN18]. Pseudo-Boolean optimization can then be solved

using the MaxSAT approaches discussed in Section 2.2.2 using an incremental PB

decision solver instead of a SAT solver [DGD
+
21].

The only components that need to be changed to use Algorithm 1 to solve

a pseudo-Boolean problem are the procedures for unit propagation, conflict

analysis, and backjumping. There is a lot of literature about pseudo-Boolean

conflict analysis [LP10, EN18], but they are generally more complex as conflict

analysis in SAT solvers, but possible. To see that we can still efficiently do unit

propagation with pseudo-Boolean constraints we need to define the slack of a

10 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

PB constraint, which measures how close a constraint is to be falsified by an

assignment. The slack of a constraint 𝐶 �
∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴 under the assignment

𝜌 is slack(𝐶, 𝜌) B ∑
𝜌(ℓ𝑖)≠0

𝑎𝑖 − 𝐴. Hence, if slack(𝐶, 𝜌) < 0, then 𝐶 is falsified

by 𝜌, as even setting all literal in 𝐶 that are unassigned by 𝜌 to 1 would not

satisfy 𝐶. A PB constraint 𝐶 containing 𝑎𝑖ℓ𝑖 as a term propagates ℓ𝑖 to 1 under

an assignment 𝜌 if and only if slack(𝐶, 𝜌) < 𝑎𝑖 , as setting ℓ𝑖 to 0 would result in

slack(𝐶, 𝜌 ◦ {ℓ𝑖 ↦→ 0}) < 0, which says that 𝐶 is falsified by 𝜌 ◦ {ℓ𝑖 ↦→ 0}. Efficient

propagation is an active research area [Dev20b, NORZ24].

Another approach to solver pseudo-Boolean optimization problems is to

encode the PB constraints into clauses and then use a SAT solver to solve the

constraints [ES06, MML14, SN15]. There are many encodings with different

properties that are used to encode PB constraints into CNF [Bat68, War98, BB03,

ES06, JMM15, PRB18]. These solvers use standard SAT solvers and directly benefit

from any improvement for SAT solving.

2.2.4 Preprocessing

When solving combinatorial optimization problems in practice, many solvers first

use some algorithm to reformulate the problem before using the main solving

procedure. This approach of reformulating the problem is called preprocessing,

which is sometimes also referred to as presolving. It is also possible to reformulate

the current problem maintained by the solver during the main solving procedure,

which is called inprocessing. It has been shown for all kinds of combinatorial

optimization paradigms that preprocessing is an important technique [ABG
+
20,

IBJ22, HGH23]. This section only gives a brief overview over preprocessing and

will not go into detail about specific techniques used in preprocessing. Specific

preprocessing techniques are discussed in [ABG
+
20, BJK21, IBJ22].

Preprocessing techniques can be grouped into two categories. The first category

are so-called primal preprocessing techniques, which preserve the set of feasible

solution and only change how this set is described. The second category of

techniques can change the feasible set if it is guaranteed that the optimal value

stays unchanged, which are called dual preprocessing techniques. A special kind

of dual preprocessing techniques is symmetry breaking, which restricts the set of

feasible solutions to only contain a few feasible solutions from the symmetric set of

solutions by introducing new constraints. Symmetry breaking is commonly only

preformed syntactically over the constraints describing the feasible set.

2.3 Proof Complexity Proof Systems

The research area of proof complexity studies how efficiently reasoning systems can

prove statements [Kra19]. A key concept of proof complexity is the so-called proof

system and was defined by Cook and Reckhow [CR79]. This thesis only considers

sequential refutation proof systems, hence we will just refer to them as proof systems in

this thesis.

2. Background 11

The following definition of a (refutation) proof system is presented in the

language of combinatorial optimization, but proof systems are commonly only

used for decision problems. A refutation proof system is a set of inference rules to

derive new constraints. A proof is a sequence of inference rule applications that

start with the original constraints describing the set of feasible solutions and each

inference rule application adds a new constraint. A proof system must satisfy

the following three conditions to be a proof system in the sense of Cook and

Reckhow [CR79]:

Soundness: If there is a feasible solution, then the proof system can not show that

there is no feasible solution.

Completeness: If there is no feasible solution, then there exists a proof in the proof

system showing that there is no feasible solution.

Polynomial time checkable: Each inference rule application can be checked in poly-

nomial time in the size of the size of the proof.

All inference rules that we consider in this section are polynomial time checkable,

since syntactic checks of the hypotheses are sufficient. By using the soundness

property, we can show that there were no feasible solutions for a problem if we

can derive a constraint that obviously states that is a contradictory constraint.

To denote the inference rules in a proof system, we will use the notation

𝐻1 . . . 𝐻𝑛
Inference rule

𝐶

to say that the conclusion 𝐶 can be derived if the hypotheses 𝐻1 , . . . , 𝐻𝑛 have been

derived before or are part of the original formula. We will now introduce a few

proof systems that are relevant for this thesis.

In the resolution proof system [Bla37, DP60, DLL62, Rob65] operates over

clauses, i.e., the conclusion and hypotheses are all clauses. This means that if we

manage to derive the empty clause, then this shows that the original set of clauses

was unsatisfiable. The only inference rule in the resolution proof system is the

resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ 𝑥
Resolution over 𝑥

𝐶 ∨ 𝐷

deriving the clause 𝐶 ∨ 𝐷 from the clauses 𝐶 ∨ 𝑥 and 𝐷 ∨ 𝑥. This rule is sound,

since any assignment satisfying 𝐶 ∨ 𝑥 and 𝐷 ∨ 𝑥 has to satisfy 𝐶 if 𝑥 = ⊥ or 𝐷 if

𝑥 = ⊤. For a proof that the resolution rule is complete, see [Rob65].

The cutting planes proof system [CCT87] uses pseudo-Boolean constraints. This

means that if we derive the constraint 0 ≥ 1, then the original set of pseudo-Boolean

constraints was unsatisfiable. For additional details with of the cutting planes

proof system, we refer the reader to [BN21]. We will use the notation 𝐹 ⊢ 𝐶 to say

that there is a cutting planes derivation from the original PB constraint 𝐹 to derive

12 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

the PB constraint 𝐶, and write 𝐹 ⊢ 𝐹′ if 𝐹 ⊢ 𝐷 for each 𝐷 ∈ 𝐹′. We start with literal

axiom rule for any literal ℓ

Literal axiom for ℓ
ℓ ≥ 0

,

which states that the constraint ℓ ≥ 0 can always be derived. This rule is sound,

since adding ℓ ≥ 0 is the same as all variables are between 0 and 1, hence every

literal is at least 0.

Two pseudo-Boolean constraints can be added together using the addition rule∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴

∑
𝑖 𝑏𝑖ℓ𝑖 ≥ 𝐵

Addition∑
𝑖(𝑎𝑖 + 𝑏𝑖)ℓ𝑖 ≥ 𝐴 + 𝐵

.

The addition rule is sound, since when we do not normalize the constraint, then

the sums of the coefficients of the satisfied literals by an assignment 𝜌 satisfying

both constraints

∑
𝜌(ℓ𝑖)=1

𝑎𝑖 and

∑
𝜌(ℓ𝑖)=1

𝑏𝑖 are larger than 𝐴 and 𝐵, respectively.

Hence, 𝜌 also satisfies the sum of the constraints, as

∑
𝜌(ℓ𝑖)=1

(𝑎𝑖 + 𝑏𝑖) is larger than

𝐴 + 𝐵.

A pseudo-Boolean constraint can be multiplied by a positive integer using the

multiplication rule ∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴

Multiplication by 𝑚 ∈ N∑
𝑖 𝑚𝑎𝑖ℓ𝑖 ≥ 𝑚𝐴

.

Multiplication is sound, as the sum of the coefficients of the satisfied literals by

an assignment is just multiplied by 𝑚 and the degree is also just multiplied by

𝑚. Hence, any assignment satisfying the original constraint also satisfies the

multiplied constraint.

A pseudo-Boolean constraint in normalized form can also be divided by a

positive integer 𝑑 if all coefficients are divisible by 𝑑 using the specialized division

rule ∑
𝑖 𝑑𝑎𝑖ℓ𝑖 ≥ 𝐴

Division of normalized constraint by 𝑑 ∈ N∑
𝑖 𝑎𝑖ℓ𝑖 ≥ ⌈𝐴/𝑑⌉

.

The division rule is sound, as the sum of the coefficients of the satisfied literals by an

assignment is divided by 𝑑 and so is the degree divided by 𝑑 without considering

rounding up. However, since all coefficients are integer, the satisfiability of the

constraint does not change if the degree is rounded to the next biggest integer. By

adding literal axioms before the division, division can be defined for all constraints

without the condition that the coefficients are divisible. This yields the (general)

division rule ∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴

Division of normalized constraint by 𝑑 ∈ N∑
𝑖 ⌈𝑎𝑖/𝑑⌉ℓ𝑖 ≥ ⌈𝐴/𝑑⌉

.

The rules so far are already sufficient to get a cutting planes proof system that

is complete, since it can simulate resolution rule by adding the two hypotheses

2. Background 13

together and dividing by 2. However, Gocht et al. [GNY19] showed that adding

the saturation rule [DG02] for normalized constraints∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴

Saturation of normalized constraint∑
𝑖 min {𝑎𝑖 , 𝐴}ℓ𝑖 ≥ 𝐴

to the proof system yields a stronger proof system. This rule is sound, as the

constraint is satisfied if a literal with a coefficient larger than 𝐴 is satisfied and also

if the coefficient is 𝐴.

Finally, we discuss extension rules that allow to derive constraints with new

variables. The resolution proof system can be modified to the extended resolution

proof system [Tse68] by adding the extension rule

𝑞 ∉ Vars(𝐹)
Extended resolution for new variable 𝑞

ℓ1 ∨ 𝑞 ℓ2 ∨ 𝑞 ℓ1 ∨ ℓ2 ∨ 𝑞
,

where Vars(F) is the set of variables used by the original and derived constraints

before this rule is applied. The extension rule introduces a new extension variable

𝑞 and clauses forcing 𝑞 to be true if and only if ℓ1 ∨ ℓ2 is true. Similarly, extended

cutting planes can be defined using the same rule.

2.4 Certifying Algorithms
This section briefly motivates and defines certifying algorithms. For more history

and details on certifying algorithms see [MMNS11]. They also provide more

examples of certifying algorithms for different types of problems.

The problem that certifying algorithms is trying to solve is to know if a software

program is correct.1 The approach of certifying algorithms tries to provide a middle

ground between testing [MSB11] and formal verification [HT15] by providing

correctness guarantees for the specific input we consider, but with less effort

than what is required for formal verification. The idea of certifying algorithms

is something we are all familiar with from solving school maths problems, e.g.,

solving equations. Then a way to make sure that the calculated result is correct

would be to plug in the calculated values for the variables in the equations and

check if all equalities hold. I.e., there is a procedure independent of the solving

process to check the correctness of the result. This intuition can be formalized into

certifying algorithms.

Before we can define what a certifying algorithm is, we require the following

two definitions. The precondition of a function is the restriction on the input for

which the function is valid. E.g., consider the function div(𝑎, 𝑏) for 𝑎, 𝑏 ∈ R which

divides 𝑎 by 𝑏, then the precondition of div(𝑎, 𝑏)would be that 𝑏 ≠ 0, as division

by 0 is undefined. The precondition can also be trivially satisfied, if the function is

1We consider a software program to be correct if it returns the correct output for the given input

with respect to a formal specification of the function computed by the program. This means that an

error in the specification is not considered incorrect for our purpose.

14 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

input 𝑥

certifying

algorithm for

function 𝑓

output 𝑦

certificate 𝑐

checker

for

function

𝑓

accept 𝑦
or reject

Figure 1: Workflow for a certifying algorithm for the function 𝑓 and checking the certificate

with a checker for the function 𝑓 .

defined for any value of the function domain. The postcondition of a function is

the expected output of the function with respect to the input of the function. E.g.,

for the function div(𝑎, 𝑏) the postcondition would be that value of the function

div(𝑎, 𝑏) is actually 𝑎/𝑏, which be verified by computing 𝑎 = 𝑏 · 𝑐 where 𝑐 is the

computed result of div(𝑎, 𝑏).
A certifying algorithm get an input 𝑥 ∈ 𝑋 and returns an output 𝑦 ∈ 𝑌 and a

certificate2 𝑐. The 𝑥, 𝑦, and 𝑐 are the input to the checker, which either verifies that

the 𝑦 is the correct output for 𝑥 or the checker fails to verify the correctness of 𝑦.

The latter case can either be due to 𝑦 being the incorrect output or the certificate 𝑐
does not show the correctness of 𝑦. It can be the case that the certificate is trivial

(empty) if the checker can verify the correctness of output 𝑦 for input 𝑥 without

additional information. See Figure 1 for the workflow of a certifying algorithm

and the verification of the certificate.

In [MMNS11] 3 categories of certifying algorithms are defined. All definitions

consider algorithms that compute the function 𝑓 : 𝑋 → 𝑌. Strongly certifying

algorithms halt for all inputs 𝑥 ∈ 𝑋 and the algorithm either returns that 𝑥 does not

satisfy the precondition and the certificate also shows that or returns 𝑦 ∈ 𝑌 and the

certificate shows that 𝑓 (𝑥) = 𝑦. (Ordinary) certifying algorithms halt for all inputs

𝑥 ∈ 𝑋 and the algorithm either returns that 𝑥 does not satisfy the precondition

and the certificate also shows that or returns 𝑦 ∈ 𝑌 and the certificate shows that

𝑓 (𝑥) = 𝑦 if 𝑥 satisfies the precondition. In the latter case it can happen that if

𝑥 does not satisfy the precondition, then 𝑓 (𝑥) ≠ 𝑦. Weakly certifying algorithms

only has to halt for 𝑥 satisfying the preconditions. If the algorithm halts, then

it either returns that 𝑥 does not satisfy the precondition and the certificate also

shows that or return 𝑦 ∈ 𝑌 and the certificate shows that 𝑓 (𝑥) = 𝑦 if 𝑥 satisfies the

precondition. Hence, if a weakly certifying algorithm halts, then it behaves exactly

as an ordinary certifying algorithm.

To illustrate these different categories, we consider the above example of

division. A strongly certifying algorithm for this problem would always halt and if

the divider is 0, then the algorithm would return an error and the certificate shows

that division by 0 is not possible. A (ordinary) certifying algorithm for division

might act as the strongly certifying algorithm and additionally is allowed to return

anything as long as the certificate is correct. For instance, if we want to divide 0

2The certificate is also referred to as the witness in [MMNS11].

2. Background 15

by 0 and the algorithm outputs 0 the certificate check would still be correct, as

0 = 0 · 0. A weakly certifying algorithm is additionally allowed to run without

halting if we divide by 0.

For the rest of this thesis, we will only consider the case that the precondition

is trivial (i.e., it is always satisfied). If the precondition is trivial, then all certifying

algorithms are strongly certifying, as the exceptions for the other types can only

occur when the precondition is not satisfied. In fact, in [MMNS11, Theorem 5] it is

shown that any deterministic algorithm with a trivial precondition has a strongly

certifying algorithm for the same problem. Hence, all the algorithms we consider

from now on are strongly certifying.

Although the definitions for certifying algorithms only give guarantees about

the theoretical algorithm, we can not get any guarantees about the implementation

of the algorithm as software running on hardware. If we have bugs in the

implementation, then we do not have any guarantees about the output or the

certificate. Moreover, if there are no bugs in the implementation, it can still

happen that we run into resource limits (e.g., not enough free memory) and do not

produce a certificate or output at all. However, if the algorithm has correctly been

implemented and enough resources are available, then the theoretical guarantees

of the algorithms can be transferred.

On the one hand, this implies that if the implementation returns an output and

a certificate and the checker verifies that the output is correct, then the theoretical

guarantees of the algorithm transfer and the following holds. So for a strongly

certifying algorithm we know that if the input did not satisfy the precondition,

then the implementation correctly detected this or correctly computed an output

that satisfies the postcondition.

On the other hand, if the checker rejects the output using the certificate, then

there could be multiple reasons why this is the case. For instance possible reasons

could be that the implementation computed an incorrect output, the implementa-

tion computed an incorrect certificate for a correct output, the implementation was

prematurely terminated, or the implementation of the checker has a bug. Hence,

the checker can also reject a correct output.

Even if the checker rejects, the certification process can be useful to detect the

problem. A checker can be designed in a way that it not just accepts the output

of rejects. It can give a reason why it rejected, which can aid in the process of

debugging where the implementation of the certifying algorithm went wrong.

2.4.1 Certifying Algorithms for SAT

As the SAT problem, which was briefly introduced in Section 2.2.1, is decidable,

there exist deterministic algorithms that are guaranteed to terminate for any

propositional formula deciding if the formula is either satisfiable or not. We will

only consider algorithms that are deterministic and are guaranteed to terminate,

e.g., we will not consider local search algorithms. Since for any such algorithm

there exists an equivalent strongly certifying algorithm [MMNS11, Theorem 5]

16 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

with a constant factor overhead running time, the goal is to only incur a constant

factor overhead for making an algorithm certifying.

A certificate for algorithms that decide the SAT problem is usually different

depending on the satisfiability of the formula. If the algorithm outputs satisfiable,

then the certificate is a solution that satisfies the formula, where a partial assignment

that trivializes the formula is sufficient. If the algorithm outputs unsatisfiable, then

the certificate is a proof showing that it is impossible to satisfy the formula. As, this

direction is the interesting case, certification in the SAT community is commonly

referred to as proof logging. This proof can take different forms and many formats

have been proposed in the last couple of decades, which are discussed in detail

in [Heu21]. We will briefly discuss different proof formats of unsatisfiability in

chronological order.

Van Gelder [VG02] proposed to certify unsatisfiability by a resolution proof. A

resolution proof [Bla37, DP60, DLL62, Rob65] starts with the clauses in the formula

and derives new clauses using the resolution rule from Section 2.3. The resolution

proof can be extracted from the clause learning procedure of CDCL.

Goldberg and Novikov [GN03] instead suggested a proof format based on

so-called reverse unit propagation (RUP). The assignment obtained at the end of unit

propagation can be interpreted as the necessary assignments resulting from the

starting assignment to avoid falsifying the formula. Hence, if we encounter the

situation that an assignment obtained by unit propagation falsifies a clause, then

the original assignment can never be extended to a satisfying assignment of the

formula, which is called a conflict. Reverse unit propagation shows that a clause

𝐶 � ℓ1 ∨ · · · ∨ ℓ𝑘 is implied by the formula by doing unit propagation that starts

with an assignment that satisfies the negated clause ¬𝐶 � ℓ 1 ∧ · · · ∧ ℓ 𝑘 and has

to result in a conflict. This conflict shows that the only way the formula could be

satisfied is if ℓ1 ∨ · · · ∨ ℓ𝑘 � 𝐶, which shows that we can add the clause 𝐶 to the

formula. To denote that 𝐹 ∪ {¬𝐶} unit propagates to conflict, we use 𝐹 ⊢1 𝐶. For

sets of constraint 𝐹′, the notation 𝐹 ⊢1 𝐹′ means that 𝐹 ⊢1 𝐷 for each 𝐷 ∈ 𝐹′. Using

this notation we can formally state that the constraint 𝐶 can be derived by reverse

unit propagation from the formula 𝐹 if

𝐹 ⊢1 𝐶 . (1)

The performance of unit propagation depends on the number of clauses to keep

track of, as we do not know which clauses propagate. Hence, it became clear that

deletions of clauses are crucial [HHW14]. Alternatively, this issue can be fixed by

providing hints which constraints propagate in which order [WHH14, CHH
+
17].

Systems that allow to delete constraints will be prefixed with deletion (D), e.g.,

reverse unit propagation (RUP) with deletion becomes deletion reverse unit

propagation (DRUP). All the systems discussed in this section can be extended

with a deletion rule.

While RUP can certify CDCL, dual pre- and inprocessing techniques can not be

certified using RUP. The main issue is that RUP can only derive implied clauses,

i.e., clauses that do not change the set of solutions to a formula. To certify such pre-

2. Background 17

and inprocessing, Järvisalo et al. [JHB12] proposed proofs based on the resolution

asymmetric tautology (RAT) rule, which guarantees satisfiability-equivalence of the

formula and the formula with the added clause. The idea of the rule is to extend

RUP3 with one step of resolution. A clause 𝐶 can be added to a formula 𝐹 by RAT

if there is a literal ℓ ∈ 𝐶 such that resolvent of 𝐶 and any clause 𝐶′ ∈ 𝐹 where

ℓ ∈ 𝐶′ is RUP. The correctness of this rule can be seen by considering that 𝐶 is not

satisfied by some solutions of 𝐹. Specifically, solutions that assign ℓ to false are no

longer solutions to 𝐹 ∧ 𝐶. Hence, we have to guarantee that all clauses in 𝐹 that

might be falsified by removing these solutions, namely clauses 𝐶′ ∈ 𝐹 containing

the literal ℓ , can still be satisfied by some other solution to the formula. This is the

case if 𝐶′ \ {ℓ } is implied by 𝐹.

Alternatively, this can be formalized by saying that clause 𝐶 with literal ℓ ∈ 𝐶
can be derived by RAT from a formula 𝐹 if

𝐹 ∧ ¬𝐶 ⊢1 𝐹↾{ℓ ↦→1} . (2)

Here, the substitution of ℓ to true is called the witness and should be specified

explicitly. As the proof obligations of the rule depend on the current formula,

allowing to delete constraints from the formula can actually strengthen this

proof rule [BT21]. While this rule does not preserve solutions with respect to

propositional logic, it preserves solutions with respect to overwrite logic, which

extends propositional logic with a so-called overwrite operator [RS18].

RAT can be generalized to the propagation redundancy (PR) rule [HKB17]4, where

the witness can be an arbitrary assignment. The idea for this rule is that adding

clause 𝐶 could remove solution (if there are any) for 𝐹, but there should be at least

one solution to the formula that can be extended from the assignment 𝜌. Hence,

we have to show that 𝐶↾𝜌 and for all 𝐷 ∈ 𝐹 that 𝐷↾𝜌 is implied by the formula 𝐹.

Hence, we can think of the witness as the way to repair any potential solution that

could have been removed. Formally, the clause 𝐶 can be derived by the PR rule

from a formula 𝐹 given a (partial) assignment 𝜌 if

𝐹 ∧ ¬𝐶 ⊢1 (𝐶 ∪ 𝐹)↾𝜌 . (3)

The PR rule can be even more generalized to the substitution redundancy (SR)

rule [BT21] by allowing a substitution as the witness. Similar to PR rule the SR rule

uses the witness to repair any solution removed by the added clause 𝐶. Formally,

the clause 𝐶 can be derived by the PR rule from a formula 𝐹 given a substitution 𝜔
if

𝐹 ∧ ¬𝐶 ⊢1 (𝐶 ∪ 𝐹)↾𝜔 . (4)

Inspired by the SR rule, Rebola-Pardo [RP23] has extended overwrite logic to

mutation logic such that SR proofs preserve solutions in mutation logic. Through

3The property of asymmetric tautology (AT) is equivalent to RUP.

4Redundancy in the SAT community means that adding a clause to or removing a clause from a

formula does not change the satisfiability of the formula.

18 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

this formalization improvements to the SR rule became apparent which resulted

in the so-called weak substitution redundancy (WSR) rule. The key observation of

Rebola-Pardo is that SR rule can delete clauses that are no longer needed after

the WSR rule application. Hence, these clauses can be removed from the proof

obligations, but can still be used as premises for the proof obligations. Formally,

the WSR rule states that the clause 𝐶 can be derived from a formula 𝐹 given a

subformula 𝐺 ⊆ 𝐹 and a substitution 𝜔 if

𝐹 ∧ ¬𝐶 ⊢1 (𝐶 ∪ 𝐺)↾𝜔 . (5)

The resulting formula is 𝐺 ∪ 𝐶.

While it is possible to express very advanced reasoning techniques using WSR

with very short certificates that scale linear in the reasoning conducted by solvers,

there are some limitations for this proof system, which we will discuss in Section 3.

3 Related Work
Some related work has already been mentioned in Section 2.4.1 with the certification

formats for SAT like DRAT, propagation redundancy, and weak substitution

redundancy. However, these systems cannot efficiently certify all state-of-the-art

reasoning techniques. The best know approach to certify parity reasoning scales

cubic in the size of the formula [PR16], while our approach scales linear [GN22].

Even though it is possible to deal with simple symmetry breaking using these

systems, it is not known how to certify the full range of techniques in modern

symmetry breaking that our approach can certify [BGMN23].

The DSRUP system [TD20] has been proposed for handling symmetries in

SAT solvers with a focus on solvers that want to derive symmetric versions of

clauses derived by RUP with respect to known symmetries of the formula. Hence,

it is only possible to derive implied constraints with this system, which makes it

impossible to support pre- and inprocessing techniques. Especially, the technique

of symmetry breaking is not supported, as symmetry breaking constraints are not

implied, as they remove symmetric solutions.

While these systems have been designed to certify SAT solvers, they are

used in ad hoc methods to certify other problem by encoding a SAT formula

that proves a desired property about the problem instance and using a SAT

solver to certify that this property holds. For example, this approach is used

to certify solvers for hardware model checking [YBH21, FYBH24] and model

counting [CCS24, BNAH23]. The main issue with these certificates is that in order

to trust the certificate, we also have to trust the encoding of the property that we

are interested in into a SAT formula, which can be non-trivial. In most cases this

is fixed by having formally verified code with a small trust base to generate the

encoding. Another difference to our approach is that the certification is decoupled

from the solving. Hence, it is impossible to predict the scaling of the certificate

and an error in the certificate is not linked directly to reasoning in the solver.

3. Related Work 19

When it comes to the certification of MaxSAT solvers, there are other approaches

that have been studied before. MaxSAT-Resolution [HL06] is defined for the

MaxSAT formulation with soft and hard clauses. This system is extended with the

redundancy notion called inclusion redundancy [BBL24], which allows introducing

a clause 𝐶 to a formula 𝐹 if for a witness 𝜔 satisfying 𝐶 it holds that 𝐹↾¬𝐶 ⊇ 𝐹↾𝜔.

This rule is weaker than the redundancy notions discussed in Section 2.4.1, but

automatically preserves the optimal value of the problem. The downside with

MaxSAT-Resolution is that certification is only known for branch and bound

algorithms and preprocessing, and it is unlikely that this system is able to certify

core-guided solving [BBL24]. Furthermore, MaxSAT-Resolution has no practical

relevance, as no modern MaxSAT solver that implements certification based on

MaxSAT-Resolution.

There is also more straightforward extension of propagation redundancy for

MaxSAT called cost propagation redundancy, which was proposed by Ihalainen

et al. [IBJ22]. This rule is similar to the redundance-based strengthening rule in

VeriPB, but additionally allows adding new variables to the objective function.

This behaviour can be simulated in the VeriPB system with a redundance-based

strengthening step followed by an objective update. The main downside of the

work by Ihalainen et al. is that they were not able to figure out how the condition

on the objective function can be checked efficiently using only clausal reasoning.

Another commonly suggested idea for MaxSAT is to check that the optimal

solution satisfies all clauses and to certify optimality by running a SAT solver on

the clauses together with clauses encoding that only strictly better solutions are

allowed. This approach has been evaluated in Paper A, which shows that this

approach has unpredictable scaling behaviour and still requires certification of the

clausal encoding that only solution strictly better solutions are allowed.

To certify the correctness of mixed integer linear programming (MIP), the VIPR

system [CGS17] was developed. This certification system is focused on LP-based

branch and cut MIP solvers. Hence, the certificate format is very specialized and

does not really support any other solving technique. Additionally, VIPR does not

have any notion of redundancy as known for the certification of SAT solver, which

makes it impossible to certify advanced presolving techniques.

There has also been recent work that used the VeriPB system to provide certifi-

cation to different kinds of solvers. There are certifying constraint programming

solvers using VeriPB [MM23, MMN24, FSM
+
24, MM25] to certify reasoning with

a wide range of constraint propagators. However, it is still an open problem to

provide certification for all kinds of propagators used in a modern constraint

programming solver and provide formally verified encodings of constraint pro-

gramming problem into a pseudo-Boolean optimization problem. For optimal

classical planning, Dold et al. [DHN
+
25] proposed a theoretical framework that

uses the VeriPB system to certify the optimality of a plan. VeriPB has also been

used to certify the correctness of the Pareto front for multi objective MaxSAT

solvers [JBBJ25].

20 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

4 Pseudo-Boolean Certificates
This section focuses on the certification system studied in this thesis. We will first

motivate the design principles guiding our certification system for combinatorial

optimization. Then we will discuss our certification system in detail with a focus on

the contribution of this thesis. Finally, some algorithms and data structures used

in our reference implementation of a proof checker for our certification system.

4.1 Motivation
Our certification system is based on the cutting planes proof system. There are

theoretical advantage of using cutting planes that are motivated by proof complex-

ity, see Section 2.3. When comparing cutting planes to resolution, Haken [Hak85]

showed exponential lower bounds in the number of steps required to refute the

so-called pigeonhole principle formula, but cutting planes only requires polynomi-

ally many steps. Hence, using cutting planes can give exponentially shorter proofs

for a formula than using resolution. However, it is possible to simulate extended

resolution using DRAT [JHB12] and DRAT using extended resolution [KRH18].

Hence, DRAT is as strong as extended resolution as a proof system.

Our system can simulate DRAT and therefore also extended resolution, but

it is not immediately clear that it could be exponentially stronger. However, as

highlighted in Section 2.4, polynomial improvements in size of the certificate are

important for certifying algorithms to achieve linear sized certificates. Additionally,

Kołodziejczyk and Thapen [KT24] showed that the dominance-based strengthening

can simulate the proof system 𝐺1, which is above extended resolution and possibly

hints towards our system being stronger than extended resolution.

Besides the theoretical advantages of cutting planes, a proof system using

pseudo-Boolean constraints has the advantage that the constraints are more

expressive than clauses, when comparing to SAT based certification approaches.

Many problems and reasoning can be encoded more concisely. A trivial example is

an at-most-one constraint stating that at most one literal of a set of 𝑛 literals is true,

which can be represented with one pseudo-Boolean constraint but requires 𝑛2
many

clauses. While it is possible to represent such constraints using fewer clauses, the

pseudo-Boolean constraint is still more concise and easier to grasp. It could even be

discussed to lift the restrictions imposed by pseudo-Boolean constraints and more

complex constraints. However, there is a trade-off between the expressiveness of

the constraints and the complexity of how to handle constraints inside a checker to

be sure that the checker handles them correctly.

We propose also that certification should be done in a unified multipurpose

system instead of a specialized system for each component of the algorithm. For

instance, image Having a certificate for preprocessing in one format and the

certificate for the main solver in another format. The problem with this approach

is that we need guarantees between the interplay between different certificates.

This could be achieved by having a checker that can deal with both formats, but

than the checker internally has to switch between different representation, e.g.,

4. Pseudo-Boolean Certificates 21

if one format reasons on a graph and the other uses pseudo-Boolean constraints.

This has the downside that it increases the complexity of the checker, which makes

it more difficult to trust the checker. Alternatively, an interface between proofs

could be defined, so that the different proofs can be checked by different checkers,

which keeps each checker simple. We are actually pioneering this approach with

the output section, where we can certify guarantees on a reformulated problem

that can be used as input to the next checker.

Another advantage of having one unified multipurpose system is that solver

authors can trust that the certification system is strong enough to certify new

reasoning techniques added to the solver. Moreover, new tool, like preprocessors

or symmetry breaking tools, can just be added to the solver without hassle if the

tool uses the same system as the solver.

Additionally, our philosophy is that the certification should follow the reasoning

of the solver as close as possible, which is contrast to just certifying the result

by possibly using an independent approach. There are several advantages to

this that we will discuss in the rest of this section. If the certification follows the

reasoning closely, then we can get upper bounds on the size of the certificate and

the additional time required to write the certificate. This is required to get efficient

certifying algorithms in the sense of McConnell et al. [MMNS11].

The fact that the certificate is written while the solver is running also enables

us to have certification for anytime solvers that can be interrupted and stopped

arbitrarily. For instance, a solver that generates the certificate after solving would

not generate any certificate if it were stopped suddenly. However, if a solver that is

generating a certificate while solving is stopped, then it can finish up the certificate

in the same routine that is printing the anytime result.

The closer the certificate follows the reasoning in the solver and the more detail

the certificate contains, the better it can be used for detecting bugs in the reasoning

of the solver. This approach can even detect bugs on instances where the solver

still returns the correct result but the reasoning that led to this result is erroneous.

Detecting bugs even if the returned result is correct and without even knowing

what the correct result should be makes software testing and the approach of

fuzzing [ZWCX22] for software testing extremely powerful. If a bug occurs, then a

detailed certificate can even help to find the cause of the issue by tracing back the

certificate.

A detailed certificate can also be used to deeper understand the reasoning

performed by the solver. In our approach it is even possible to annotate the

certificate with comments to see which parts of the certificate came from which

part of the solver. This approach could even be used to extract why the solver came

to this conclusion in a concise human-readable form, so that users can understand

the reasons for the returned result.

All of this should make it clear that there are advantages of having a unified

multipurpose certification systems that can closely follow the reasoning of the

solver. Even though we have seen advantages of using pseudo-Boolean constraints

to represent the reasoning, the specific format of the constraints can be debated and

more general constraints than pseudo-Boolean constraints might be advantageous.

22 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

4.2 Our Pseudo-Boolean Proof System
The pseudo-Boolean proof system VeriPB was pioneered by Gocht et al. in the

course of several publications [EGMN20, GMN20, GMM
+
20, GN22, BGMN23,

Goc22]. We will first discuss some general design principles of the theoretical

proof system and the representation of the proof rules in file format. Then we

will review some prior work on the proof system before we will discuss the

contributions to the certification system made by this thesis in detail. In this section

we only focus that the system is correct and in Section 4.3 we will discuss efficient

algorithms for checking the correctness of rule applications.

Our system is based on the cutting planes proof system, which means that

the atoms of reasoning are pseudo-Boolean constraints. In the proof system we

always assume the constraints are stored and treated in normalized form while the

format allows stating non-normalized constraints, these are normalized directly

after parsing. Each constraint in the proof is assigned a consecutive ID, starting

with the constraints in the original problem and continuing with the constraints

introduced by the proof.

The constraints known at any point in the proof are partitioned into a core set

and a derived set of constraints. The core set is initialized to the constraints of the

input problem. The idea of the core set is that we can have guarantees on how

these constraints relate to the input constraints, e.g., they are equisatisfiable. The

derived set is initialized to be empty. All constraints added by the proof rules are

added to the derived set. We do not have to guarantee anything for the constraints

in the derived set, except that they are derived by a valid rule application. Järvisalo

et al. [JHB12] referred to the core set as the irredundant set and to the derived set

as the redundant set.

The completeness of our proof system follows from the completeness of the

cutting planes proof system and that any standard cutting planes proof is also

a proof in our system. To show the soundness of our proof system, especially

for the new rules, we use the same notations and definitions used in by Bogaerts

et al. [BGMN23], but extend it slightly to show the correctness of the new rules.

The proof system is a sequence of proof configurations (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠),
where

• 𝒞 is the core set of constraint

• 𝒟 is the derived set of constraints

• 𝑓 ∗ is the current objective function

• 𝒪⪰ is the currently active order

• ®𝑧 is the vector of literals the active order is initialized over

• 𝑔 is a Boolean variable indicating stronger guarantees on the core set

• 𝑢 is the best objective value recorded

4. Pseudo-Boolean Certificates 23

• 𝑣 is the best objective value recorded while 𝑔 = ⊤ (incumbent value)

• 𝑠 is a Boolean variable indicating if the strengthening-to-core mode is active.

The configuration closely resembles the global state maintained by the checker.

The initial proof configuration for an optimization problem with objective 𝑓 and

set of constraints 𝐹 is (𝐹, ∅, 𝑓 , ∅, ∅,⊤,∞,∞,⊥).

Definition 1 (cf. [BGMN23, Definition 1]). For an optimization problem with

objective 𝑓 and set of constraints 𝐹 the configuration is (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠)
is (𝐹, 𝑓)-valid if it holds that

1. For every 𝑢′ < 𝑢, it holds that if 𝐹∪ { 𝑓 ≤ 𝑢′} is satisfiable, then 𝒞∪ { 𝑓 ∗ ≤ 𝑢′}
is satisfiable.

2. For every total assignment 𝜌 satisfying 𝒞, there exists a total assignment 𝜌′

satisfying 𝒞 ∪ 𝒟 ∪ { 𝑓 ∗(𝜌) ≥ 𝑓 ∗(𝜌′)} ∪ 𝒪⪰(®𝑧↾𝜌 , ®𝑧↾𝜌′).

3. If 𝑣 < ∞, then 𝐹 ∪ { 𝑓 ≤ 𝑣} is satisfiable.

4. For every 𝑣′ < 𝑣, it holds that if 𝒞 ∪ { 𝑓 ∗ ≤ 𝑣′} is satisfiable, then 𝐹 ∪ { 𝑓 ≤ 𝑣′}
is satisfiable.

5. If 𝑠 = ⊤, then any total assignment satisfying 𝒞 also satisfies 𝒞 ∪ 𝒟.

All rules in our proof system preserve (𝐹, 𝑓)-validity, which we will show later

in the thesis for the rules, where this does not follow from directly. The following

theorem combines two theorems by Bogaerts et al. and establishes the relationship

between (𝐹, 𝑓)-validity and the soundness of the proof system. The theorem has

been adjusted slightly to incorporate the changes to the proof system in this thesis

compared to the one used by Bogaerts et al.

Theorem 1 (cf. [BGMN23, Theorem 2 and 3]). Let 𝐹 be a set of pseudo-Boolean

constraints and 𝑓 be a pseudo-Boolean objective. If (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) is an

(𝐹, 𝑓)-valid configuration, then the following holds:

i) If 𝒞 ∪ 𝒟 contains the constraint 0 ≥ 1 and 𝑢 = ∞, then 𝐹 is unsatisfiable.

ii) If 𝐹 is unsatisfiable, then 𝑣 = ∞.

iii) Let lb ≤ 𝑢. If 𝒞 ∪ 𝒟 contains the constraint 𝑓 ∗ ≥ lb, then any solution 𝜌 satisfying

𝐹 has objective value 𝑓 (𝜌) ≥ lb.

iv) If 𝐹 is satisfiable, then there is a solution 𝜌 satisfying 𝐹 with objective value 𝑓 (𝜌) ≤ 𝑣.

Proof. We prove the correctness of the theorem item by item. For Item i, assume

for contradiction that 𝐹 is satisfiable. By Item 1 in Definition 1, the constraints

in 𝒞 are satisfiable, as 𝑢′ < ∞ can be chosen large enough. Finally, by Item 2 in

Definition 1, 𝒞 ∪ 𝒟 is also satisfiable, which contradicts that 𝒞 ∪ 𝒟 contains the

constraint 0 ≥ 1.

24 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

For Item ii, assume for contradiction that 𝑣 < ∞. By Item 3 in Definition 1,

𝐹 ∪ { 𝑓 ≤ 𝑣} is satisfiable. Hence, 𝐹 itself is also satisfiable, which is a contradiction

to 𝐹 being unsatisfiable.

For Item iii, assume for contradiction that there is a solution 𝜌′ satisfying

𝐹 with 𝑓 (𝜌′) < lb, hence 𝜌′ satisfies 𝐹 ∪ { 𝑓 ≤ lb − 1}. By lb ≤ 𝑢 and Item 1 in

Definition 1, we have that 𝒞 ∪ { 𝑓 ∗ ≤ lb − 1} is satisfiable. Let 𝜌̂ be a solution

satisfying 𝒞 ∪ { 𝑓 ∗ ≤ lb − 1}, then 𝑓 ∗(𝜌̂) < lb and 𝜌̂ also satisfies 𝒞. By Item 2 in

Definition 1, there exists a solution 𝜌̃ that satisfies 𝒞∪𝒟 and has an objective value

𝑓 ∗(𝜌̃) < lb, which is a contradiction to 𝒞 ∪ 𝒟 containing the constraint 𝑓 ∗ ≥ lb, as

𝑓 ∗ ≥ lb is falsified by 𝜌̃.

For Item iv, we consider two cases. If 𝑣 = ∞, then there is a solution satisfying

𝐹, since 𝐹 is satisfiable, and any solution 𝜌′ has objective value 𝑜𝑏 𝑗(𝜌′) ≥ ∞. If

𝑣 < ∞, then 𝐹 ∪ { 𝑓 ≤ 𝑣} is satisfiable by Item 3 in Definition 1. This immediately

gives us that any solution 𝜌′ satisfying 𝐹 ∪ { 𝑓 ≤ 𝑣} satisfies 𝐹 and has an objective

value 𝑓 (𝜌′) ≤ 𝑣. □

Items 4 and 5 in Definition 1 is not required to prove Theorem 1, but is required

later to show that our proof rules preserve (𝐹, 𝑓)-validity. The Items i and ii are

mainly relevant for decision instances, while Items iii and iv are only relevant for

optimization instances.

4.2.1 Rules from Previous Work

In this section we will discuss the rules that have remained unchanged compared

to Bogaerts et al. [BGMN23] and Gocht [Goc22]. If rules have been changed since

the work by Bogaerts et al., we will detail the updated rules in Section 4.2.2 and

omit it in this section.

Implicational Rules The first set of rules are the rules from the cutting planes

proof system and rules that are just syntactic sugar for cutting planes derivations.

Our proof system supports reverse unit propagations (RUP) similar to RUP in

Section 2.4 but using pseudo-Boolean unit propagation. Another rule is syntactic

implication, which check if a constraint 𝐶 can be derived from another constraint

𝐷 by adding literal axioms, saturating with respect to the degree of 𝐷, and

adding more literal axioms. All of these rules have the effect that the configuration

changes from (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) to (𝒞 ,𝒟∪{𝐶}, 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) trivially

preserve (𝐹, 𝑓)-validity, see [BGMN23, Section 3.1].

Sanity Check Rules There are also some rules for sanity checks that do not

modify the configuration, hence they are trivially sound. Their purpose is to check

if the configuration is as expected, so that if a discrepancy occurs between the

proof and the solver, the check immediately detects this. For a specific constraint

𝐶 and the configuration (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠), we can check if a syntactically

equivalent or syntactically implied constraint to 𝐶 is in 𝒞 ∪ 𝒟. If this is not the case,

the proof will fail.

4. Pseudo-Boolean Certificates 25

Move to Core A constraint 𝐶 can be moved from the derived set to the core set,

but not vice versa. This changes the configuration from (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠)
to (𝒞 ∪ {𝐶},𝒟 \ {𝐶}, 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠). This preserves (𝐹, 𝑓)-validity, since the

core set gets more constrained, which preserves the required guarantees.

Order Change We can change the order by specifying a possibly empty pseudo-

Boolean formula 𝒪′⪰(®𝑢, ®𝑣) and a list of literals ®𝑧′ that should be compared, where ®𝑢,

®𝑣, and ®𝑧 have the same size. The formula 𝒪′⪰(®𝑢, ®𝑣) has to be shown to be reflexive,

i.e., ∅ ⊢ 𝒪′⪰(®𝑢, ®𝑢), and transitive, i.e., 𝒪′⪰(®𝑢, ®𝑣) ∪ 𝒪′⪰(®𝑣, ®𝑤) ⊢ 𝒪′⪰(®𝑢, ®𝑤), by only using

implicational rules, where ®𝑤 has the same size as ®𝑣. For this rule to be sound we

require that the derived set𝒟 is empty. Hence, we can change the configuration

from (𝒞 , ∅, 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) to (𝒞 , ∅, 𝑓 ∗ ,𝒪′⪰ , ®𝑧′, 𝑔, 𝑢, 𝑣, 𝑠). This rule is sound,

since all items except Item 2 in Definition 1 are trivial and Item 2 holds because

the derived set is empty and any satisfying assignment to 𝒞 is also a satisfying

assignment to 𝒞 ∪ 𝒟.

Solution Logging The solution logging rule (or objective bound update rule

in [BGMN23]) can be used to update the best recorded objective values and

to derive a strict upper bounding constraint on the objective function. Given

a total assignment 𝜌 that satisfies 𝒞, we can change the configuration from

(𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) to (𝒞 ∪ { 𝑓 ∗ ≤ 𝑓 ∗(𝜌) − 1},𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑓 ∗(𝜌), 𝑓 ∗(𝜌), 𝑠)
if 𝑔 = ⊤ and to (𝒞 ∪ { 𝑓 ∗ ≤ 𝑓 ∗(𝜌)− 1},𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑓 ∗(𝜌), 𝑣, 𝑠) if 𝑔 = ⊥. Thus, the

incumbent value 𝑣 is only updated if 𝑔 = ⊤. If 𝜌 is only a partial assignment, then

𝜌 is propagated with respect to 𝒞 ∪ 𝒟, and if the assignment is then still not total,

then the proof is declared incorrect. As shown by [BGMN23], this rule preserves

(𝐹, 𝑓)-validity, since Items 1, 2, 4, and 5 are trivial and Item 3 follows from Item 4.

Redundance-Based Strengthening We are now discussion two rules to add con-

straints that are not implied. These rules behave differently when the strengthening-

to-core mode 𝑠 = ⊤, which is explained in detail in Section 4.2.2. First, redundance-

based strengthening [GN21] is a generalization of substitution redundancy [BT21] to

pseudo-Boolean reasoning allowing arbitrary implicational proofs instead of just

unit propagation. For a constraint 𝐶, redundance-based strengthening changes the

configuration from (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊥) to (𝒞 ,𝒟 ∪ {𝐶}, 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊥)
given a witness substitution 𝜔 and cutting planes proofs showing that

𝒞 ∪ 𝒟 ∪ {¬𝐶} ⊢ (𝒞 ∪ 𝒟 ∪ {𝐶})↾𝜔 ∪ { 𝑓 ∗ ≥ 𝑓 ∗↾𝜔} ∪ 𝒪⪰(®𝑧, ®𝑧↾𝜔) (6)

using only implicational rules. A proof that redundance-based strengthening

preserves (𝐹, 𝑓)-validity can be found in [BGMN23, Proposition 7].

Dominance-Based Strengthening Second, the dominance-based strengthening

rule [BGMN23] generalizes redundance-based strengthening even more and

makes use of applying the witness iteratively to show its correctness. For a

26 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

constraint 𝐶𝐶, dominance-based strengthening changes the configuration from

(𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊥) to (𝒞 ,𝒟 ∪ {𝐶}, 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊥) given a witness

substitution 𝜔 and cutting planes proofs showing that

𝒞 ∪ 𝒟 ∪ {¬𝐶} ⊢ 𝒞↾𝜔 ∪ { 𝑓 ∗ ≥ 𝑓 ∗↾𝜔} ∪ 𝒪⪰(®𝑧, ®𝑧↾𝜔) (7)

𝒞 ∪ 𝒟 ∪ {¬𝐶} ∪ 𝒪⪰(®𝑧↾𝜔 , ®𝑧) ⊢ ⊥ (8)

using only implicational rules. Instead of (8) giving a cutting planes proof for

𝒞 ∪ 𝒟 ∪ {¬𝐶} ∪ { 𝑓 ∗↾𝜔 ≥ 𝑓 ∗} ⊢ ⊥ (9)

is also sufficient for a valid dominance-based strengthening step. A proof show-

ing that dominance-based strengthening preserves (𝐹, 𝑓)-validity can be found

in [BGMN23, Proposition 14].

Deletion The rules discussed so far only allow us to add constraints, but for

the performance of the checker and the strength of the proof system, the system

also supports the deletion of constraints. If we delete a constraint 𝐶 from the

derived set 𝒟, then the configuration changes from (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠)
to (𝒞 ,𝒟 \ {𝐶}, 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) without any checks, as we do not guarantee

anything for𝒟. If we delete a constraint 𝐶 from the core set 𝒞, then we can either

use checked or unchecked deletion to remove 𝐶 from 𝒞. For checked deletion, we

have to give a substitution witness 𝜔 and cutting planes proofs showing

(𝒞 \ {𝐶}) ∪ {¬𝐶} ⊢ 𝒞↾𝜔 ∪ { 𝑓 ∗ ≥ 𝑓 ∗↾𝜔} ∪ 𝒪⪰(®𝑧, ®𝑧↾𝜔) (10)

using only implicational rules, i.e., 𝐶 can be derived by redundance-based

strengthening for 𝒞 \ {𝐶}. Checked deletion changes the configuration from

(𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) to (𝒞 \ {𝐶},𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠). For unchecked dele-

tion, we only need to check that if the 𝒪⪰ ≠ ∅, then𝒟 = ∅, but we lose the stronger

guarantees 𝑔, setting 𝑔 = ⊥, and we need that strengthening-to-core 𝑠 = ⊥.

Thus, in terms of configurations, we transition from (𝒞 , ∅, 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊥) or

(𝒞 ,𝒟 , 𝑓 ∗ , ∅, ∅, 𝑔, 𝑢, 𝑣,⊥) to the configuration (𝒞 \ {𝐶}, ∅, 𝑓 ∗ ,𝒪⪰ , ®𝑧,⊥, 𝑢, 𝑣,⊥) or

(𝒞\{𝐶},𝒟 , 𝑓 ∗ , ∅, ∅,⊥, 𝑢, 𝑣,⊥), respectively. More details about deletion and propo-

sitions showing that deletion preserves (𝐹, 𝑓)-validity can be found in [BGMN23,

Section 3.4].

Convenience Rules To make it easier to keep track of deletions in branch and

bound algorithms, constraints can be assigned a level, which is a mapping from

constraints to non-negative integers. When wiping a level lvl, all constraints with

level lvl or higher are deleted, which is just syntactic sugar for deleting all these

constraints after each other.

There is an additional rule for debugging which allows adding arbitrary

constraints to the derived set. However, this rule does not preserve the (𝐹, 𝑓)-
validity and the proof checker will warn the user if this rule is used that the proof

is invalid.

4. Pseudo-Boolean Certificates 27

4.2.2 Extensions to the System by This Thesis

In the included papers the proof system has been extended with the following

rules. Some rules are also just extensions of already existing rules.

Objective Equivalence There is an additional rule for checking that the current

objective 𝑓 ∗ in the configuration (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) is syntactically equivalent

to the objective specified in the rule. This rule does not change the configuration

and trivially preserves (𝐹, 𝑓)-validity.

Objective Update The main contribution of Paper IV to the proof system is the

objective update rule that allows to change the objective. Using the objective up-

date we can transition from (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) to (𝒞 ,𝒟 , 𝑓 ′,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠)
given cutting planes proofs showing that

𝒞 ⊢ { 𝑓 ∗ ≥ 𝑓 ′} ∪ { 𝑓 ′ ≥ 𝑓 ∗} (11)

using only implicational rules. This shows that 𝑓 ∗ = 𝑓 ′. While the objective update

is still sound if 𝑓 ∗ ≥ 𝑓 ′ is derived from 𝒞 ∪ 𝒟, we require for simplicity that it

derived by 𝒞 only. To keep the size of the proof as small as possible, there are two

ways to specify the new objective. The first way is to directly specify the updated

objective 𝑓 ′. The second way is to specify the difference between the updated

objective 𝑓 ′ and the current objective 𝑓 ∗, i.e., the linear form 𝑓 ′ − 𝑓 ∗. Proposition 2

argues that the objective update preserves (𝐹, 𝑓)-validity.

Proposition 2. If (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) is (𝐹, 𝑓)-valid, and we use the objective

update rule, then (𝒞 ,𝒟 , 𝑓 ′,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) is also (𝐹, 𝑓)-valid after applying the rule.

Proof. Items 3 and 5 in Definition 1 is trivially preserved, as it not affected by the

objective update. Item 1 in Definition 1 is satisfied, as (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) is
(𝐹, 𝑓)-valid and 𝑓 ∗ = 𝑓 ′. Thus, since 𝒞 ∪ { 𝑓 ∗ ≤ 𝑢′} is satisfiable, 𝒞 ∪ { 𝑓 ′ ≤ 𝑢′} is

also satisfiable. Similarly, Item 4 in Definition 1 is also satisfied, since 𝒞 ∪ { 𝑓 ∗ ≤ 𝑣′}
is satisfiable exactly when 𝒞 ∪ { 𝑓 ′ ≤ 𝑣′} is satisfiable. For any total assignment 𝜌,

𝑓 ∗ = 𝑓 ′ guarantees that 𝑓 ∗(𝜌) = 𝑓 ′(𝜌). Hence, Item 2 in Definition 1 is satisfied, since

(𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) is (𝐹, 𝑓)-valid and 𝑓 ′(𝜌) = 𝑓 ∗(𝜌) ≥ 𝑓 ∗(𝜌′) = 𝑓 ′(𝜌′). □

Proof Output We have introduced support in the certification system to state

the results certified by the proof in a proof footer. This improves on the ad-hoc

certification of optimizations problems in [BGMN23] by checking if the optimal

value obtained by the solver matches the optimal value certified by the proof.

The first part of the footer states the output of the proof and its guarantees.

Let (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) be the configuration at the end of the proof. The

output can be given externally, e.g., in form of an additional file, or is implicitly

defined as the core set 𝒞. If the output is given externally with the objective 𝑓 ′

and constraints 𝐹′, then we check that 𝑓 ′ � 𝑓 ∗ for each constraint 𝐶′ ∈ 𝐹′ that is a

constraint 𝐶 ∈ 𝒞 such that 𝐶′ � 𝐶 and vice versa. The most trivial guarantee is

28 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

derivable and just states that the output formula with objective 𝑓 ′ and constraints

𝐹′ can be derived from the original formula with objective 𝑓 and constraints

𝐹 using the proof system preserving (𝐹, 𝑓)-validity. The stronger guarantees

are equisatisfiable and equioptimal, which are used for decision and optimization

problems, respectively. The guarantee equisatisfiable guarantees that the output

constraints 𝐹′ are satisfiable if and only if the original constraints 𝐹 are satisfiable.

The guarantee equioptimal guarantees that the output problem with objective 𝑓 ′

and constraint 𝐹′ has the same optimal value as the input problem with objective

𝑓 and constraint 𝐹. The guarantees equisatisfiable and equioptimal can only be

used if 𝑠 = ⊤. This makes it possible to have a standalone certificate for problem

reformulations. It is also possible to specify that the proof has no output.

Proof Conclusion The second part of the footer is the conclusion of the proof. Four

types of conclusion are supported, which also includes that there is no conclusion.

Let (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣, 𝑠) be the configuration at the end of the proof. If we

are just interested in deciding the satisfiability a problem with constraints 𝐹, then

the conclusion can either be satisfiable or unsatisfiable. If we conclude with

unsatisfiable, then it is checked if⊥ ∈ 𝒞∪𝒟. To use the conclusion satisfiable, it must

hold that either 𝑣 < ∞ or that a solution specified together with the conclusion

satisfies 𝐹. For optimization instances we are able to conclude with bounds on the

optimal value of the objective function 𝑓 , which can also be specified to be∞. For

the lower bound lb, it is checked that the lower bounding constraint 𝑓 ≥ lb ∈ 𝒞∪𝒟.

For the upper bound ub, it is checked whether 𝑣 ≤ ub or that a solution 𝜌 specified

together with the conclusion satisfies 𝐹 and 𝑓 (𝜌) ≤ ub.

Hinted Reverse Unit Propagation Similar to the LRAT format [CHH
+
17], reverse

unit propagation now supports hints pointing towards the constraints that have

to be propagated to derive the contradiction. This can significantly speed up the

checker, as it only has to look at a subset of the database to detect the propagations.

Additionally, it is also supported that only some RUP steps are annotated with

hints and the other RUP steps do not have any hints to make the format more

flexible, which is similar to the FRAT format [BCH21].

Strengthening-to-Core mode Finally, in Paper III the strengthening-to-core mode

is introduced. This mode is disabled by default and can be turned on and off in

the proof. The strengthening-to-core mode can be activated if the derived set𝒟
is empty, hence it can change the configuration from (𝒞 , ∅, 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊥) to
(𝒞 , ∅, 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊤). The strengthening-to-core mode can be disabled at any

time transitioning from (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊤) to (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊥).
The idea of this mode is that constraints derived by strengthening rules are added

immediately to the core set, which guarantees that any solution satisfying 𝒞 also

satisfies𝒟. Enabling strengthening-to-core preserves (𝐹, 𝑓)-validity, since Items 1

to 4 in Definition 1 are not affected. Item 5 in Definition 1 is preserved, since𝒟 = ∅,
so that any satisfying assignment to 𝒞 also satisfies 𝒞 ∪ 𝒟.

4. Pseudo-Boolean Certificates 29

To maintain that the proof system is sound while the strengthening-to-core

is enabled, we need to be careful when deleting constraints from the core set 𝒞.

When using checked deletion, then the substitution witness 𝜔 used for (10) has to

be trivial, which means validity of rule requires an implicational cutting planes

proof showing that

(𝒞 \ {𝐶}) ∪ {¬𝐶} ⊢ 𝐶 . (12)

When using unchecked deletions from the core set, then the derived set 𝒟
must be empty. This means we transition from (𝒞 , ∅, 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊤) to

(𝒞 \ {𝐶}, ∅, 𝑓 ∗ ,𝒪⪰ , ®𝑧,⊥, 𝑢, 𝑣,⊥).
The reasons for this restriction of deletion is that otherwise it would be possible

to derive contradiction from any satisfiable formula 𝐹. To see that this is possible,

we consider that the strengthening-to-core mode is enabled. For a variable 𝑦 that

is not used in 𝐹, we derive 𝑦 ≥ 1 using redundance-based strengthening with

the witness {𝑦 ↦→ 1}, which is added to 𝒞. Using a cutting planes derivation we

can derive 𝑦 ≥ 1, which is added to the derived set. Without the restrictions, we

can delete 𝑦 ≥ 1 from 𝒞 by either checked deletion using the witness {𝑦 ↦→ 1} or

unchecked deletion. Then we derive 𝑦 ≥ 1 by redundance-based strengthening

using the witness {𝑦 ↦→ 0}. Finally, we derive the contradiction 0 ≥ 1 using cutting

planes by adding 𝑦 ≥ 1, which is still in the derived set, and 𝑦 ≥ 1.

If strengthening-to-core is enabled, then the redundance-based strengthening

rule deriving constraint 𝐶 transitions from (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊤) to (𝒞 ∪
{𝐶},𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊤). This requires that we are given a substitution witness

𝜔 and cutting planes proofs showing that

𝒞 ∪ 𝒟 ∪ {¬𝐶} ⊢ (𝒞 ∪ {𝐶})↾𝜔 ∪ { 𝑓 ∗ ≥ 𝑓 ∗↾𝜔} ∪ 𝒪⪰(®𝑧, ®𝑧↾𝜔) (13)

using only implicational rules. The advantage of (13) compared to (6) is that we

no longer have to derive 𝒟↾𝜔. Proposition 3 shows that this updated rule still

preserves (𝐹, 𝑓)-validity.

Proposition 3. If (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊤) is (𝐹, 𝑓)-valid, we can use the redundance-

based strengthening rule to transition to (𝒞 ∪ {𝐶},𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊤), which is also

(𝐹, 𝑓)-valid.

Proof. We assume that (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊤) is (𝐹, 𝑓)-valid. For Item 1 in

Definition 1, we can modify the proof by Bogaerts et al. [BGMN23, Proposition 7].

We know that for every 𝑢′ < 𝑢, that if 𝐹∪ { 𝑓 ≤ 𝑢′} is satisfiable, then 𝒞 ∪ { 𝑓 ∗ ≤ 𝑢′}
is also satisfiable. We now show that 𝒞 ∪ { 𝑓 ∗ ≤ 𝑢′} ∪ {𝐶} is also satisfiable by

constructing assignments 𝜌′ satisfying 𝒞 ∪ { 𝑓 ∗ ≤ 𝑢′} ∪ {𝐶}. Let 𝜌 be a total

assignment satisfying 𝒞 ∪ { 𝑓 ∗ ≤ 𝑢′}. If 𝜌 also satisfies 𝒞 ∪ { 𝑓 ∗ ≤ 𝑢′} ∪ {𝐶}, then

we use 𝜌′ = 𝜌.

Otherwise, we know that 𝜌 satisfies ¬𝐶. Since 𝜌 satisfies 𝒞, 𝜌 also satisfies

𝒞∪𝒟 by Item 5 in Definition 1. Therefore, 𝜌 satisfies 𝒞∪𝒟∪{¬𝐶}. By (13), 𝜌 also

satisfies (𝒞 ∪ {𝐶})↾𝜔 ∪ { 𝑓 ∗ ≥ 𝑓 ∗↾𝜔} ∪ 𝒪⪰(®𝑧, ®𝑧↾𝜔). Using 𝜌′ = 𝜌 ◦ 𝜔, it holds that

30 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

((𝒞 ∪ {𝐶})↾𝜔)↾𝜌 = (𝒞 ∪ {𝐶})↾𝜌◦𝜔, i.e., 𝜌′ satisfies 𝒞 ∪ {𝐶}. Finally, 𝜌′ also satisfies

𝑓 ∗ ≥ 𝑢′, since 𝜌 satisfies 𝑓 ∗ ≥ 𝑓 ∗↾𝜔 and 𝑓 ∗↾𝜌′ = 𝑓 ∗↾𝜌◦𝜔 ≤ 𝑓 ∗↾𝜌 ≤ 𝑢′.
Items 2, 4, and 5 in Definition 1 is trivially preserved, as any assignment

satisfying 𝒞 ∪ {𝐶} also satisfies 𝒞. Item 3 in Definition 1 is preserved, as it does

not depend on 𝒞. □

For dominance-based strengthening with strengthening-to-core, we transition

from (𝒞 ,𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊤) to (𝒞 ∪ {𝐶},𝒟 , 𝑓 ∗ ,𝒪⪰ , ®𝑧, 𝑔, 𝑢, 𝑣,⊤). This requires

that we are given a substitution witness 𝜔 and proofs showing that (7) and either

(8) or (9) hold. Since the derived constraint is added to the core set instead of the

derived set, the proof showing that dominance-based strengthening preserves

(𝐹, 𝑓)-validity also shows that the rule preserves (𝐹, 𝑓)-validity if strengthening-

to-core is enabled.

Kernel Proof Format Finally, to make efficient formally verified proof checkers

feasible for Papers V and VI, we have defined two variants of the proof format.

The augmented format contains all the rules, whereas the kernel format only contains

a subset of the rules in the VeriPB format. In the kernel format all RUP steps must

be annotated with hints, syntactic implication is not allowed, all solutions logged

must be total assignments, and constraints required for the conclusion must be

referenced explicitly.

4.3 Pseudo-Boolean Proof Checking Tool

For the discussion of implementation details, we will focus on the algorithms and

data structures used in the reference implementation VeriPB, which also supports

the elaboration of proofs.5 The other major implementation of a checker for the

VeriPB system is the formally verified proof checker CakePB.6

The proof checker VeriPB uses many specialized data structures to improve

the running time for checking proof, e.g., specialized data structures to do unit

propagation for different kinds of constraints [Dev20b].

The main contribution of Paper V is the elaboration of an augmented proof to a

kernel proof that the formally verified proof checker CakePB can handle. This can

basically be thought of as certification for the reasoning performed by VeriPB in a

format that CakePB can check.

5The source code of VeriPB is available at https://gitlab.com/MIAOresearch/software/
VeriPB.

6The source code and correctness proofs of CakePB are available at https://github.com/CakeML/
cakeml/tree/master/examples/pseudo_bool, and precompiled binaries of CakePB are available at

https://gitlab.com/MIAOresearch/software/cakepb.

https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB
https://github.com/CakeML/cakeml/tree/master/examples/pseudo_bool
https://github.com/CakeML/cakeml/tree/master/examples/pseudo_bool
https://gitlab.com/MIAOresearch/software/cakepb

5. Main Results of This Thesis 31

5 Main Results of This Thesis
In this section an overview of the papers included in this thesis is given to highlight

the contribution of this thesis to the field. The contributions of each paper are

detailed, but some papers have overlapping topics.

There are several ways to group the included papers together. The Papers I

to IV do not use formal verification, hence the results obtained from the verification

process do not have any formal guarantee. Papers V and VI use the formally

verified proof checker CakePB. Papers II, III, and VI are about solving MaxSAT.

Papers I and IV are about solving pseudo-Boolean problems. Papers IV and VI are

both about presolving and preprocessing techniques that are used in combinatorial

optimization.

5.1 Summary of Paper I

Stephan Gocht, Jakob Nordström, Ruben Martins, and Andy Oertel. “Certified

CNF Translations for Pseudo-Boolean Solving”. Accepted for publication in

Journal of Artificial Intelligence Research. Preliminary version in Proceedings of the

25th International Conference on Theory and Applications of Satisfiability Testing

(SAT ’22), volume 236 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 16:1–16:25, August 2022.

Some MaxSAT and all pseudo-Boolean solvers that are based on SAT solvers encode

pseudo-Boolean constraint into clauses [ES06, MML14, SN15, PRB18]. Additionally,

for modelling it can be easier to state a pseudo-Boolean optimization problem and

then use a tool to encode the pseudo-Boolean constraints into CNF [PS15]. While

certification for the SAT solvers is well-established [Heu21], it has remained out of

reach to certify encoding pseudo-Boolean constraints into CNF.

In this paper, we show how algorithms for encoding pseudo-Boolean constraints

into CNF can be made certifying. We provide a general framework that can be

used to certify the correctness for different encodings. The framework provides a

skeleton algorithm, which only requires filling in the details for each component

specific to the encoding. To illustrate how this framework can be used, we provide

certifying algorithms for sequential counter [Sin05], binary adder network [ES06],

totalizer [BB03], and generalized totalizer [JMM15] encodings.

By concatenating the certificate for the correctness of the encoding and a

DRAT certificate [WHH14] from a SAT solver, which is syntactically modified

to be compatible with VeriPB, we can get a certificate showing that the original

pseudo-Boolean constraints are unsatisfiable. The certificate for satisfiability is a

solution satisfying all pseudo-Boolean constraints.

We further demonstrate how certifying PB to CNF encodings can be used to

certify the correctness of the optimal value 𝑓 ∗ obtained by MaxSAT solvers. This is

done checking that the optimal solution 𝑥∗ provided by the MaxSAT solver satisfies

all clauses 𝐹 and checking that the reported optimal value 𝑓 ∗ matches the objective

32 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

value of the optimal solution. Then we encode the pseudo-Boolean constraint

𝑓 < 𝑓 ∗ that the objective function 𝑓 should be strictly smaller than the optimal

value 𝑓 ∗ into clause 𝐹∗. If the SAT solver returns unsatisfiable on the formula

𝐹 ∪ 𝐹∗, then we get a certificate showing that there is no feasible solution with a

better objective value than the optimal value. However, this certificate gives no

guarantee that the reasoning in the MaxSAT solver is correct for this instance.

We implemented the certification inside an encodings library and changed

the SAT solver Kissat [BFF
+
24] to output proofs in the VeriPB format. Our

experimental evaluation on the benchmark instances of the pseudo-Boolean

competition 2016 [Pse16] showed that our approach can be used in practice, even

though there is still room for improvements. We also evaluated the certification of

optimal values returned by MaxSAT solvers and verified that the optimal values

obtained in the MaxSAT Evaluation 2022 [Max22] are correct.

5.2 Summary of Paper II

Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter

Vandesande. “Certified Core-Guided MaxSAT Solving”. In Proceedings of the 29th

International Conference on Automated Deduction (CADE-29), volume 14132 of Lecture

Notes in Computer Science, pages 1–22. Springer, July 2023.

Core-guided MaxSAT solving is one of the state-of-the-art approaches to solve the

MaxSAT problem. In this paper for the first time we show how to add certification

to core-guided MaxSAT solvers with all advanced techniques used in these solvers.

The certification of the calls to the SAT solver can be used out of the box by

syntactically changing the output to the VeriPB format. Since the core clause

returned by the SAT solver is learnt by conflict analysis, it can be derived by a

RUP step. We show that the objective reformulation in the OLL algorithm can

be certified using the VeriPB system. This can easily be done, as new variables

introduced by reification can be represented as two pseudo-Boolean constraints

per variable. For the encoding of the reification constraints into CNF, we build

on our prior work in Paper I and in [VDB22]. To transfer a lower bound lb on the

reformulated objective 𝑓ref ≥ lb to the original objective 𝑓orig ≥ lb, we maintain the

pseudo-Boolean constraint 𝑓orig ≥ 𝑓ref . As other core-guided algorithms are very

similar to the OLL algorithm, it should be straightforward to adapt our approach

to any core-guided MaxSAT algorithm.

We also provide certification for improvements to the standard OLL algorithm.

Specifically, we explain how core exhaustion [ABGL12], core minimization [Mar10],

hardening [ABGL12], intrinsic at-most-one constraints [IMM19], lazy variable

encodings [MJML14], stratification [ABGL12, MAGL11], structure sharing [IBJ21],

upper bound estimation [IMM19], and weight-aware core extraction [BJ17] can be

made certifying.

We implemented our certification approach into the state-of-the-art core guided

MaxSAT solver CGSS [IBJ21] that uses all the aforementioned techniques. We

5. Main Results of This Thesis 33

experimentally evaluated our approach on the benchmark instances of the MaxSAT

Evaluation 2022 [Max22]. During these experiments, we detected a bug in the

reasoning of CGSS, which it inherited from its predecessor RC2 [IMM19]. This bug

would not have been discovered by just checking the optimal solution returned by

the solver. This shows that our certification approach can be successfully used to

detect bugs in established tools.

After fixing this bug, we were able to confirm that our approach is usable in

practice. The overhead for generating the certificate while solving the instance is

very low, except for some outliers due to interfacing between Python and C++.

The performance for checking the certificate was sufficient, but could be improved

by further engineering the VeriPB proof checker to be more efficient.

5.3 Summary of Paper III

Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and

Dieter Vandesand. “Certifying Without Loss of Generality Reasoning in

Solution-Improving Maximum Satisfiability”. In Proceedings of the 30th

International Conference on Principles and Practice of Constraint Programming (CP ’24),

volume 307 of Leibniz International Proceedings in Informatics (LIPIcs), pages

4:1–4:28, September 2024.

Vandesande et al. [VDB22] showed how to certify the correctness of solution-

improving search (SIS) MaxSAT solvers with VeriPB. However, they implemented

certification for the solver QMaxSAT [KZFH12], which is no longer state-of-the-art.

For instance, the modern SIS MaxSAT solver Pacose [PRB18] uses the structure

of the dynamic generalized polynomial watchdog (DGPW) encoding to perform

advanced without loss of generality reasoning.

While it is possible to certify the correctness of the encoding using the framework

in Paper I or the work by Vandesande et al., the advanced reasoning performed

using the encoding remains out of reach. To solve this issue, we introduce the

idea to construct a shadow circuit over a new set of variables that mimics the

circuit that is used for the DGPW encoding. Then any without loss of generality

reasoning performed by the solver is certified using a shadow circuit that has the

same structure except for the variables that are without loss of generality assumed

to some value. Reasoning performed on the shadow circuit is transferred back to

the original circuit by redundance-based strengthening mapping each original

variable to its shadow variable and the assumed variables to their assumed value.

This idea requires that the variables introduced by the original encoding

only appear in encoding constraints, as this trivializes all redundance-based

strengthening proofgoals from core and derived set. However, the SAT solver

might learn new clauses over these variables that are important for the SAT solver

reasoning and have no shadow circuit counterpart. To mitigate this issue, we

introduce the strengthening-to-core mode. With this mode enabled, all proofgoals

from the clauses learnt by the SAT solver can be ignored, as they end up in the

34 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

derived set of constraints. The strengthening-to-core mode basically enables us to

use the shadow circuit approach in a complex system with many components.

Modern SIS MaxSAT solvers also employ a wide range of additional techniques

to improve performance. In this paper, we also provide certifying algorithms for

all techniques used in the solver Pacose. Specifically, these techniques are adder

caching [BBR09, PRB18], cone-of-influence encoding [PRB18], generalized boolean

multilevel optimization (GBMO) [ALM09, PRB21], and TrimMaxSAT [PRB21].

We also discuss in detail why the alternative certification approach of running

the MaxSAT solver without certification, checking the solution, and creating a

certificate using a SAT solver is not feasible in practice. The main reasons are:

(i) the encoding of the solution-improving constraint still need to be certified;

(ii) the running time of SAT solver and certificate size are unpredictable; and

(iii) anytime solving cannot be certified this way.

We implemented our certification approach into the MaxSAT solver Pacose For

GBMO, two different approaches are used, but during preliminary experiments

we noticed that only one approach is used in practice. We only implemented

certification for the one approach that is actually used, but explain certification

for both in the paper. The correctness and performance of our approach is

experimentally evaluated on the MaxSAT Evaluation 2023 [Max23] benchmarks.

The experiments show that our approach is correct, but the performance for

generating the certificate is a bit slower than what would be desirable for practical

usage. We identified that some overhead in generating the certificate was due to

the shadow circuits. However, some overhead seems to be due to inefficient data

structures, which could be improved by further engineering effort.

5.4 Summary of Paper IV

Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström.

“Certifying MIP-Based Presolve Reductions for 0–1 Integer Linear Programs”. In

Proceedings of the 21st International Conference on the Integration of Constraint

Programming, Artificial Intelligence, and Operations Research (CPAIOR ’24), volume

14742 of Lecture Notes in Computer Science, pages 310–328. Springer, May 2024.

Presolving is an important technique for the performance of MIP solving [ABG
+
20].

However, the VIPR certification system [CGS17] developed to certify MIP solving

is not able to certify advanced presolving techniques. The main issue with VIPR is

that it cannot certify reasoning that removes feasible solutions as long as at least

one optimal solution is preserved.

Since 0–1 ILP is a specialization of MIP, our idea is that we can pioneer

how presolving can be certified for 0–1 ILP to pave the way for certification of

presolving for MIP in the future. This allows us to use the VeriPB system to

5. Main Results of This Thesis 35

certify the correctness of the presolving techniques, as VeriPB can reason with 0–1

ILPs and has the redundance-based strengthening to deal with techniques that

remove feasible solutions. In this paper, we present certification for all presolving

techniques applied to 0–1 ILPs by the state-of-the-art presolver PaPILO [GGH22],

which are most of the techniques implemented in PaPILO.

To enable certification for all the technique, we extend the VeriPB system with

the objective update rule. This rule is required to keep the redundance-based

strengthening steps as simple as possible. Changing the objective helps with that,

since redundance-based strengthening requires showing that for an objective 𝑓
and a substitution 𝜔 the constraint 𝑓 ≥ 𝑓↾𝜔 can be derived. Additionally, the

objective update rule makes it possible for the certificate to follow the reasoning

performed by presolvers more closely.

We show two ways to specify the objective change. The first approach is by

stating the new objective, which is efficient when the new objective is small. The

second approach is by stating the difference between the new and old objective,

which is efficient for small changes to the objective.

We implemented our certification approach in PaPILO and checked the proofs

using VeriPB. To evaluate our approach, we conducted experiments on MIPLIB

instances converted to 0–1 ILPs [Dev20a] and the instances of the pseudo-Boolean

competition 2016 [Pse16]. We experimentally verified that our approach is correct

and that the overhead for generating the proof is negligible. The performance

for checking the certificate could be improved. A reason for the poor checking

performance is that the presolver writes preconstructed proof artefacts to the

certificate, whereas the checker actually has to check the correctness of these

steps. For techniques relying on propagation with compare certification using

RUP against cutting planes reasoning concluding that RUP should be preferred

due to smaller certificates.

5.5 Summary of Paper V

Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy

Oertel, and Yong Kiam Tan. “End-to-End Verification for Subgraph Solving”. In

Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI ’24), pages

8038–8047, Febuary 2024.

Certifying algorithms move the trust that the implementation is correct from the

solver to the checker. For complex systems like DRAT or VeriPB, correctness is

not trivial to guarantee. The common way to address this issue is with a formally

verified checker, as this reduces trust base significantly. For instance, for checking

SAT solver certificates there are cake_lpr [THM23] and gratchk [Lam20]. This

paper introduces the first formally verified checker for VeriPB certificates.

We introduce the formally verified checker CakePB, which is verified in

the CakeML ecosystem [MO14, GMKN17]. Using the CakeML ecosystem the

things that we have to trust are minimized and are either easy to check or

36 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

extensively validated. This gives us the highest assurance standard for binary code

extraction [KMTM18].

To assure that the certificate is certifying the correct problem, the formally

verified checker must be able to parse and understand the original problem given to

the solver and not just a pseudo-Boolean encoding of it. Thus, if the checker accepts

the certificate, we can be sure that the answer given by the solver is correct with

respect to the input problem. However, we still maintain that the checker is flexible

and easily extensible to check certificates for different problems. This is achieved

by separating the checker in a frontend that encodes the original problem into a

pseudo-Boolean optimization problem and a backend that performs reasoning

based on the pseudo-Boolean encoding. The final conclusion obtained at the end,

i.e., what the certificate certified, is also translated back by the frontend to the

original problem domain.

Due to the poor performance of formally verified propagation algorithms, we

elaborate the proof before it is checked by CakePB, which is commonly used for

SAT solving certificates [CHH
+
17]. The elaboration is done by VeriPB, which adds

antecedents to RUP steps and syntactic implication is changed to a cutting planes

derivation. We even show that elaboration can be used to synchronize slightly

different encodings used in the solver and the formally verified checker.

To demonstrate that our approach works in practice, we implemented formally

verified checkers for the problems of subgraph isomorphism, clique, and maximum

common (connected) induced subgraph supporting all rules in the VeriPB system

described in [BGMN23]. For the purpose of this thesis, the details for the specific

graph problems are omitted and a detailed description of the problems can be

found in [GMN20, GMM
+
20]. All checkers use the same backend as described

above. The certifying algorithm to solve the graph problems [GMN20, GMM
+
20]

are slightly modified to enable syncing up the different encodings. Additionally,

checked deletion [BGMN23] has been fully implemented into VeriPB.

We conducted experiments on the same benchmark used in [GMN20, GMM
+
20].

We experimentally validated that our approach and the implementation are correct.

The running time to check and elaborate the proof is slightly larger than just

checking the proof. Checking the elaborated proof with CakePB is a few times

faster than VeriPB, as the elaborated proof contains a lot of details that speed up

the running time of the checker.

5. Main Results of This Thesis 37

5.6 Summary of Paper VI

Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo,

Magnus O. Myreen, and Jakob Nordström. “Certified MaxSAT Preprocessing”. In

Proceedings of the 12th International Joint Conference on Automated Reasoning

(ĲCAR ’24), volume 14739 of Lecture Notes in Computer Science, pages 396–418.

Springer, July 2024.

Preprocessing is an important technique for modern MaxSAT solving [KBSJ17,

IBJ22]. In this paper, we present certifying algorithms using the VeriPB system for

all preprocessing techniques in the dedicated MaxSAT preprocessor MaxPre [IBJ22].

By using VeriPB we have the advantage that it is possible to integrate certification

for additional techniques, like advanced symmetry breaking, in the future.

To certify standalone problem reformulation tools, like preprocessors, we

extended the VeriPB system to support an output section. Hence, we certify that

the problem resulting from the core constraints together with the objective at the

end of the proof has the same optimal value as the original problem. Additionally,

the checker verifies that the core constraints and the objective at the end of the

proof match the output problem returned by the standalone reformulation tool.

This is done by checking equivalence of the objective and that for every constraint

in the core set there is a constraint in the output problem.

We extended the formally verified checker CakePB with support for the output

section and added a frontend for MaxSAT problems. For MaxSAT preprocessing

certificates, this means that we get formal guarantee that the original problem

given in MaxSAT format has the same optimal value as the reformulated problem

returned by the preprocessor in MaxSAT format.

We implemented certification into the MaxSAT preprocessor MaxPre. The

correctness of our approach is experimentally verified using the benchmarks from

the MaxSAT Evaluation 2023 [Max23]. The overhead for generating the certificate

is a bit slower than desired, but a lot of time is spent on renaming variables required

to match the MaxSAT format, which could be improved by adding a new rule.

Most of the time for checking the proof is spent in VeriPB. Hence, we propose that

the performance of the toolchain could be improved if the preprocessor would

already produce RUP steps with hints.

5.7 Further Contributions Outside Included Papers
Especially with respect to VeriPB, there have been contributions that have not

ended up in any publications included in the thesis. These contributions are not

published in any peer-reviewed document.

First and foremost, there has been some work to make the checker ready to be

used in the SAT competition and the pseudo-Boolean competition, which require

a toolchain that checks the proof against a formally verified checker. For the

SAT competition 2023 [BHI
+
23], we pioneered the formal verification toolchain

38 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

for decision instances, which was later published in Paper V. To improve the

performance of the toolchain for the SAT competition 2024 [HĲS24], we developed

RUP steps with hints similar to the hints in RUP in the LRAT format [CHH
+
17]

and added more autoproving techniques in CakePB to reduce the amount of detail

added in the elaboration. For the pseudo-Boolean competition 2024 [Pse24], we

added elaboration for the advanced autoproving technique of substituted database

implication, which was required by some pseudo-Boolean solver.

To avoid the synchronization of the encoding between CakePB and the checker

for more elaborate encoding and to simplify the implication of certification for

classical optimal planning algorithms [DHN
+
25], constraint labels were added to

the VeriPB system.

6 Conclusions and Future Work
This thesis shows how pseudo-Boolean reasoning can be used to get efficient

certifying algorithms for different combinatorial optimization paradigms. Most

notably, we demonstrate how to certify state-of-the-art MaxSAT algorithms that

use solution-improving and core-guided search in Papers I to III. Specifically,

Paper I introduces a general approach to certify CNF encodings of pseudo-Boolean

constraints used everywhere in MaxSAT solving to handle the pseudo-Boolean

objective function.

We also present certification for state-of-the-art preprocessing (aka. presolving)

techniques, which are crucial for the performance modern combinatorial optimiza-

tion solvers. The certification approach is demonstrated for all MIP presolving

techniques that preserve the variable domain {0, 1} (see Paper IV) and for all

techniques used in MaxSAT preprocessing (see Paper VI).

To guarantee that certificates generated in our VeriPB format can be trusted,

we developed a formally verified proof checker in Papers V and VI that has full

support for our proof system. With the approach of formal verification, the amount

of code that has to be trusted is minimized and parts of the code are audited

independently. However, the performance of formally verified software can not

compete with untrusted software, which makes it impossible to implement some

syntactic sugar rules that the untrusted checker supports. To bridge this gap, the

untrusted checker has been extended with elaboration to translate the syntactic

sugar to other rules that the formally verified checker supports.

6.1 Short Term Future Work
This thesis introduction is concluded with a discussion of future work on certifying

combinatorial optimization based on pseudo-Boolean reasoning. We start with a

discussion of short term future work that I might work on during the rest of my

PhD.

First and foremost, as mentioned multiple times in the summary of the included

papers, the performance of the unverified proof checker VeriPB and pipeline with

6. Conclusions and Future Work 39

the formally verified checker CakePB could be improved. Some performance

issues can be resolved by spending more time on engineering the checker and

using better known algorithms. For instance, the proof checker VeriPB is currently

implemented in Python and C++, where Python is used for the high-level structure

and C++ for low-level performance implementation improvements. However, it

was observed multiple times that the use of Python and the interfacing between

both languages causes a loss in performance. Therefore, the performance of the

proof checker VeriPB could be improved greatly if it were implemented in one

language that allows low-level implementation improvements. There has also

been some research on more efficient algorithms for checking some rules, e.g., for

unit propagation [NORZ24], that could be implemented for the VeriPB.

However, there are also open problems for algorithms to improve the per-

formance of the checker and investigate how proof can be efficiently elaborated

to a proof that can be checked by a formally verified checker. Specifically, the

elaboration algorithm to generate the hints for reverse unit propagation is currently

very naive, which makes VeriPB fast, but fewer hints might be sufficient, which

might improve the performance of CakePB. It is unclear if spending more time

on elaboration can improve the running time of the formally verified checking

pipeline as a whole.

While it was shown by [BGMN23] that certification for fully general symmetry

breaking is possible using VeriPB, it was recently discovered that their certification

approach has a linear factor overhead compared to the best algorithms for logging.

It should also be possible to get rid of this linear factor overhead when checking

symmetry breaking certificates. The main issue is the definition of the order used

for dominance-based strengthening, which requires quadratically many bits to

encode. However, by using additional variables that are exclusive to the order

definition, it should be possible to encode the order with linearly many bits.

To demonstrate that our proof logging approach is general, it should be possible

certify incremental solving. Incremental solvers use information derived from

previous calls to the solving engine to speed up subsequent calls, where it is

not trivial which derivations can be reused. While there has been previous

work on certifying incremental SAT solvers [FPFB24], incremental MaxSAT and

pseudo-Boolean solvers are getting popular and are not certifying.

Another combinatorial problem that could be certified using pseudo-Boolean

reasoning, is model (solution) enumeration and counting. The goal of model

enumeration is to find all feasible solutions with respect to a set of constraints.

However, in model counting we are only interested in the number of feasible

solutions. There are several competing proof systems and certification approaches

for counting the number of solutions satisfying a SAT formula [Cap19, FHR22,

BHS23, BNAH23, CCS24]. The ideas from these systems could be generalized to

certify model counting over pseudo-Boolean constraints. For model enumeration,

it is still unclear what should be certified. The natural idea would be to check

that the solutions satisfy all constraints and are disjoint. This would then be

accompanied by a proof that shows that all solutions have been enumerated.

40 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

To improve the performance of SAT proof checkers, proofs are checked starting

with the conclusion and only the steps required to show the conclusion are

checked [WHH14], which can significantly reduce the number of rules that have to

be checked. The checker can then also produce a trimmed proof that only contains

the steps required to show the conclusion. However, implementing this idea for

our proof system is a non-trivial task due to the redundance-based strengthening

rules and its proof obligations.

The idea of weak substitution redundancy could be added to the redundance-

based strengthening rule to enable more expressive reasoning to achieve shorter

proofs.

6.2 Long Term Future Work
Finally, we discuss some future long term directions that research in certifying

algorithms can take.

The current proof system operates with pseudo-Boolean constraint, but it should

be possible to generalize the rules to constraints that use rational coefficients and

use integer or even rational variables. There already exists preliminary work

for such an extension of the proof system [DEGH23], but there are still unclear

how efficient logging and checking can be implemented for this theoretical proof

system.

While parallel and distributed combinatorial solvers are becoming more and

more mainstream [SRB25], almost all checkers are currently completely sequential.

There are several ways to divide the checking between different cores and machines.

For distributed checking the proof could be divided into consecutive parts and

each part is checked independently on one machine, but this requires knowing the

database at the start of each part. Another idea that is more viable in a parallel

setting is checking each rule in parallel. This would require that the database can

be accessed asynchronously.

As proof checking becomes comparable to the performance of solvers [PFB23,

Lam24], it becomes viable to run a proof checker in parallel to a solver. This

would reduce the time to receive a trusted result for the problem and the solver

immediately fails when its reasoning is incorrect. To reduce the overhead for

reading and writing the proof, the data structure for each rule could directly be

constructed by the solver and then send to the checker through an application

programming interface.

To make it as easy as possible to make certification mainstream and imple-

mented in more and more solvers, it might help to have a library that implements

certification for common reasoning techniques. This should be very helpful, as we

observed that similar reasoning is used in all kinds of solvers. Alternatively, the

proof format could also be made extensible so that new rules can be defined in

terms of existing rules, which makes it possible to replace these new rules with

standard VeriPB rules in the elaboration phase.

VeriPB currently only has one fixed mode for checking the proof on how strict

it is with the claimed reasoning being correct. However, different applications

References 41

might require different modes. If we are only interested in knowing that the result

is correct, we could use a permissive mode that tries to fix up the proof if the

reasoning is slightly wrong. The other extreme could be a strict mode where

VeriPB enforces that all reasoning in the proof is correct without any ambiguities,

which can be helpful for debugging and finding bugs as fast as possible.

The permissive mode and the autoproving performed by VeriPB in general

could be made even more powerful by integrating a pseudo-Boolean solver, e.g.,

RoundingSat. The idea would be to call a pseudo-Boolean solver on the formula and

the negation of the constraint that we want to derive. We consider this approach

to be successful if the solver derives contradiction. This can be compared to

Sledgehammer [BN10] for the higher-order logic proof assistant Isabelle [NWP02].

However, allowing a pseudo-Boolean solver to check the correctness of a rule

breaks the guarantee each proof rule is checkable in polynomial time.

For developing and prototyping it might be beneficial to have an interactive

mode in the checker. This could mean that the proof checker runs until a specified

point in the proof and then a user can interact with the checker using the rules of

the proof system. Similar to a debugger the user might also be able to explore the

current state of the checker by viewing the constraints available at the given point

in the proof.

Finally, proofs can also be used to analyse the reasoning performed by solvers

to better understand which techniques and heuristics are beneficial for making

progress to the result. This might also unveil performance bugs due to suboptimal

reasoning, e.g., a derived contradiction has a slack that is larger than one with

respect to the empty assignment. The analysis can also be used to explain why the

solver came to its result in a format that is understandable to humans.

References
[AB16] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern

Approach. Cambridge University Press, New York, 4th edition, 2016.

[ABG
+
20] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Roth-

berg, and Dieter Weninger. Presolve reductions in mixed integer

programming. INFORMS Journal on Computing, 32(2):473–506, 2020.

[ABGL12] Carlos Ansótegui, María Luisa Bonet, Joel Gabàs, and Jordi Levy.

Improving SAT-based weighted MaxSAT solvers. In Proceedings of

the 18th International Conference on Principles and Practice of Constraint

Programming (CP ’12), volume 7514 of Lecture Notes in Computer

Science, pages 86–101. Springer, October 2012.

[ABS13] Cyrille Artho, Armin Biere, and Martina Seidl. Model-based testing

for verification back-ends. In Margus Veanes and Luca Viganò, edi-

tors, Tests and Proofs, pages 39–55, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg.

42 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

[Ach07] Tobias Achterberg. Constraint Integer Programming. PhD

thesis, Technische Universität Berlin, 2007. Available at

https://opus4.kobv.de/opus4-zib/files/1112/Achterberg_
Constraint_Integer_Programming.pdf.

[AGJ
+
18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and

Peter Nightingale. Metamorphic testing of constraint solvers. In

Proceedings of the 24th International Conference on Principles and Practice

of Constraint Programming (CP ’18), volume 11008 of Lecture Notes in

Computer Science, pages 727–736. Springer, August 2018.

[AH14] André Abramé and Djamal Habet. ahmaxsat: Description and eval-

uation of a branch and bound max-sat solver. Journal on Satisfiability,

Boolean Modeling and Computation, 9(1):89–128, 2014.

[AKMS12] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten

Schaub. Unsatisfiability-based optimization in clasp. In Technical

Communications of the 28th International Conference on Logic Program-

ming (ICLP ’12), volume 17 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 211–221, September 2012.

[ALM09] Josep Argelich, Inês Lynce, and João P. Marques-Silva. On solving

Boolean multilevel optimization problems. In Proceedings of the 21st

International Joint Conference on Artificial Intelligence (ĲCAI ’09), pages

393–398, July 2009.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer pro-

gramming: Analyzing 12 years of progress. In Michael Jünger and

Gerhard Reinelt, editors, Facets of Combinatorial Optimization, pages

449–481. Springer, 2013.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In

Proceedings of the Spring Joint Computer Conference of the American

Federation of Information Processing Societies (AFIPS ’68), volume 32,

pages 307–314, April 1968.

[BB03] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of

Boolean cardinality constraints. In Proceedings of the 9th International

Conference on Principles and Practice of Constraint Programming (CP ’03),

volume 2833 of Lecture Notes in Computer Science, pages 108–122.

Springer, September 2003.

[BBL24] Ilario Bonacina, Maria Luisa Bonet, and Massimo Lauria. MaxSAT

Resolution with Inclusion Redundancy. In Supratik Chakraborty

and Jie-Hong Roland Jiang, editors, 27th International Conference on

Theory and Applications of Satisfiability Testing (SAT 2024), volume 305

of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–

7:15, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik.

https://opus4.kobv.de/opus4-zib/files/1112/Achterberg_Constraint_Integer_Programming.pdf
https://opus4.kobv.de/opus4-zib/files/1112/Achterberg_Constraint_Integer_Programming.pdf

References 43

[BBN
+
23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and

Dieter Vandesande. Certified core-guided MaxSAT solving. In

Proceedings of the 29th International Conference on Automated Deduction

(CADE-29), volume 14132 of Lecture Notes in Computer Science, pages

1–22. Springer, July 2023.

[BBR09] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encod-

ings of pseudo-Boolean constraints into CNF. In Proceedings of the

12th International Conference on Theory and Applications of Satisfiability

Testing (SAT ’09), volume 5584 of Lecture Notes in Computer Science,

pages 181–194. Springer, June 2009.

[BBVC13] Felix Brandt, Reinhard Bauer, Markus Völker, and Andreas Cardeneo.

A constraint programming-based approach to a large-scale energy

management problem with varied constraints: A solution approach

to the roadef/euro challenge 2010. Journal of Scheduling, 16(6):629–

648, 2013.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.

Symbolic model checking without bdds. In W. Rance Cleaveland,

editor, Tools and Algorithms for the Construction and Analysis of Systems,

pages 193–207, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[BCH21] Seulkee Baek, Mario Carneiro, and Marĳn J. H. Heule. A flexible proof

format for SAT solver-elaborator communication. In Proceedings of the

27th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS ’21), volume 12651 of Lecture Notes in

Computer Science, pages 59–75. Springer, March-April 2021.

[BFF
+
24] Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils

Froleyks, and Florian Pollitt. CaDiCaL, Gimsatul, IsaSAT and Kissat

entering the SAT Competition 2024. In Marĳn Heule, Markus Iser,

Matti Järvisalo, and Martin Suda, editors, Proc. of SAT Competition

2024 – Solver, Benchmark and Proof Checker Descriptions, volume B-

2024-1 of Department of Computer Science Report Series B, pages 8–10.

University of Helsinki, 2024.

[BFT11] Frédéric Besson, Pascal Fontaine, and Laurent Théry. A Flexible

Proof Format for SMT: a Proposal. In Pascal Fontaine and Aaron

Stump, editors, First International Workshop on Proof eXchange for

Theorem Proving - PxTP 2011, Wroclaw, Poland, August 2011.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nord-

ström. Certified dominance and symmetry breaking for com-

binatorial optimisation. Journal of Artificial Intelligence Research,

77:1539–1589, August 2023. Preliminary version in AAAI ’22.

44 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

[BHI
+
23] Tomas Balyo, Marĳn Heule, Markus Iser, Matti Järvisalo, and Martin

Suda, editors. Proceedings of SAT Competition 2023: Solver, Benchmark

and Proof Checker Descriptions. Department of Computer Science Series

of Publications B. Department of Computer Science, University of

Helsinki, Finland, 2023.

[BHS23] Olaf Beyersdorff, Tim Hoffmann, and Luc Nicolas Spachmann. Proof

Complexity of Propositional Model Counting. In Meena Mahajan

and Friedrich Slivovsky, editors, 26th International Conference on

Theory and Applications of Satisfiability Testing (SAT 2023), volume 271

of Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–

2:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik.

[BHvMW21] Armin Biere, Marĳn J. H. Heule, Hans van Maaren, and Toby Walsh,

editors. Handbook of Satisfiability, volume 336 of Frontiers in Artificial

Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[BJ17] Jeremias Berg and Matti Järvisalo. Weight-aware core extraction in

SAT-based MaxSAT solving. In Proceedings of the 23rd International

Conference on Principles and Practice of Constraint Programming (CP ’17),

volume 10416 of Lecture Notes in Computer Science, pages 652–670.

Springer, August 2017.

[BJK21] Armin Biere, Matti Järvisalo, and Benjamin Kiesl. Preprocessing in

SAT solving. In Biere et al. [BHvMW21], chapter 9, pages 391–435.

[BJM21] Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum

satisfiabiliy. In Biere et al. [BHvMW21], chapter 24, pages 929–991.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis,

University of Chicago, 1937.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated

testing and debugging of SAT and QBF solvers. In Proceedings of the

13th International Conference on Theory and Applications of Satisfiability

Testing (SAT ’10), volume 6175 of Lecture Notes in Computer Science,

pages 44–57. Springer, July 2010.

[BN10] Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement day.

In Jürgen Giesl and Reiner Hähnle, editors, Automated Reasoning,

pages 107–121, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT

solving. In Biere et al. [BHvMW21], chapter 7, pages 233–350.

[BNAH23] Randal E. Bryant, Wojciech Nawrocki, Jeremy Avigad, and Marĳn

J. H. Heule. Certified knowledge compilation with application

References 45

to verified model counting. In Proceedings of the 26th International

Conference on Theory and Applications of Satisfiability Testing (SAT ’23),

volume 271 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 6:1–6:20, July 2023.

[BT21] Sam Buss and Neil Thapen. DRAT and propagation redundancy

proofs without new variables. Logical Methods in Computer Science,

17(2):12:1–12:31, April 2021. Preliminary version in SAT ’19.

[Cap19] Florent Capelli. Knowledge compilation languages as proof systems.

In Mikoláš Janota and Inês Lynce, editors, Theory and Applications of

Satisfiability Testing – SAT 2019, pages 90–99, Cham, 2019. Springer

International Publishing.

[CCS24] Sravanthi Chede, Leroy Chew, and Anil Shukla. Circuits, Proofs and

Propositional Model Counting. In Siddharth Barman and Sławomir

Lasota, editors, 44th IARCS Annual Conference on Foundations of

Software Technology and Theoretical Computer Science (FSTTCS 2024),

volume 323 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 18:1–18:23, Dagstuhl, Germany, 2024. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the

complexity of cutting-plane proofs. Discrete Applied Mathematics,

18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy.

Verifying integer programming results. In Proceedings of the 19th

International Conference on Integer Programming and Combinatorial

Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer

Science, pages 148–160. Springer, June 2017.

[CHH
+
17] Luís Cruz-Filipe, Marĳn J. H. Heule, Warren A. Hunt Jr., Matt Kauf-

mann, and Peter Schneider-Kamp. Efficient certified RAT verification.

In Proceedings of the 26th International Conference on Automated Deduc-

tion (CADE-26), volume 10395 of Lecture Notes in Computer Science,

pages 220–236. Springer, August 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A

hybrid branch-and-bound approach for exact rational mixed-integer

programming. Mathematical Programming Computation, 5(3):305–344,

September 2013.

[CNR21] Aviad Cohen, Alexander Nadel, and Vadim Ryvchin. Local search

with a sat oracle for combinatorial optimization. In Jan Friso Groote

and Kim Guldstrand Larsen, editors, Tools and Algorithms for the

Construction and Analysis of Systems, pages 87–104, Cham, 2021.

Springer International Publishing.

46 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In

Proceedings of the 3rd Annual ACM Symposium on Theory of Computing

(STOC ’71), pages 151–158, May 1971.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of

propositional proof systems. Journal of Symbolic Logic, 44(1):36–50,

March 1979. Preliminary version in STOC ’74.

[DB13] Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP

solvers in MAXSAT. In Proceedings of the 16th International Conference

on Theory and Applications of Satisfiability Testing (SAT ’13), volume

7962 of Lecture Notes in Computer Science, pages 166–181. Springer,

July 2013.

[DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christo-

pher Hojny. A proof system for certifying symmetry and optimality

reasoning in integer programming. Technical Report 2311.03877,

arXiv.org, November 2023.

[Dev20a] Jo Devriendt. Miplib 0-1 instances in opb format. Dataset on Zenodo,

05 2020.

[Dev20b] Jo Devriendt. Watched propagation of 0-1 integer linear constraints.

In Proceedings of the 26th International Conference on Principles and

Practice of Constraint Programming (CP ’20), volume 12333 of Lecture

Notes in Computer Science, pages 160–176. Springer, September 2020.

[DG02] Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a

pseudo-Boolean satisfiability solver. In Proceedings of the 18th National

Conference on Artificial Intelligence (AAAI ’02), pages 635–640, July

2002.

[DGD
+
21] Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström,

and Peter Stuckey. Cutting to the core of pseudo-Boolean optimiza-

tion: Combining core-guided search with cutting planes reasoning.

In Proceedings of the 35th AAAI Conference on Artificial Intelligence

(AAAI ’21), pages 3750–3758, February 2021.

[DHN
+
25] Simon Dold, Malte Helmert, Jakob Nordström, Gabriele Röger,

and Tanja Schindler. Pseudo-Boolean proof logging for optimal

classical planning. In Proceedings of the 35th International Conference

on Automated Planning and Scheduling (ICAPS ’25), November 2025.

To appear.

[Die16] Reinhard Diestel. Graph Theory. Springer-Verlag, Heidelberg (print

edition), 2016.

References 47

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A ma-

chine program for theorem proving. Communications of the ACM,

5(7):394–397, July 1962.

[DMM
+
24] Emir Demirović, Ciaran McCreesh, Matthew McIlree, Jakob Nord-

ström, Andy Oertel, and Konstantin Sidorov. Pseudo-Boolean rea-

soning about states and transitions to certify dynamic programming

and decision diagram algorithms. In Proceedings of the 30th Interna-

tional Conference on Principles and Practice of Constraint Programming

(CP ’24), volume 307 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 9:1–9:21, September 2024.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for

quantification theory. Journal of the ACM, 7(3):201–215, 1960.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.

Justifying all differences using pseudo-Boolean reasoning. In Pro-

ceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),

pages 1486–1494, February 2020.

[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards

faster pseudo-Boolean solving. In Proceedings of the 27th International

Joint Conference on Artificial Intelligence (ĲCAI ’18), pages 1291–1299,

July 2018.

[ES03] Niklas Eén and Niklas Sörensson. Temporal induction by incremental

SAT solving. In Proceedings of the 1st International Workshop on Bounded

Model Checking (BMC ’03), volume 89 of Electronic Notes in Theoretical

Computer Science, pages 543–560, July 2003.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean

constraints into SAT. Journal on Satisfiability, Boolean Modeling and

Computation, 2(1-4):1–26, March 2006.

[Far02] Julius Farkas. Theorie der einfachen Ungleichungen. Journal für die

Reine und Angewandte Mathematik, 1902(124):1–27, 1902.

[FHR22] Johannes Klaus Fichte, Markus Hecher, and Valentin Roland. Proofs

for propositional model counting. In 25th International Conference on

Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5,

2022, Haifa, Israel, pages 30:1–30:24, 2022.

[FL23] Mathias Fleury and Peter Lammich. A more pragmatic CDCL for

IsaSAT and targetting LLVM (short paper). In Proceedings of the 29th

International Conference on Automated Deduction (CADE-29), volume

14132 of Lecture Notes in Computer Science, pages 207–219. Springer,

July 2023.

48 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

[FPFB24] Katalin Fazekas, Florian Pollitt, Mathias Fleury, and Armin Biere.

Certifying incremental sat solving. In LPAR 2024: Proceedings of

25th Conference on Logic for Programming, Artificial Intelligence and

Reasoning, Port Louis, Mauritius, volume 100, pages 321–340, 2024.

[FSM
+
24] Maarten Flippo, Konstantin Sidorov, Imko Marĳnissen, Jeff Smits,

and Emir Demirović. A Multi-Stage Proof Logging Framework

to Certify the Correctness of CP Solvers. In Paul Shaw, editor,

30th International Conference on Principles and Practice of Constraint

Programming (CP 2024), volume 307 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 11:1–11:20, Dagstuhl, Germany, 2024.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[FYBH24] Nils Froleyks, Emily Yu, Armin Biere, and Keĳo Heljanko. Certifying

phase abstraction. In International Joint Conference on Automated

Reasoning, pages 284–303. Springer, 2024.

[GGH22] Ambros Gleixner, Leona Gottwald, and Alexander Hoen. PaPILO:

A parallel presolving library for integer and linear programming

with multiprecision support. Technical Report 2206.10709, arXiv.org,

June 2022.

[GGK
+
19] Gerald Gamrath, Ambros Gleixner, Thorsten Koch, Matthias Mil-

tenberger, Dimitri Kniasew, Dominik Schlögel, Alexander Martin,

and Dieter Weninger. Tackling industrial-scale supply chain prob-

lems by mixed-integer programming. Journal of Computational Math-

ematics, 37(6):866–888, 2019.

[GMKN17] Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael

Norrish. Verified characteristic formulae for CakeML. In Proceedings

of the 26th European Symposium on Programming (ESOP ’17), volume

10201 of Lecture Notes in Computer Science, pages 584–610. Springer,

April 2017.

[GMM
+
20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström,

Patrick Prosser, and James Trimble. Certifying solvers for clique and

maximum common (connected) subgraph problems. In Proceedings of

the 26th International Conference on Principles and Practice of Constraint

Programming (CP ’20), volume 12333 of Lecture Notes in Computer

Science, pages 338–357. Springer, September 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph

isomorphism meets cutting planes: Solving with certified solutions.

In Proceedings of the 29th International Joint Conference on Artificial

Intelligence (ĲCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An au-

ditable constraint programming solver. In Proceedings of the 28th

References 49

International Conference on Principles and Practice of Constraint Pro-

gramming (CP ’22), volume 235 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of

unsatisfiability for CNF formulas. In Proceedings of the Conference

on Design, Automation and Test in Europe (DATE ’03), pages 886–891,

March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning

efficiently using pseudo-Boolean proofs. In Proceedings of the 35th

AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777,

February 2021.

[GN22] Stephan Gocht and Jakob Nordström. Certifying parity reasoning

efficiently using pseudo-Boolean proofs. Technical Report 2209.12185,

arXiv.org, September 2022.

[GNY19] Stephan Gocht, Jakob Nordström, and Amir Yehudayoff. On division

versus saturation in pseudo-Boolean solving. In Proceedings of the

28th International Joint Conference on Artificial Intelligence (ĲCAI ’19),

pages 1711–1718, August 2019.

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms

by Using Pseudo-Boolean Reasoning. PhD thesis, Lund University,

June 2022. Available at https://portal.research.lu.se/en/
publications/certifying-correctness-for-combinatorial-
algorithms-by-using-pseu.

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint

programming. Presentation at KTH Royal Institute of Technology,

February 2019.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declar-

ative testing of constraints. In Proceedings of the 25th International

Conference on Principles and Practice of Constraint Programming (CP ’19),

volume 11802 of Lecture Notes in Computer Science, pages 565–582.

Springer, October 2019.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer

Science, 39(2-3):297–308, August 1985.

[Heu21] Marĳn JH Heule. Proofs of unsatisfiability. In Handbook of Satisfiability,

pages 635–668. IOS Press, 2021.

[HGH23] Andrew Haberlandt, Harrison Green, and Marĳn J. H. Heule. Ef-

fective Auxiliary Variables via Structured Reencoding. In Meena

Mahajan and Friedrich Slivovsky, editors, 26th International Conference

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu

50 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

on Theory and Applications of Satisfiability Testing (SAT 2023), volume

271 of Leibniz International Proceedings in Informatics (LIPIcs), pages

11:1–11:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik.

[HHW14] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Bridg-

ing the gap between easy generation and efficient verification of

unsatisfiability proofs. Software Testing, Verification and Reliability,

24(8):593–607, 2014.

[HĲS24] Marĳn J.H. Heule, Markus Iser, Matti Järvisalo, and Martin Suda,

editors. Proceedings of SAT Competition 2024: Solver, Benchmark and

Proof Checker Descriptions. Department of Computer Science Report

Series B. Department of Computer Science, University of Helsinki,

Finland, 2024.

[HKB17] Marĳn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs

without new variables. In Proceedings of the 26th International Con-

ference on Automated Deduction (CADE-26), volume 10395 of Lecture

Notes in Computer Science, pages 130–147. Springer, August 2017.

[HKM16] Marĳn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving

and verifying the boolean pythagorean triples problem via cube-and-

conquer. In Nadia Creignou and Daniel Le Berre, editors, Theory and

Applications of Satisfiability Testing – SAT 2016, pages 228–245, Cham,

2016. Springer International Publishing.

[HL06] Federico Heras and Javier Larrosa. New inference rules for efficient

max-sat solving. In AAAI, pages 68–73, 2006.

[HPRS24] Roghayeh Hajizadeh, Tatiana Polishchuk, Elina Rönnberg, and Chris-

tiane Schmidt. A dantzig-wolfe reformulation for automated aircraft

arrival scheduling in tmas. In Proceedings of the 14th International

Conference on the Practice and Theory of Automated Timetabling, PATAT

2024 :, pages 268–271, 2024.

[HT15] Osman Hasan and Sofiene Tahar. Formal verification methods. In

Encyclopedia of Information Science and Technology, Third Edition, pages

7162–7170. IGI Global Scientific Publishing, 2015.

[IBJ21] Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Refined core

relaxation for core-guided maxsat solving. In 27th International

Conference on Principles and Practice of Constraint Programming (CP

2021), pages 28–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,

2021.

[IBJ22] Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Clause redun-

dancy and preprocessing in maximum satisfiability. In Proceedings

References 51

of the 11th International Joint Conference on Automated Reasoning (Ĳ-

CAR ’22), volume 13385 of Lecture Notes in Computer Science, pages

75–94. Springer, August 2022.

[IMM19] Alexey Ignatiev, António Morgado, and João P. Marques-Silva. RC2:

an efficient MaxSAT solver. Journal on Satisfiability, Boolean Modeling

and Computation, 11(1):53–64, September 2019.

[JBBJ25] Christoph Jabs, Jeremias Berg, Bart Bogaerts, and Matti Järvisalo.

Certifying pareto-optimality in multi objective maximum satisfiabil-

ity. In Arie Gurfinkel and Marĳn Heule, editors, Tools and Algorithms

for the Construction and Analysis of Systems, pages 108–129, Cham,

2025. Springer Nature Switzerland.

[JHB12] Matti Järvisalo, Marĳn J. H. Heule, and Armin Biere. Inprocessing

rules. In Proceedings of the 6th International Joint Conference on Auto-

mated Reasoning (ĲCAR ’12), volume 7364 of Lecture Notes in Computer

Science, pages 355–370. Springer, June 2012.

[JMM15] Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. General-

ized totalizer encoding for pseudo-Boolean constraints. In Proceedings

of the 21st International Conference on Principles and Practice of Con-

straint Programming (CP ’15), volume 9255 of Lecture Notes in Computer

Science, pages 200–209. Springer, August-September 2015.

[KBSJ17] Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo.

Maxpre: an extended maxsat preprocessor. In Serge Gaspers and

Toby Walsh, editors, Proceedings of the 20th International Conference

on Theory and Applications of Satisfiability Testing, (SAT ’17), volume

10491 of Lecture Notes in Computer Science, pages 449–456. Springer,

2017.

[KLM
+
25] Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordström,

Andy Oertel, Yong Kiam Tan, and Marc Vinyals. Practically feasible

proof logging for pseudo-Boolean optimization. In Proceedings of

the 31st International Conference on Principles and Practice of Constraint

Programming (CP ’25), August 2025. To appear.

[KMMS06] Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy P.

Spinrad. Certifying algorithms for recognizing interval graphs and

permutation graphs. SIAM Journal on Computing, 36(2):326–353,

2006.

[KMTM18] Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O.

Myreen. Software verification with ITPs should use binary code

extraction to reduce the TCB. In Proceedings of the 9th International

Conference on Interactive Theorem Proving (ITP ’18), volume 10895 of

Lecture Notes in Computer Science, pages 362–369. Springer, July 2018.

52 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

[Kra19] Jan Krajíček. Proof Complexity, volume 170 of Encyclopedia of Math-

ematics and Its Applications. Cambridge University Press, March

2019.

[KRH18] Benjamin Kiesl, Adrián Rebola-Pardo, and Marĳn J. H. Heule. Ex-

tended resolution simulates DRAT. In Proceedings of the 9th Interna-

tional Joint Conference on Automated Reasoning (ĲCAR ’18), volume

10900 of Lecture Notes in Computer Science, pages 516–531. Springer,

July 2018.

[KT24] Leszek Kołodziejczyk and Neil Thapen. The strength of the domi-

nance rule. In Proceedings of the 27th International Conference on Theory

and Applications of Satisfiability Testing (SAT ’24), volume 305 of Leib-

niz International Proceedings in Informatics (LIPIcs), pages 20:1–20:22,

August 2024.

[KZFH12] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo

Hasegawa. Qmaxsat: A partial max-sat solver: System descrip-

tion. Journal on Satisfiability, Boolean Modelling and Computation,

8(1-2):95–100, 2012.

[Lam20] Peter Lammich. Efficient verified (UN)SAT certificate checking.

Journal of Automated Reasoning, 64(3):513–532, March 2020. Extended

version of paper in CADE 2017.

[Lam24] Peter Lammich. Fast and verified unsat certificate checking. In

Christoph Benzmüller, Marĳn J.H. Heule, and Renate A. Schmidt,

editors, Automated Reasoning, pages 439–457, Cham, 2024. Springer

Nature Switzerland.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problemy

peredachi informatsii, 9(3):115–116, 1973. In Russian. Available at

http://mi.mathnet.ru/ppi914.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2.

Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64,

July 2010.

[LXC
+
21] Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet,

and Kun He. Combining clause learning and branch and bound

for MaxSAT. In Proceedings of the 27th International Conference on

Principles and Practice of Constraint Programming (CP ’21), volume

210 of Leibniz International Proceedings in Informatics (LIPIcs), pages

38:1–38:18, October 2021.

[MAGL11] João Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce.

Boolean lexicographic optimization: algorithms & applications.

Annals of Mathematics and Artificial Intelligence, 62(3-4):317–343, 2011.

http://mi.mathnet.ru/ppi914

References 53

[Mar10] João P. Marques-Silva. Minimal unsatisfiability: Models, algorithms

and applications (Invited paper). In Proceedings of the 40th IEEE

International Symposium on Multiple-Valued Logic, pages 9–14, May

2010.

[Max22] MaxSAT evaluation 2022. https://maxsat-evaluations.github.
io/2022, August 2022.

[Max23] MaxSAT evaluation 2023. https://maxsat-evaluations.github.
io/2023, July 2023.

[MDM14] António Morgado, Carmine Dodaro, and João P. Marques-Silva. Core-

guided MaxSAT with soft cardinality constraints. In Proceedings of

the 20th International Conference on Principles and Practice of Constraint

Programming (CP ’14), volume 8656 of Lecture Notes in Computer

Science, pages 564–573. Springer, September 2014.

[MJML14] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce.

Incremental cardinality constraints for MaxSAT. In Proceedings of

the 20th International Conference on Principles and Practice of Constraint

Programming (CP ’14), volume 8656 of Lecture Notes in Computer

Science, pages 531–548. Springer, September 2014.

[MKL
+
95] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekandanda Ma-

ganty, Ravi Murthy, Ajitkumar Natarajan, and Jeff Steidl. Fuzz

revisited: A re-examination of the reliability of unix utilities and

services. Technical report, University of Wisconsin-Madison Depart-

ment of Computer Sciences, 1995.

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart

extensional constraints. In Proceedings of the 29th International Con-

ference on Principles and Practice of Constraint Programming (CP ’23),

volume 280 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 26:1–26:17, August 2023.

[MM25] Matthew McIlree and Ciaran McCreesh. Certifying bounds prop-

agation for integer multiplication constraints. In Proceedings of

the 39th AAAI Conference on Artificial Intelligence (AAAI ’25), pages

11309–11317, February-March 2025.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO:

A modular MaxSAT solver. In Proceedings of the 17th International

Conference on Theory and Applications of Satisfiability Testing (SAT ’14),

volume 8561 of Lecture Notes in Computer Science, pages 438–445.

Springer, July 2014.

[MMN24] Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof

logging for the circuit constraint. In Proceedings of the 21st Interna-

tional Conference on the Integration of Constraint Programming, Artificial

https://maxsat-evaluations.github.io/2022
https://maxsat-evaluations.github.io/2022
https://maxsat-evaluations.github.io/2023
https://maxsat-evaluations.github.io/2023

54 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

Intelligence, and Operations Research (CPAIOR ’24), volume 14743 of

Lecture Notes in Computer Science, pages 38–55. Springer, May 2024.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pas-

cal Schweitzer. Certifying algorithms. Computer Science Review,

5(2):119–161, May 2011.

[MN89] Kurt Mehlhorn and Stefan Näher. Leda a library of efficient data

types and algorithms. In Antoni Kreczmar and Grazyna Mirkowska,

editors, Mathematical Foundations of Computer Science 1989, pages

88–106, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

[MN95] Kurt Mehlhorn and Stefan Näher. Leda: a platform for combinatorial

and geometric computing. Commun. ACM, 38(1):96–102, January

1995.

[MO12] David F. Manlove and Gregg O’Malley. Paired and altruistic kidney

donation in the UK: Algorithms and experimentation. In Proceed-

ings of the 11th International Symposium on Experimental Algorithms

(SEA ’12), volume 7276 of Lecture Notes in Computer Science, pages

271–282. Springer, June 2012.

[MO14] Magnus O. Myreen and Scott Owens. Proof-producing translation

of higher-order logic into pure and stateful ML. Journal of Functional

Programming, 24(2–3):284–315, January 2014.

[MOS15] Renata Mansini, Włodzimierz Ogryczak, and M. Grazia Speranza.

Linear and mixed integer programming for portfolio optimization, vol-

ume 21. Springer, 2015.

[MSB11] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software

testing. John Wiley & Sons, 2011.

[MSLM21] Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven

clause learning sat solvers. In Biere et al. [BHvMW21], chapter 4,

pages 133–182.

[NB14] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using

core-guided maxsat resolution. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 28, 2014.

[NORZ24] Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell,

and Rui Zhao. Speeding up pseudo-Boolean propagation. In Pro-

ceedings of the 27th International Conference on Theory and Applications

of Satisfiability Testing (SAT ’24), volume 305 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 22:1–22:18, August 2024.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Is-

abelle/HOL: a proof assistant for higher-order logic. Springer, 2002.

References 55

[PB23] Tobias Paxian and Armin Biere. Uncovering and classifying bugs in

MaxSAT solvers through fuzzing and delta debugging. In Proceedings

of the 14th International Workshop on Pragmatics of SAT, volume 3545 of

CEUR Workshop Proceedings, pages 59–71. CEUR-WS.org, July 2023.

[PFB23] Florian Pollitt, Mathias Fleury, and Armin Biere. Faster LRAT

checking than solving with CaDiCaL. In Proceedings of the 26th

International Conference on Theory and Applications of Satisfiability

Testing (SAT ’23), volume 271 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 21:1–21:12, July 2023.

[PR16] Tobias Philipp and Adrián Rebola-Pardo. DRAT proofs for XOR

reasoning. In Proceedings of the 15th European Conference on Logics

in Artificial Intelligence (JELIA ’16), volume 10021 of Lecture Notes in

Computer Science, pages 415–429. Springer, November 2016.

[PRB18] Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic polynomial

watchdog encoding for solving weighted MaxSAT. In Proceedings of

the 21st International Conference on Theory and Applications of Satisfi-

ability Testing (SAT ’18), volume 10929 of Lecture Notes in Computer

Science, pages 37–53. Springer, July 2018.

[PRB21] Tobias Paxian, Pascal Raiola, and Bernd Becker. On preprocessing for

weighted MaxSAT. In Proceedings of the 22nd International Conference

on Verification, Model Checking, and Abstract Interpretation (VMCAI ’21),

volume 12597 of Lecture Notes in Computer Science, pages 556–577.

Springer, January 2021.

[PS15] Tobias Philipp and Peter Steinke. PBLib – a library for encoding

pseudo-Boolean constraints into CNF. In Proceedings of the 18th

International Conference on Theory and Applications of Satisfiability

Testing (SAT ’15), volume 9340 of Lecture Notes in Computer Science,

pages 9–16. Springer, September 2015.

[Pse16] Pseudo-Boolean competition 2016. https://www.cril.univ-
artois.fr/PB16/, July 2016.

[Pse24] Pseudo-Boolean competition 2024. https://www.cril.univ-
artois.fr/PB24/, August 2024.

[RM21] Olivier Roussel and Vasco Manquinho. Pseudo-boolean and car-

dinality constraints. In Biere et al. [BHvMW21], chapter 28, pages

1087–1129.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolu-

tion principle. Journal of the ACM, 12(1):23–41, January 1965.

https://www.cril.univ-artois.fr/PB16/
https://www.cril.univ-artois.fr/PB16/
https://www.cril.univ-artois.fr/PB24/
https://www.cril.univ-artois.fr/PB24/

56 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

[RP23] Adrián Rebola-Pardo. Even Shorter Proofs Without New Variables.

In Meena Mahajan and Friedrich Slivovsky, editors, 26th International

Conference on Theory and Applications of Satisfiability Testing (SAT 2023),

volume 271 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 22:1–22:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik.

[RS18] Adrián Rebola-Pardo and Martin Suda. A theory of satisfiability-

preserving proofs in sat solving. In LPAR, pages 583–603, 2018.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Hand-

book of Constraint Programming, volume 2 of Foundations of Artificial

Intelligence. Elsevier, 2006.

[S
+
20] Philine Schiewe et al. Integrated optimization in public transport planning,

volume 160. Springer, 2020.

[Sau24] J. Sauppe, editor. Mathematical Programming Glossary. IN-

FORMS Computing Society, http://glossary.informs.org, 2006–

24. Originally authored by Harvey J. Greenberg, 1999-2006.

[Sch05] Alexander Schrĳver. On the history of combinatorial optimization

(till 1960). In K. Aardal, G.L. Nemhauser, and R. Weismantel, editors,

Discrete Optimization, volume 12 of Handbooks in Operations Research

and Management Science, pages 1–68. Elsevier, 2005.

[Sch12] Verena Schmid. Solving the dynamic ambulance relocation and

dispatching problem using approximate dynamic programming.

European Journal of Operational Research, 219(3):611–621, 2012. Feature

Clusters.

[SH23] Bernardo Subercaseaux and Marĳn J. H. Heule. The packing chro-

matic number of the infinite square grid is 15. In Sriram Sankara-

narayanan and Natasha Sharygina, editors, Tools and Algorithms for

the Construction and Analysis of Systems, pages 389–406, Cham, 2023.

Springer Nature Switzerland.

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of Boolean cardi-

nality constraints. In Proceedings of the 11th International Conference

on Principles and Practice of Constraint Programming (CP ’05), volume

3709 of Lecture Notes in Computer Science, pages 827–831. Springer,

October 2005.

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an

ROBDD for a PB-constraint in band form and related techniques

for PB-solvers. IEICE Transactions on Information and Systems,

98-D(6):1121–1127, June 2015.

http://glossary.informs.org

References 57

[SRB25] Dominik Schreiber, Niccolò Rigi-Luperti, and Armin Biere. Stream-

lining Distributed SAT Solver Design. In Jeremias Berg and Jakob

Nordström, editors, 28th International Conference on Theory and Ap-

plications of Satisfiability Testing (SAT 2025), volume 341 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 27:1–27:23,

Dagstuhl, Germany, 2025. Schloss Dagstuhl – Leibniz-Zentrum für

Informatik.

[TD20] Rodrigue Konan Tchinda and Clémentin Tayou Djamégni. On

certifying the UNSAT result of dynamic symmetry-handling-based

SAT solvers. Constraints, 25(3–4):251–279, December 2020.

[THM23] Yong Kiam Tan, Marĳn J. H. Heule, and Magnus O. Myreen. Verified

propagation redundancy and compositional UNSAT checking in

CakeML. International Journal on Software Tools for Technology Transfer,

25:167–184, February 2023. Preliminary version in TACAS ’21.

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional cal-

culus. In A. O. Silenko, editor, Structures in Constructive Mathematics

and Mathematical Logic, Part II, pages 115–125. Consultants Bureau,

New York-London, 1968.

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional un-

satisfiability. In 10th International Symposium on Artificial Intel-

ligence and Mathematics (ISAIM ’08), 2008. Available at http:
//isaim2008.unl.edu/index.php?page=proceedings.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb:

A certified MaxSAT solver. In Proceedings of the 16th International

Conference on Logic Programming and Non-monotonic Reasoning (LP-

NMR ’22), volume 13416 of Lecture Notes in Computer Science, pages

429–442. Springer, September 2022.

[VG02] Allen Van Gelder. Extracting (easily) checkable proofs from a satisfi-

ability solver that employs both preorder and postorder resolution.

In 7th International Symposium on AI and Mathematics, 2002.

[VS10] Michael Veksler and Ofer Strichman. A proof-producing CSP solver.

In Proceedings of the 24th AAAI Conference on Artificial Intelligence

(AAAI ’10), pages 204–209, July 2010.

[Wal96] Mark Wallace. Practical applications of constraint programming.

Constraints, 1(1):139–168, 1996.

[War98] Joost P. Warners. A linear-time transformation of linear inequal-

ities into conjunctive normal form. Information Processing Letters,

68(2):63–69, October 1998.

http://isaim2008.unl.edu/index.php?page=proceedings
http://isaim2008.unl.edu/index.php?page=proceedings

58 Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning

[Wei25] Nils Weidmann. Multi-League Sports Scheduling with Team In-

terdependencies: An Optimization Model. In Maria Garcia de la

Banda, editor, 31st International Conference on Principles and Practice

of Constraint Programming (CP 2025), volume 340 of Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), pages 37:1–37:19, Dagstuhl,

Germany, 2025. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[WHH14] Nathan Wetzler, Marĳn J. H. Heule, and Warren A. Hunt Jr. DRAT-

trim: Efficient checking and trimming using expressive clausal

proofs. In Proceedings of the 17th International Conference on Theory and

Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture

Notes in Computer Science, pages 422–429. Springer, July 2014.

[WS24] Dominik Winterer and Zhendong Su. Validating smt solvers for

correctness and performance via grammar-based enumeration. Proc.

ACM Program. Lang., 8(OOPSLA2), October 2024.

[YBH21] Emily Yu, Armin Biere, and Keĳo Heljanko. Progress in certifying

hardware model checking results. In International Conference on

Computer Aided Verification, pages 363–386. Springer, 2021.

[ZWCX22] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:

A survey for roadmap. ACM Comput. Surv., 54(11s), September 2022.

Included Papers

60

Pa
pe

r
I

Certified CNF Translations for
Pseudo-Boolean Solving

Abstract
The dramatic improvements in Boolean satisfiability (SAT) solving since the turn

of the millennium have made it possible to leverage state-of-the-art conflict-driven

clause learning (CDCL) solvers for many combinatorial problems in academia and

industry, and the use of proof logging has played a crucial role in increasing the

confidence that the results these solvers produce are correct. However, the fact

that SAT proof logging is performed in conjunctive normal form (CNF) clausal

format means that it has not been possible to extend guarantees of correctness to

the use of SAT solvers for more expressive combinatorial paradigms, where the

first step is an unverified translation of the input to CNF.

In this work, we show how cutting-planes-based reasoning can provide proof

logging for solvers that translate pseudo-Boolean (a.k.a. 0-1 integer linear) decision

problems to CNF and then run CDCL. To support a wide range of encodings,

we provide a uniform and easily extensible framework for proof logging of CNF

translations. We are hopeful that this is just a first step towards providing a unified

proof logging approach that will also extend to maximum satisfiability (MaxSAT)

solving and pseudo-Boolean optimization in general.

1 Introduction
Boolean satisfiability (SAT) solving has witnessed striking improvements over the

last couple of decades, starting with the introduction of conflict-driven clause learning

(CDCL) SAT solvers [MS99, MMZ
+
01], and this has led to a wide range of applica-

tions including large-scale problems in both academia and industry [BHvMW21].

The conflict-driven paradigm has also been successfully exported to other areas such

Stephan Gocht, Jakob Nordström, Ruben Martins, and Andy Oertel. “Certified CNF Translations for

Pseudo-Boolean Solving”. Accepted for publication in Journal of Artificial Intelligence Research.

Preliminary version in Proceedings of the 25th International Conference on Theory and Applications of

Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 16:1–16:25, August 2022.

62 Certified CNF Translations for Pseudo-Boolean Solving

as maximum satisfiability (MaxSAT), pseudo-Boolean (PB) solving, constraint program-

ming (CP), and mixed integer linear programming (MIP). As modern combinatorial

solvers are used to attack ever more challenging problems, and employ ever more

sophisticated heuristics and optimizations to do so, the question arises whether we

can trust the results they produce. Sadly, it is well documented that state-of-the-art

CP and MIP solvers can return incorrect solutions [AGJ
+
18, CKSW13, GSD19].

For SAT solvers, however, analogous problems [BLB10] have been successfully

addressed by the introduction of proof logging, requiring that solvers should be

certifying [MMNS11] in the sense that they output machine-verifiable proofs of

their claims that can be verified by a stand-alone proof checker.

A number of different proof logging formats have been developed for SAT solv-

ing, including RUP [GN03, Van08], TraceCheck [Bie06], DRAT [HHW13a, HHW13b,

WHH14], GRIT [CFMSSK17], and LRAT [CFHH
+
17]. Since 2013, the SAT com-

petitions [BBHJ13] require solvers to be certifying, with DRAT established as the

standard format. It would be highly desirable to have such proof logging also for

stronger combinatorial solving paradigms, but while methods such as DRAT are

extremely powerful in theory, the limitation to a clausal format makes it hard to

capture more advanced forms of reasoning in a succinct way. A more fundamental

concern is that it is not clear how these proof logging methods should deal with

input that is not presented in conjunctive normal form (CNF). One way to address

this problem could be to allow extensions to the DRAT format [BCH21]. However,

we focus on another approach pursued in recent years to develop stronger proof

logging methods based on more expressive formalisms such as binary decision

diagrams [BB21], algebraic reasoning [KBBN22, KB21, KFB20, RBK
+
18], pseudo-

Boolean reasoning [EGMN20, GMM
+
20, GMN20, GN21, BGMN22, GMN22], and

integer linear programming [CGS17, EG21].

Our Contribution In this work, we consider the use of CDCL for pseudo-Boolean

solving, where the pseudo-Boolean input (i.e., a 0-1 integer linear program) is

translated to CNF and passed to a SAT solver, as pioneered in MiniSat+ [ES06].

The two solvers NaPS [SN15] and Open-WBO [MML14] using this approach were

among the top performers in the latest pseudo-Boolean evaluation in 2016. While

DRAT proof logging can certify unsatisfiability of the translated formula, it cannot

prove correctness of the translation, not only since there is no known method of

carrying out PB reasoning efficiently in DRAT (except for constraints with small

coefficients [BBH22]), but also, and more fundamentally, because the input is not

in CNF.

We demonstrate how to instead use the cutting planes proof method [CCT87],

enhanced with a rule for introducing extension variables [GN21], to show that

the CNF formula resulting from the translation can be derived from the original

pseudo-Boolean constraints. Since this method is a strict extension of DRAT,

we can combine the proof for the translation with the SAT solver DRAT proof

log (with appropriate syntactic modifications). In this way we achieve end-to-

end verification of the pseudo-Boolean solving process using the proof checker

1. Introduction 63

Figure 1: Proof logging workflow for pseudo-Boolean solving with our contribution

highlighted in blue boldface.

VeriPB [GN21, BGMN22] as illustrated in Figure 1. We note that verifying the

correctness of the pseudo-Boolean encoding for the problem is beyond the scope

of this paper.

One challenge when certifying PB-to-CNF translations is that there are many

different ways of encoding pseudo-Boolean constraints into CNF (as catalogued

in, e.g., [PS15]), and it is time-consuming (and error-prone) to code up proof

logging for every single encoding. However, many of the encodings can be

understood as first designing a circuit to evaluate whether the PB constraint is

satisfied, and then writing down a CNF formula enforcing the computation of

this circuit. An important part of our contribution is that we develop a general

proof logging method for a wide class of such circuits. The pseudo-Boolean format

used for proof logging makes it easy to derive 0-1 linear inequalities describing

the circuit computations, and once this has been done the desired clauses in

the CNF translation can simply be obtained by so-called reverse unit propagation

(RUP) [GN03, Van08], obviating the need for complicated syntactic proofs. We

apply this method to the sequential counter [Sin05], totalizer [BB03], generalized

totalizer [JMM15] and binary adder network [ES06, War98] encodings, and report

results from an empirical evaluation of the efficiency of proof generation and

verification. As an additional application, we show how our certified PB-to-CNF

translations can be combined with SAT proof logging to certify, for the first time,

the correctness of claimed optimal values for instances in the MaxSAT Evaluation

2022.

We note that a stronger result than certifying that the CNF translation can

be derived from the pseudo-Boolean input would be to certify equivalence of the

original pseudo-Boolean formula 𝐹 and the translated CNF formula 𝐹′, in the sense

that (a) any satisfying assignment 𝛼 to 𝐹 could be extended to an assignment 𝛼′

also to the new variables introduced during translation that would satisfy 𝐹′, and

that (b) any satisfying assignment 𝛼′ to 𝐹′ also has to satisfiy 𝐹. The tools we

develop can reach this more ambitious goal in principle, but since some additional

technical problems arise along the way we have to leave this as future work.

Outline of This Paper After discussing preliminaries in Section 2, we illustrate

our method for the sequential counter encoding in Section 3. Section 4 presents

the general framework, and we discuss how to apply it to adder networks in

64 Certified CNF Translations for Pseudo-Boolean Solving

Section 5 and (generalized) totalizer encoding in Section 6. We report data from

our experimental evaluation in Section 7 and conclude with a discussion of some

directions for future research in Section 8.

2 Preliminaries
Let us start with a review of some standard material that can also be found in,

e.g., [BN21, GN21]. A literal ℓ over a Boolean variable 𝑥 is 𝑥 itself or its negation 𝑥,

where variables can be assigned values 0 (false) or 1 (true), so that 𝑥 = 1 − 𝑥. For

notational convenience, we define 𝑥 � 𝑥 (where we use � to denote syntactic

equality). We write [𝑛] = {1, 2, . . . , 𝑛} to denote the 𝑛 first positive integers, and

sometimes write ®𝑥 = {𝑥𝑖 | 𝑖 ∈ [𝑛]} to denote a set of variables, where the size 𝑛
of the set is understood from context (or is not important). A pseudo-Boolean (PB)

constraint is a 0-1 linear inequality

𝐶 �
∑
𝑖𝑎𝑖ℓ𝑖 ≥ 𝐴 , (1)

which without loss of generality we always assume to be in normalized form [Bar95];

i.e., all literals ℓ𝑖 are over distinct variables and the coefficients 𝑎𝑖 and the degree (of

falsity) 𝐴 are non-negative integers. The normalized form of the negation of 𝐶 in (1)

is the constraint

¬𝐶 � ∑
𝑖𝑎𝑖ℓ 𝑖 ≥

∑
𝑖𝑎𝑖 − 𝐴 + 1 (2)

(encoding that the sum of the coefficients of falsified literals in 𝐶 is so large that

coefficients of satisfied literals can contribute at most 𝐴 − 1). We use equality

constraints

𝐶 �
∑
𝑖𝑎𝑖ℓ𝑖 = 𝐴 (3a)

as syntactic sugar for the pair of inequalities

𝐶⇒ �
∑
𝑖𝑎𝑖ℓ𝑖 ≥ 𝐴 (3b)

and

𝐶⇐ �
∑
𝑖 −𝑎𝑖ℓ𝑖 ≥ −𝐴 (3c)

(with the latter converted to normalized form). We write

∑
𝑖𝑎𝑖ℓ𝑖 ⊲⊳ 𝐴 for ⊲⊳∈ {≥

, ≤,=} for constraints that are either inequalities or equalities. A pseudo-Boolean

formula is a conjunction 𝐹 =
∧
𝑗 𝐶 𝑗 of PB constraints. A cardinality constraint is a PB

constraint with all coefficients equal to 1. If the degree is also 1, then the constraint

ℓ1 + · · · + ℓ𝑘 ≥ 1 (4a)

is equivalent to the (disjunctive) clause

ℓ1 ∨ · · · ∨ ℓ𝑘 , (4b)

2. Preliminaries 65

and so CNF formulas are just special cases of pseudo-Boolean formulas.

A (partial) assignment 𝜌 is a (partial) function from variables to {0, 1}, which

we extend to literals by respecting the meaning of negation. Applying 𝜌 to a

constraint 𝐶 as in (1) yields the constraint 𝐶↾𝜌 obtained by substituting values

for all assigned variables, shifting constants to the right-hand side, and adjusting

the degree appropriately, and for a formula 𝐹 we define 𝐹↾𝜌=
∧
𝑗 𝐶 𝑗 ↾𝜌. The

constraint 𝐶 is satisfied by 𝜌 if

∑
𝜌(ℓ𝑖)=1

𝑎𝑖 ≥ 𝐴 (or, equivalently, if the restricted

constraint 𝐶↾𝜌 has a non-positive degree and is thus trivial). An assignment 𝜌
satisfies 𝐹 �

∧
𝑗 𝐶 𝑗 if it satisfies all 𝐶 𝑗 , in which case 𝐹 is satisfiable. A formula

without satisfying assignments is unsatisfiable. Two formulas are equisatisfiable if

they are both satisfiable or both unsatisfiable.

Cutting planes as defined in [CCT87] is a method for iteratively deriving new

constraints 𝐶 implied by a PB formula 𝐹. If 𝐶 and 𝐷 are previously derived

constraints, or are axiom constraints in 𝐹, then any positive integer linear combination

of these constraints can be derived. (By a linear combination of two equality

constraints 𝐶 and𝐷, we mean the identical linear combinations of 𝐶⇒ and𝐷⇒ and

of 𝐶⇐ and 𝐷⇐, respectively.) We can also add literal axioms ℓ𝑖 ≥ 0 to a previously

derived constraint. For a constraint

∑
𝑖 𝑎𝑖 · ℓ𝑖 ≥ 𝐴 in normalized form, we can

use division by a positive integer 𝑑 to derive

∑
𝑖 ⌈𝑎𝑖/𝑑⌉ℓ𝑖 ≥ ⌈𝐴/𝑑⌉, dividing and

rounding up the degree and coefficients, and it is sometimes convenient to also

include a saturation rule deriving

∑
𝑖 min{𝑎𝑖 , 𝐴} · ℓ𝑖 ≥ 𝐴 from

∑
𝑖 𝑎𝑖 · ℓ𝑖 ≥ 𝐴. We

remark that the soundness of the division and saturation rules as stated depends

on the constraints being presented in normalized form.

For PB formulas 𝐹, 𝐹′ and constraints 𝐶, 𝐶′, we say that 𝐹 implies or models 𝐶,

denoted 𝐹 |= 𝐶, if any assignment satisfying 𝐹 must also satisfy 𝐶, and we write

𝐹 |= 𝐹′ if 𝐹 |= 𝐶′ for all 𝐶′ ∈ 𝐹′. It is clear that any collection of constraints 𝐹′

derived (iteratively) from 𝐹 by cutting planes are implied in this sense, and cutting

planes is an implicationally complete method in the sense that any implied constraint

can also be derived syntactically.

A constraint 𝐶 is said to unit propagate the literal ℓ under 𝜌 if 𝐶↾𝜌 cannot be

satisfied unless ℓ is set to true. During unit propagation on 𝐹 under 𝜌, we extend 𝜌
iteratively by assignments to any propagated literals until an assignment 𝜌′ is

reached under which no constraint 𝐶 ∈ 𝐹 is propagating, or under which some

constraint 𝐶 propagates a literal that has already been assigned to the opposite

value. The latter scenario is called a conflict, since 𝜌′ violates the constraint 𝐶 in this

case. We say that 𝐹 implies 𝐶 by reverse unit propagation (RUP), and that 𝐶 is a RUP

constraint with respect to 𝐹, if 𝐹 ∧ ¬𝐶 unit propagates to conflict under the empty

assignment. It is not hard to see that 𝐹 |= 𝐶 holds if 𝐶 is a RUP constraint, but the

opposite direction is not necessarily true.

For introducing new variables, we will use the reification rule saying that we

can introduce the reified constraints

𝑧 ⇒ ∑
𝑖𝑎𝑖ℓ𝑖 ≥ 𝐴 � 𝐴𝑧 +∑𝑖𝑎𝑖ℓ𝑖 ≥ 𝐴 (5a)

𝑧 ⇐ ∑
𝑖𝑎𝑖ℓ𝑖 ≥ 𝐴 �

(∑
𝑖𝑎𝑖 − 𝐴 + 1

)
· 𝑧 +∑𝑖𝑎𝑖ℓ 𝑖 ≥

∑
𝑖𝑎𝑖 − 𝐴 + 1 (5b)

66 Certified CNF Translations for Pseudo-Boolean Solving

𝑠𝑖−1, 𝑗

𝑠𝑖−1, 𝑗−1

ℓ𝑖

𝑠𝑖, 𝑗

&

≥ 1

(a) Logic circuit of single compo-

nent. (b) Circuit for 4 input literals counting up to 4.

Figure 2: Circuit representation of the sequential counter encoding.

provided that 𝑧 is a fresh variable that is not in the formula and has not appeared

previously in the derivation. A moment of thought reveals that the constraint (5a)

says that if 𝑧 is true, then

∑
𝑖𝑎𝑖ℓ𝑖 ≥ 𝐴 has to hold, and this explains the notation

𝑧 ⇒ ∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴 introduced for this constraint. In an analogous fashion, the

constraint (5b) says that if

∑
𝑖𝑎𝑖ℓ𝑖 ≥ 𝐴 holds, then 𝑧 has to be true. We will write

𝑧 ⇔ ∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴 for the conjunction of the constraints (5a) and (5b). Adding such

reification constraints preserves equisatisfiability, since any satisfying assignment

to 𝐹 can be extended by setting the fresh variable 𝑧 as required to satisfy the

implications. The reification rule is a special case of the redundance rule in [GN21],

where we can add any redundant constraint 𝐶 with the property that 𝐹 and 𝐹 ∧ 𝐷
are equisatisfiable.

3 Certified CNF Translation Using the Sequential
Counter Encoding

To give a concrete illustration of our approach for proving the correctness of

translations of pseudo-Boolean constraints, in this section we consider how to

convert cardinality constraints

∑𝑛
𝑖=1
ℓ𝑖 ⊲⊳ 𝑘 to CNF using the sequential counter

encoding [Sin05]. This encoding is based on a circuit summing up the input bits

one by one, with intermediate variables 𝑠𝑖 , 𝑗 for 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑖] evaluating to

true if and only if

∑𝑖
𝑡=1
ℓ𝑡 ≥ 𝑗 holds. The variables 𝑠𝑖 , 𝑗 can be computed inductively

as in Figure 2a by the formula

𝑠𝑖 , 𝑗 ↔
(
(ℓ𝑖 ∧ 𝑠𝑖−1, 𝑗−1) ∨ 𝑠𝑖−1, 𝑗

)
(6)

saying that 𝑠𝑖 , 𝑗 is true either if the first 𝑖 − 1 literals add up to 𝑗 − 1 and the 𝑖th literal

is true, or if already the first 𝑖 − 1 literals add up to 𝑗. The circuit constructed in

this way, shown in Figure 2b, can be partitioned into 𝑛 blocks, where the 𝑖th block

3. Certified CNF Translation Using the Sequential

Counter Encoding 67

computes the variables 𝑠𝑖 , 𝑗 for 𝑗 ∈ [𝑖] from the 𝑖th input bit ℓ𝑖 and the variables 𝑠𝑖−1, 𝑗

in the previous block. Identifying such blocks in the circuit is a key component in

our method for proving that the CNF translation is correct.

For the sequential counter circuit, we obtain the CNF encoding of the constraint∑𝑛
𝑖=1
ℓ𝑖 ⊲⊳ 𝑘 by translating each component in Figure 2a (as described by Equation (6))

to the clausal constraints

ℓ 𝑖 + 𝑠 𝑖−1, 𝑗−1 + 𝑠𝑖 , 𝑗 ≥ 1 (7a)

𝑠 𝑖−1, 𝑗 + 𝑠𝑖 , 𝑗 ≥ 1 (7b)

ℓ𝑖 + 𝑠𝑖−1, 𝑗 + 𝑠 𝑖 , 𝑗 ≥ 1 (7c)

𝑠𝑖−1, 𝑗−1 + 𝑠 𝑖 , 𝑗 ≥ 1 (7d)

for 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑖]. For all 𝑖 we set 𝑠𝑖 ,0 = 1 and simplify, so that constraint (7a)

turns into ℓ 𝑖 + 𝑠𝑖 ,1 ≥ 1 and constraint (7d) is satisfied and disappears. We also set

𝑠𝑖−1,𝑖 = 0, so that (7c) becomes ℓ𝑖 + 𝑠 𝑖 ,𝑖 ≥ 1 and (7b) is satisfied and disappears.

Once clauses (7a)–(7d) have been generated for all circuit components, we

obtain a greater-than-or-equal-to-𝑘 constraint by adding the unit clause 𝑠𝑛,𝑘 ≥ 1.

Analogously, a less-than-or-equal-to-𝑘 constraint is enforced using the clause

𝑠𝑛,𝑘+1 ≥ 1. A common optimization, known as 𝑘-simplification, is to omit clauses

corresponding to the computation of variables 𝑠𝑖 , 𝑗 for 𝑗 > 𝑘 + 1, as such variables

are not relevant for deciding whether the cardinality constraint is true or not.

As a preparation for our proof logging discussions, let us study the variables

𝑠𝑖 , 𝑗 in more detail, ignoring 𝑘-simplification for now. Since 𝑠𝑖 , 𝑗 is true if and only if∑𝑖
𝑡=1
ℓ𝑡 ≥ 𝑗 holds, for all 𝑖 ∈ [𝑛]we should be able to deduce∑𝑖

𝑡=1
ℓ𝑡 =

∑𝑖
𝑗=1
𝑠𝑖 , 𝑗 . (8)

However, the sequential counter circuit computes the variables 𝑠𝑖 , 𝑗 in the 𝑖th block

using only the variables 𝑠𝑖−1, 𝑗 from the previous block and the literal ℓ𝑖 , and so if

we only reason locally about the 𝑖th block what we can derive is the equality

ℓ𝑖 +
∑𝑖−1

𝑗=1
𝑠𝑖−1, 𝑗 =

∑𝑖
𝑗=1
𝑠𝑖 , 𝑗 . (9)

If we look at the variables on wires entering and exiting the 𝑖th block of the circuit,

we see that Equation (9) specifies that the sum of the inputs is equal to the sum of

the outputs. If we represent the circuit in Figure 2b as a graph with every block

contracted into a single node and the literals ℓ𝑖 in the cardinality constraint collected

into another separate node, then every 𝑖th block node has an incoming edge from

the literals node and (for 𝑖 > 1) another edge from the (𝑖 − 1)th block node, and an

outgoing edge to the (𝑖 + 1)th block node (or, for 𝑖 = 𝑛, to a special sink node that

we can also introduce). If we label the incoming edges by ℓ𝑖 and

∑𝑖−1

𝑗=1
𝑠𝑖−1, 𝑗 and the

outgoing edge by

∑𝑖
𝑗=1

𝑠𝑖 , 𝑗 , as shown in Figure 3a, then we can view (9) as saying

that for all vertices in the graph the sum of the labels of input edges should be

equal to the sum of the output edge. We will refer to this as a preservation equality.

68 Certified CNF Translations for Pseudo-Boolean Solving

(a) Graph without 𝑘-simplification.

(b) Graph with 𝑘-simplification for 𝑘 = 1.

Figure 3: Graph representation of the sequential counter encoding.

What is not at all obvious from this particular example, but what we will show in

later sections, is that many CNF translations of pseudo-Boolean constraints can

be represented as graphs with preservation equalities in a similar way, though

sometimes with larger coefficients in the linear combinations of the literals. And,

jumping ahead a bit, our main contribution in this paper is a generic proof logging

method that will certify correctness for any CNF encoding that can be represented

in this graph framework with preservation equalities.

Using the graph representation we can easily see that the telescoping sum of

the preservation equalities for all nodes derives (8). From this, in turn, it is clear

that a constraint on the input variables

∑𝑛
𝑗=1
ℓ𝑖 ⊲⊳ 𝑘 implies the same constraint on

the output variables, and formally this can be obtained by one final telescoping

sum step combining

∑𝑛
𝑗=1
ℓ𝑖 ⊲⊳ 𝑘 and

∑𝑛
𝑗=1
ℓ𝑖 =

∑𝑛
𝑗=1
𝑠𝑛,𝑗 to get∑𝑛

𝑗=1
𝑠𝑛,𝑗 ⊲⊳ 𝑘 . (10)

Another important property of the variables 𝑠𝑖 , 𝑗 is that they do not just take any

values satisfying (9), but are ordered—since 𝑠𝑖 , 𝑗 encodes

∑𝑖
𝑡=1
ℓ𝑡 ≥ 𝑗, it follows that

𝑠𝑖 , 𝑗 cannot be true unless also 𝑠𝑖 , 𝑗′ is true for all 𝑗′ < 𝑗. This can be expressed by

ordering constraints

𝑠𝑖 , 𝑗 ≥ 𝑠𝑖 , 𝑗+1 𝑖 ∈ [𝑛] , 𝑗 ∈ [𝑖 − 1] , (11)

which are semantically implied by the circuit encoding.

Taking this view of the circuit encoding, the task of certifying the correctness

of the CNF translation becomes surprisingly simple. If we can derive the pseudo-

Boolean constraints (9)–(11), then it can be verified that the clauses of the sequential

3. Certified CNF Translation Using the Sequential

Counter Encoding 69

counter encoding (i.e., (7a)–(7d) plus 𝑠𝑛,𝑘+1 ≥ 1 and/or 𝑠𝑛,𝑘 ≥ 1) all follow by

reverse unit propagation. This is so since when asserting the clauses to false, the

ordering constraints (11) will propagate enough variables 𝑠𝑖 , 𝑗 for (9) to be falsified.

To see how to obtain the constraints (9)–(11), note that we already discussed

above how to derive (10) by a telescoping sum over constraints (9), which is

straightforward to do with standard cutting planes rules. To get constraints on

the form (9), we can use reification to define the meaning of the variables 𝑠𝑖 , 𝑗 by

constraints

𝑠𝑖 , 𝑗 ⇔ ℓ𝑖 +
∑𝑖−1

𝑗=1
𝑠𝑖−1, 𝑗 ≥ 𝑗 (12)

(with notation as introduced in (5a)–(5b) in Section 2). If we do this in increasing

order for 𝑖 and 𝑗, then 𝑠𝑖 , 𝑗 is fresh in (12) and so these are valid derivation steps.

From the constraints (12) we can then derive (9) and (11) as illustrated in the

next example. To show the concrete syntax used in the proof file, the example is

interleaved with according proof file snippets and concatenating all the snippets

would result in a full proof that can be checked using the pseudo-Boolean proof

checker VeriPB [EGMN20, GN21, GMN20].

Example 1. Every constraint in the proof format is assigned a unique identifier (ID)

and constraints that are derived in the proof are annotated in this example by their

corresponding identifier.

Let us consider the constraint

(id: 1) 𝑥1 + 𝑥2 ≥ 2 (13)

to be encoded with the sequential counter encoding. To use this constraint as input

for VeriPB, the constraint is written in the OPB format [RM16], which is extended

to offer, among other thing, a greater flexibility for variable names. The input file

would contain the following two lines.

* #variables= 2 #constraints= 1
+1 x1 +1 ~x2 >= 2 ;

The proof file for this instance starts with the header

pseudo-Boolean proof version 2.0
f 1

to tell the checker which version of the proof format is used and to load the formula

that should contain one constraint.

The proof starts with deriving the preservation equality

𝑥1 = 𝑠1,1 (14)

for the first block of the sequential counter encoding. The fresh counter variable

𝑠1,1 is introduced by reification resulting in the constraints

(id: 2) 𝑠1,1 + 𝑥1 ≥ 1 (15a)

(id: 3) 𝑠1,1 + 𝑥1 ≥ 1 (15b)

70 Certified CNF Translations for Pseudo-Boolean Solving

to be added. In the proof log the reified constraints can be added using the

redundance-based strengthening rule with the according witness.

red +1 ~s11 +1 x1 >= 1 ; s11 -> 0
red +1 s11 +1 ~x1 >= 1 ; s11 -> 1

The constraints in (15) together represent the desired preservation equality (14).

For the second block the preservation equality

𝑥2 + 𝑠1,1 = 𝑠2,1 + 𝑠2,2 (16)

needs to be derived. The variables 𝑠2,1 and 𝑠2,2 are defined by the reification

constraints

(id: 4) 𝑠2,1 + 𝑥2 + 𝑠1,1 ≥ 1 (17a)

(id: 5) 2𝑠2,2 + 𝑥2 + 𝑠1,1 ≥ 2 (17b)

(id: 6) 2𝑠2,1 + 𝑥2 + 𝑠1,1 ≥ 2 (17c)

(id: 7) 𝑠2,2 + 𝑥2 + 𝑠1,1 ≥ 1 (17d)

These constraints are again introduced by redundance-based strengthening in the

proof file.

red +1 ~s21 +1 ~x2 +1 s11 >= 1 ; s21 -> 0
red +2 ~s22 +1 ~x2 +1 s11 >= 2 ; s22 -> 0
red +2 s21 +1 x2 +1 ~s11 >= 2 ; s21 -> 1
red +1 s22 +1 x2 +1 ~s11 >= 1 ; s22 -> 1

This time some additional steps are required to derive the preservation equality.

Adding (17a) and (17b) together yields 𝑠2,1 + 2𝑠2,2 + 2𝑥2 + 2𝑠1,1 ≥ 3 and dividing

by 2 results in

(id: 8) 𝑠2,1 + 𝑠2,2 + 𝑥2 + 𝑠1,1 ≥ 2 . (18)

Adding (17c) and (17d) yields 2𝑠2,1 + 𝑠2,2 + 2𝑥2 + 2𝑠1,1 ≥ 3 and dividing by 2 results

in

(id: 9) 𝑠2,1 + 𝑠2,2 + 𝑥2 + 𝑠1,1 ≥ 2 . (19)

These cutting planes derivations are written to the proof log in reverse polish

notation using the identifiers for the constraints. The first line derives (18) and the

second line derives (19).

pol 4 5 + 2 d
pol 6 7 + 2 d

The constraints (18) and (19) together represent the desired preservation equal-

ity (16).

3. Certified CNF Translation Using the Sequential

Counter Encoding 71

The next step is to sum the preservation equalities together with the input

constraint (13). The sum of the constraints (15b) and (19) is 𝑥1 + 𝑥2 + 𝑠2,1 + 𝑠2,2 ≥ 2

and adding (13) yields

(id: 10) 𝑠2,1 + 𝑠2,2 ≥ 2 . (20)

This cutting planes derivation is written to the proof log as the following line.

pol 3 9 + 1 +

The next step is to derive the clauses

(id: 11) 𝑥1 + 𝑠1,1 ≥ 1 (21a)

(id: 12) 𝑥1 + 𝑠1,1 ≥ 1 (21b)

(id: 13) 𝑥2 + 𝑠2,1 ≥ 1 (21c)

(id: 14) 𝑠1,1 + 𝑠2,1 ≥ 1 (21d)

(id: 15) 𝑥2 + 𝑠1,1 + 𝑠2,1 ≥ 1 (21e)

(id: 16) 𝑥2 + 𝑠1,1 + 𝑠2,2 ≥ 1 (21f)

(id: 17) 𝑥2 + 𝑠2,2 ≥ 1 (21g)

(id: 18) 𝑠1,1 + 𝑠2,2 ≥ 1 (21h)

that encode the sequential counter as introduced in (7). The clauses in (21) can be

derived by RUP, which is specified in the proof log by the following lines.

rup +1 ~x1 +1 s11 >= 1 ;
rup +1 x1 +1 ~s11 >= 1 ;
rup +1 x2 +1 s21 >= 1 ;
rup +1 ~s11 +1 s21 >= 1 ;
rup +1 ~x2 +1 s11 +1 ~s21 >= 1 ;
rup +1 x2 +1 ~s11 +1 s22 >= 1 ;
rup +1 ~x2 +1 ~s22 >= 1 ;
rup +1 s11 +1 ~s22 >= 1 ;

To see that these clauses follow by reverse unit propagation, we detail the

RUP step for (21c) and the RUP step for the other clauses is similar. The negation

of (21c) is 𝑥2 + 𝑠2,1 ≥ 2, which propagates 𝑥2 and 𝑠2,1 to false. This falsifies (17c),

hence (21c) is implied.

The last step is to enforce the comparison with the degree of the constraint. As

𝑥1 + 𝑥2 ≥ 2 is satisfied if 𝑠2,2 is true, the constraint

(id: 19) 𝑠2,2 ≥ 1 (22)

has to be derived to enforce the comparison. This can be done using RUP, which is

also written to the proof log.

rup +1 s22 >= 1 ;

72 Certified CNF Translations for Pseudo-Boolean Solving

This concludes our example.

To obtain the encoding with 𝑘-simplification, the most naive approach would be

to simply omit the clauses enforcing correct values for the variables 𝑠𝑖 , 𝑗 that are not

used. However, this could incur a significant overhead in the proof logging when 𝑘
is small, as we would always introduce Θ(𝑛2) intermediate variables instead of

the Θ(𝑘𝑛) variables actually used in the final encoding. To avoid this overhead,

we can introduce “overflow variables” 𝑠𝑖 ,𝑘+2 that do not encode that the first 𝑖 bits

sum to 𝑘 + 2 but instead ensure that the equality

ℓ𝑖 +
∑𝑘+1

𝑗=1
𝑠𝑖−1, 𝑗 =

∑𝑘+2

𝑗=1
𝑠𝑖 , 𝑗 (23)

holds. To maintain the equality of sums over incoming and outgoing edges in our

graph representation, we label the edge to the next block by

∑𝑘+1

𝑗=1
𝑠𝑖 , 𝑗 instead of∑𝑖

𝑗=1
𝑠𝑖 , 𝑗 , and introduce an additional edge going directly to the sink with the label

𝑠𝑖 ,𝑘+2 (see Figure 3b). Note that without the additional variable 𝑠𝑖 ,𝑘+2 we could not

guarantee equality, as we would have 𝑘 + 2 literals on the left-hand side and only

𝑘 + 1 variables on the right-hand side.

Example 2. To apply 𝑘-simplification for 𝑘 = 1 to Figure 3a, the output from block 3

to block 4 should only contain the sum of the two variables 𝑠3,1 + 𝑠3,2. To preserve

equality of the sums of inputs and outputs, we add an edge from block 3 to the

sink labelled 𝑠3,3 as in Figure 3b.

When using 𝑘-simplification, we can derive an analogue of (8) by a tele-

scoping sum of all preservation equalities (23) yielding

∑𝑛
𝑖=1

(
ℓ𝑖 +

∑𝑘+1

𝑗=1
𝑠𝑖−1, 𝑗

)
=∑𝑛

𝑖=1

(∑𝑘+2

𝑗=1
𝑠𝑖 , 𝑗

)
, which simplifies to

∑𝑛
𝑖=1
ℓ𝑖 =

∑𝑛
𝑖=1

𝑠𝑖 ,𝑘+2 +
∑𝑘+1

𝑗=1
𝑠𝑛,𝑗 .

4 A General Framework for Certifying CNF Transla-
tions

As discussed in the introduction, there is a rich selection of encodings of pseudo-

Boolean constraints in CNF. In this section, we develop a unified framework to

provide proof logging for a wide range of different translations. Our approach is

to represent encodings as directed graphs with preservation equalities between

the incoming and outgoing edges of each node, as in our example in Figure 3, so

that all clauses in the encoding can be obtained by reverse unit propagation from

(telescoping sums over) these equalities. In this way, the whole proof logging task

is reduced to considering a few generic ways of deriving preservation equalities.

Let us start with a formal definition of the graph representation.

We will describe how the proof logging works by first introducing concrete

methods that provide proof logging for different low-level steps, and then showing

how these methods can be composed to certify correctness of translations from

4. A General Framework for Certifying CNF Translations 73

pseudo-Boolean constraints to CNF. Recall that every constraint is assigned a

unique identifier. A cutting planes derivation is specified by add (𝐶, 𝐷) to add

𝐶 and 𝐷 together, mult (𝐶, 𝑘) to multiply 𝐶 by 𝑘 and div (𝐶, 𝑘) to divide 𝐶 by 𝑘
and round up. E.g., given the previously derived constraints 𝐶 and 𝐷, calling

add (div (𝐶, 2) ,mult (𝐷, 3)) divides 𝐶 by 2 (and rounds up), multiplies 𝐷 by 3, adds

the two constraints obtained in this way together, returns the resulting constraint,

and writes the corresponding derivations to the proof file in reverse polish notation

and using the identifiers for the constraints. A reverse unit propagation constraint

𝐶 can be added using rup (𝐶). The syntax we use for deriving a constraint by

reification is red (𝑧 ⇒ 𝐶, {𝑧 → 0}) and red (𝑧 ⇐ 𝐶, {𝑧 → 1}) (where this somewhat

cryptic notation is due to the fact that reification is a special case of the redundance

rule in [GN21]). We use ⊲ to denote comments in the pseudocode.

Definition 1 (Arithmetic Graph). Let 𝑎𝑖 , 𝑐𝑖 be integers, ℓ𝑖 Boolean literals, and 𝑜𝑖
Boolean variables. An arithmetic graph with input

∑
𝑖 𝑎𝑖ℓ𝑖 and output

∑
𝑖 𝑐𝑖𝑜𝑖 is a

directed multi-graph 𝐺 = (𝑉, 𝐸) that satisfies the following conditions:

1. Every edge 𝑒 ∈ 𝐸 has a label of the form

∑
𝑖 𝑏

𝑒
𝑖
𝑦𝑒
𝑖

for each edge 𝑒 ∈ 𝐸, where

𝑏𝑒
𝑖

are integers and 𝑦𝑒
𝑖

Boolean variables.

2. There is a unique source node 𝑠 that has only outgoing edges, and these edges

are labelled by input literals ℓ𝑖 in such a way that

∑
𝑖 𝑎𝑖ℓ𝑖 =

∑
(𝑠,𝑣)=𝑒∈𝐸

∑
𝑖 𝑏

𝑒
𝑖
𝑦𝑒
𝑖
.

3. There is a unique sink 𝑡 that has only incoming edges, and these edges are

labelled by output variables 𝑜𝑖 in such a way that

∑
𝑖 𝑐𝑖𝑜𝑖 =

∑
(𝑣,𝑡)=𝑒∈𝐸

∑
𝑖 𝑏

𝑒
𝑖
𝑦𝑒
𝑖
.

4. For all other nodes 𝑣, which we refer to as inner nodes, the preservation

equality ∑
(𝑢,𝑣)=𝑒∈𝐸

∑
𝑖

𝑏𝑒𝑖 𝑦
𝑒
𝑖 =

∑
(𝑣,𝑤)=𝑒∈𝐸

∑
𝑖

𝑏𝑒𝑖 𝑦
𝑒
𝑖 (24)

has to hold. This is saying that the sum of incoming edges equals the sum of

outgoing edges, which can be derived using cutting planes with reification

over the variables on outgoing edges from 𝑣.

The arithmetic graph does not necessarily have to be acyclic, but an acyclic

graph simplifies the arguments for correctness of the generated proof.

The rest of this section will be devoted to discussing how preservation equali-

ties (24) can be derived for different types of pseudo-Boolean expressions. Before

doing so, let us just note for the record that if we have an arithmetic graph for an

encoding of a pseudo-Boolean constraint, then by a telescoping argument as in

Section 3 we can derive that the same constraint applies to the output of the graph.

Proposition 1. Given an arithmetic graph with input

∑
𝑖 𝑎𝑖ℓ𝑖 and output

∑
𝑖 𝑐𝑖𝑜𝑖 and

a PB constraint

∑
𝑖 𝑎𝑖ℓ𝑖 ⊲⊳ 𝑘 for ⊲⊳∈ {≥, ≤,=}, we can derive

∑
𝑖 𝑐𝑖𝑜𝑖 ⊲⊳ 𝑘 using cutting

planes.

74 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 4: General algorithm for translating PB constraints to CNF

with proof logging.

1 translate_and_certify(𝐶, 𝑓 , 𝐺, 𝐹)
⊲ input: pseudo-Boolean constraint 𝐶 of the form

∑𝑛
𝑖=1

𝑎𝑖ℓ𝑖 ⊲⊳ 𝑘, with

⊲⊳∈ {≥, ≤,=}
⊲ input: arithmetic graph 𝐺 = (𝑉, 𝐸)with input

∑
𝑖 𝑎𝑖ℓ𝑖 and output∑

𝑖 𝑐𝑖𝑜𝑖
⊲ input: function 𝑓 that takes a node and derives its preservation

equality

⊲ input: set of clauses 𝐹 with CNF encoding to be derived

2 sum constraints 𝑓 (𝑣) for 𝑣 ∈ 𝑉 in topological order to obtain∑
𝑖 𝑎𝑖ℓ𝑖 =

∑
𝑖 𝑐𝑖𝑜𝑖 ;

3 combine

∑
𝑖 𝑎𝑖ℓ𝑖 =

∑
𝑖 𝑐𝑖𝑜𝑖 and 𝐶 to obtain

∑
𝑖 𝑐𝑖𝑜𝑖 ⊲⊳ 𝑘;

4 derive each clause in the CNF encoding 𝐹 with reverse unit

propagation (RUP);

Proof. By item 4 in Definition 1, we can derive preservation equalities (24) for all

inner nodes in the graph. By summing the preservation equalities for all inner nodes

together (i.e., adding up separately all greater-than-or-equal constraints and all less-

than-or-equal constraints, as explained in Section 2), we obtain

∑
𝑖 𝑎𝑖ℓ𝑖 =

∑
𝑖 𝑐𝑖𝑜𝑖 ,

and combining this with

∑
𝑖 𝑎𝑖ℓ𝑖 ⊲⊳ 𝑘 yields

∑
𝑖 𝑐𝑖𝑜𝑖 ⊲⊳ 𝑘 as desired. □

Once the bound on the input literals is translated to a bound on the output

variables, all clauses of the CNF encoding will follow by reverse unit propagation.

This results in the general proof logging method shown in Algorithm 4. Note that

the nodes of the graph should be traversed in topological order when deriving the

preservation equalities—this is so that the variables used in the reification steps

are all fresh.

Let us now discuss three different ways of representing values of natural

numbers that are used in preservation equality for inner nodes. Perhaps the most

straightforward way to encode a number 𝑗 with domain 𝐴 = {0, 1, . . . , 𝑚} ⊆ N0

with Boolean variables is to write 𝑗 in unary with variables 𝑧𝑖 so that 𝑗 =
∑
𝑖∈[𝑚] 𝑧𝑖 .

In such an encoding we can also require, using constraints 𝑧𝑖 ≥ 𝑧𝑖+1, that the

variables 𝑧𝑖 are ordered so that 𝑧𝑖 is true if and only if 𝑗 ≥ 𝑖. This means that

listing the variables in reverse order 𝑧𝑚 , 𝑧𝑚−1 , . . . , 𝑧1 yields the number 𝑗 written

in unary (after a prefix of zeros). This is known as the order encoding, and this type

of representation is used in the sequential counter [Sin05] and totalizer [BB03]

encodings. We can certify the correctness of this encoding as stated in the next

proposition.

4. A General Framework for Certifying CNF Translations 75

Algorithm 5: Deriving a unary sum over fresh variables 𝑧𝑖 .

1 derive_unary_sum(𝐶′)
⊲ input: 𝐶′ of the form

∑𝑛
𝑖=1
ℓ𝑖 =

∑𝑛
𝑖=1

𝑧𝑖 and describing the constraint

to be derived

⊲ the 𝑧𝑖 variables need to be fresh, the left-hand side is the sum to be

encoded

2 for 𝑗 = 1, . . . , 𝑘 do
⊲ Step 5.1: introduce variables

3 𝐷⇒
𝑗
, 𝐷⇐

𝑗
← reify(𝑧 𝑗 ⇔

∑𝑛
𝑖=1

1 · ℓ𝑖 ≥ 𝑗);
⊲ Step 5.2: derive

∑𝑛
𝑖=1
ℓ𝑖 ≥

∑𝑛
𝑖=1
𝑧𝑖

4 𝐶⇒ ← derive_sum(𝐷⇒
1
, 𝐷⇒

2
, . . . , 𝐷⇒𝑛);

⊲ Step 5.3: derive

∑𝑛
𝑖=1
ℓ𝑖 ≤

∑𝑛
𝑖=1
𝑧𝑖

5 𝐶⇐ ← derive_sum(𝐷⇐𝑛 , 𝐷
⇐
𝑛−1

, . . . , 𝐷⇐
1
);

6 for 𝑖 = 1, . . . , 𝑘 − 1 do
⊲ Step 5.4: derive 𝑧𝑖 ≥ 𝑧𝑖+1 , 𝑖 ∈ [𝑛 − 1]

7 derive_ordering(𝐷⇐
𝑖

, 𝐷⇒
𝑖+1

);

8 return 𝐶⇒ , 𝐶⇐;

Algorithm 6: Reify

∑𝑛
𝑖=1
𝑎𝑖ℓ𝑖 ≥ 𝑗 using the fresh variable 𝑧 𝑗 .

1 reify(𝑧 𝑗 ⇔
∑𝑛
𝑖=1
𝑎𝑖ℓ𝑖 ≥ 𝑗)

⊲ 𝑧 𝑗 ⇒
∑𝑛
𝑖=1
𝑎𝑖ℓ𝑖 ≥ 𝑗

2 𝐶⇒ ← red
(∑𝑛

𝑖=1
𝑎𝑖ℓ𝑖 + 𝑗𝑧 𝑗 ≥ 𝑗 , {𝑧 𝑗 → 0}

)
;

⊲ 𝑧 𝑗 ⇐
∑𝑛
𝑖=1
𝑎𝑖ℓ𝑖 ≥ 𝑗

3 𝐶⇐ ← red
(∑𝑛

𝑖=1
𝑎𝑖ℓ 𝑖 + (

∑𝑛
𝑖=1

𝑎𝑖 − 𝑗 + 1)𝑧 𝑗 ≥
∑𝑛
𝑖=1

𝑎𝑖 − 𝑗 + 1, {𝑧 𝑗 → 1}
)
;

4 return 𝐶⇒ , 𝐶⇐;

Proposition 2 (Unary Sum). For literals ℓ𝑖 and fresh variables 𝑧𝑖 , 𝑖 ∈ [𝑛], the constraints

∑𝑛
𝑖=1
ℓ𝑖 ≥

∑𝑛
𝑖=1
𝑧𝑖 (25a)∑𝑛

𝑖=1
ℓ𝑖 ≤

∑𝑛
𝑖=1
𝑧𝑖 (25b)

𝑧𝑖 ≥ 𝑧𝑖+1 𝑖 ∈ [𝑛 − 1] (25c)

can be derived in O(𝑛) steps in cutting planes with reification. Thus, the variable 𝑧𝑖 is

defined to be true if and only if at least 𝑖 literals are true.

Proof. The unary sum constraints in (25) can be derived using Algorithm 5. We will

show the correctness of Algorithm 5 first and then that the derivation following

this algorithm requires O(𝑛) steps in cutting planes with reification.

76 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 7: Derive sum of reification variables.

1 derive_sum(𝐷1 , . . . , 𝐷𝑛)
⊲ input: 𝐷𝑗 is of the form

∑𝑛
𝑖=1
ℓ𝑖 + 𝑗𝑧 𝑗 ≥ 𝑗

2 𝐶 ← 0 ≥ 0;

3 for 𝑗 from 1 to 𝑛 do
4 𝐶 ← div

(
add

(
mult (𝐶, 𝑗 − 1) , 𝐷𝑗

)
, 𝑗
)
;

⊲ Invariant: 𝐶 :

∑𝑛
𝑖=1
ℓ𝑖 +

∑𝑗

𝑖=1
𝑧 𝑖 ≥ 𝑗

5 return 𝐶;

Algorithm 8: Deriving an ordering constraint 𝑧𝐴 ≥ 𝑧𝐵 from the reification

constraints.

1 derive_ordering(𝐶, 𝐷)
⊲ input: 𝐶 is of the form 𝑧𝐴 ⇒

∑𝑛
𝑖=1
𝑎𝑖ℓ𝑖 ≥ 𝐴

⊲ input: 𝐷 is of the form 𝑧𝐵 ⇐
∑𝑛
𝑖=1
𝑎𝑖ℓ𝑖 ≥ 𝐵

2 divisor← ∑𝑛
𝑖=1

𝑎𝑖 ;
⊲ derive 𝑧𝐴 ≥ 𝑧𝐵 if 𝐴 < 𝐵

3 div (add (𝐶, 𝐷) , divisor);

Algorithm 5 is split into four major steps. Step 5.1 is to introduce the fresh vari-

ables 𝑧 𝑗 as reifications of the constraints

∑𝑛
𝑖=1
ℓ𝑖 ≥ 𝑗, which is shown in Algorithm 6

for the more general case of arbitrary positive coefficients.

In Step 5.2 the lower bound (25a) is derived using Algorithm 7 maintaining

the invariant

∑𝑛
𝑖=1
ℓ𝑖 +

∑𝑗

𝑖=1
𝑧 𝑖 ≥ 𝑗 after each iteration. For the base case 𝑗 = 1,

the invariant is equivalent to the reification constraint 𝑧1 ⇒
∑𝑛
𝑖=1
ℓ𝑖 ≥ 1, which in

normalized form is

∑𝑛
𝑖=1
ℓ𝑖 + 𝑧1 ≥ 1 and hence this case is covered. For the inductive

step, to go from 𝑗 − 1 to 𝑗 we multiply the invariant

∑𝑛
𝑖=1
ℓ𝑖 +

∑𝑗−1

𝑖=1
𝑧 𝑗 ≥ 𝑗 − 1 by

𝑗 − 1 and add the reification constraint 𝑧 𝑗 ⇒
∑𝑛
𝑖=1
ℓ𝑖 ≥ 𝑗, which is

∑𝑛
𝑖=1
ℓ𝑖 + 𝑗𝑧 𝑗 ≥ 𝑗

in normalized form, to get 𝑗
∑𝑛
𝑖=1
ℓ𝑖 + (𝑗 − 1)∑𝑗−1

𝑖=1
𝑧 𝑖 + 𝑗𝑧 𝑗 ≥ 𝑗2 − 𝑗 + 1. Division by 𝑗

and rounding up yields

∑𝑛
𝑖=1
ℓ𝑖 +

∑𝑗

𝑖=1
𝑧 𝑖 + 𝑧 𝑗 ≥ 𝑗, i.e., the invariant for 𝑗. For 𝑗 = 𝑛

the invariant is the normalized form of (25a).

In Step 5.3 the upper bound (25b) is again derived using Algorithm 7, except

that the constraints are processed in reverse order (just as in Example 1 on page 69).

In Step 5.4 the ordering constraint is derived using Algorithm 8, using the

reification constraints. Algorithm 8 handles the general case of deriving the

ordering constraint 𝑧 𝑗 ≥ 𝑧 𝑗+1 from any reification constraints 𝑧 𝑗+1 ⇒
∑𝑛
𝑖=1
𝑎𝑖ℓ𝑖 ≥

𝑗 + 1 and 𝑧 𝑗 ⇐
∑𝑛
𝑖=1
𝑎𝑖ℓ𝑖 ≥ 𝑗. For the sequential counter encoding the coefficients 𝑎𝑖

are all 1. In normalized form these two constraints are (𝑗 + 1)𝑧 𝑗+1 +
∑𝑛
𝑖=1
𝑎𝑖ℓ𝑖 ≥ 𝑗 + 1

and (𝑚− 𝑗+1)𝑧 𝑗+
∑𝑛
𝑖=1
𝑎𝑖ℓ 𝑖 ≥ 𝑚− 𝑗+1, where𝑚 =

∑𝑛
𝑖=1

𝑎𝑖 . Adding both constraints

4. A General Framework for Certifying CNF Translations 77

together yields (𝑚 − 𝑗 + 1)𝑧 𝑗 + (𝑗 + 1)𝑧 𝑗+1 ≥ 2 and we get the desired ordering

constraint after division by a large enough number, such as 𝑚.

Now that the correctness of Algorithm 5 is established, all that remains is to

verify that this algorithm uses O(𝑛) steps in cutting planes with reification. Step 5.1

uses 𝑛 reification steps, Step 5.2 and 5.3 uses 3(𝑛 − 1) cutting planes steps each and

Step 5.4 uses 2(𝑛 − 1) cutting planes steps in the worst case. Thus, in total O(𝑛)
steps in cutting planes with reification are used. □

A concrete illustration of how these derivations can be done was given

in Example 1 (with ℓ3, 𝑠2,1, and 𝑠2,2 playing the roles of the literals ℓ𝑖 and

𝑠3, 𝑗 , 𝑗 ∈ [3], being the fresh variables).

When encoding the value of a number 𝑗 that can only take a small number of

values in a large range, it is wasteful to introduce variables for all values in the

range. For example, if 𝑗 ∈ {0, 50, 75}, then the first 50 variables in a full unary

representation are either all true or all false, but will never take different values.

In such cases we can instead use what we will refer to as a sparse unary encoding,

where in our example 𝑗 ∈ {0, 50, 75} would be represented as 50 · 𝑧50 + 25 · 𝑧75,

where we enforce 𝑧50 ≥ 𝑧75. More formally, for a (finite) domain 𝐴 ⊆ N0 and

variables ®𝑧 = {𝑧𝑖 | 𝑖 ∈ 𝐴 ∪ {∞}} we define

sparse(®𝑧, 𝐴) � ∑
𝑖∈𝐴\{0}(𝑖 − pred(𝑖 , 𝐴)) · 𝑧𝑖 , (26a)

where pred(𝑖 , 𝐴) = max{ 𝑗 ∈ 𝐴 ∪ {0} | 𝑗 < 𝑖}, and we also use constraints

𝑧𝑖 ≥ 𝑧succ(𝑖 ,𝐴) 𝑖 ∈ 𝐴 \ {max (𝐴)} (26b)

to enforce that the variables 𝑧𝑖 are ordered, where succ(𝑖 , 𝐴) = min{ 𝑗 ∈ 𝐴 ∪
{∞} | 𝑗 > 𝑖} is the successor of 𝑖 in 𝐴. This representation is used in the sequential

weight counter [HMS12] and generalized totalizer [JMM15] encodings, and we

can certify correctness for it as stated next.

Proposition 3 (Sparse Unary Sum). Let 𝐴, 𝐵 ⊆ N0 be given with sparse encodings

sparse(®𝑥, 𝐴) and sparse(®𝑦, 𝐵) as in (26a)–(26b). Then for 𝐸 = {𝑖 + 𝑗 | 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵}
and fresh variables ®𝑧 we can derive

sparse(®𝑥, 𝐴) + sparse(®𝑦, 𝐵) = sparse(®𝑧, 𝐸) (27a)

𝑧𝑖 ≥ 𝑧succ(𝑖 ,𝐸) 𝑖 ∈ 𝐸 \ {max (𝐸)} (27b)

in cutting planes with reification using O(|𝐴| · |𝐵|) steps.

Proof. The proposition is proven by presenting and analyzing Algorithm 9, which

given two numbers in sparse unary representation derives their sum. Just as for

the unary sum, we start in Step 9.1 by introducing the required fresh variables via

reification. However, we only need to introduce the variables with index in 𝐸. If

𝑘-simplification is used, then also variables with index bigger than 𝑘 need to be

introduced, as without them equality cannot be derived. The ordering constraints

can be derived as before using Algorithm 8.

78 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 9: Deriving a sparse unary sum over fresh variables ®𝑧.
1 derive_sparse_unary_sum(𝐶′)

⊲ input: 𝐶′ of the form sparse(®𝑥, 𝐴) + sparse(®𝑦, 𝐵) = sparse(®𝑧, 𝐸) and

describing the constraint to be derived such that 𝐴, 𝐵 ⊆ N,

𝐸 = {𝑖 + 𝑗 |𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵}
⊲ Step 9.1: Introduce variables as reification and derive ordering

2 for 𝑗 ∈ 𝐸 \ {0} do
3 𝐷⇒

𝑗
, 𝐷⇐

𝑗
← reify(𝑧 𝑗 ⇔ sparse(®𝑥, 𝐴) + sparse(®𝑦, 𝐵) ≥ 𝑗);

4 for 𝑖 ∈ 𝐸 \ {0,max (𝐸)} do
5 derive_ordering (𝐷⇐

𝑖
, 𝐷⇒succ(𝑖 ,𝐸)) ; ⊲ derive 𝑧𝑖 ≥ 𝑧succ(𝑖 ,𝐸)

⊲ Step 9.2: : reify constraint to be derived

6 𝐶⇒ , _← reify(𝑧geq ⇔ sparse(®𝑥, 𝐴) + sparse(®𝑦, 𝐵) ≥ sparse(®𝑧, 𝐸));
7 𝐶⇐ , _← reify(𝑧leq ⇔ sparse(®𝑥, 𝐴) + sparse(®𝑦, 𝐵) ≤ sparse(®𝑧, 𝐸));
8 reify(𝑧eq ⇔ 𝑧geq + 𝑧leq ≥ 2);

⊲ Step 9.3: derive that 𝑧eq ≥ 1

9 try_all_values(sparse(®𝑥, 𝐴), sparse(®𝑦, 𝐵), 𝑧eq);

⊲ Step 9.4: derive constraint to be derived from its reification

10 𝑀 ← max(𝐸) ; ⊲ choose 𝑀 equal to coefficient of reification variables

11 𝐷 ← rup
(
𝑧geq ≥ 1

)
;

12 𝐶⇒ ← add (𝐶⇒ ,mult (𝐷, 𝑀));
13 𝐷 ← rup

(
𝑧leq ≥ 1

)
;

14 𝐶⇐ ← add (𝐶⇐ ,mult (𝐷, 𝑀));
15 return 𝐶⇒ , 𝐶⇐;

In Step 9.2 we introduce a variable 𝑧eq which is true if and only if the equality

to be derived is true. Since an equality is actually two inequalities, we need to

introduce separate variables 𝑧geq , 𝑧leq for each inequality and then combine them

into 𝑧eq.

In Step 9.3 we derive 𝑧eq ≥ 1 by checking all combinations of values in 𝐴 and 𝐵,

which requires O(|𝐴| · |𝐵|) steps.

In Step 9.4 we use that 𝑧eq ≥ 1 and hence 𝑧geq = 𝑧leq = 1, which allows us to

derive sparse(®𝑥, 𝐴) + sparse(®𝑦, 𝐵) ≥ sparse(®𝑧, 𝐸) and sparse(®𝑥, 𝐴) + sparse(®𝑦, 𝐵) ≤
sparse(®𝑧, 𝐸) by removing 𝑧geq and 𝑧leq from the constraints introduced in Step 9.2.

Since Step 9.1 and 9.3 require O(|𝐴| · |𝐵|) steps each and the number of steps

for Step 9.2 and 9.4 is in O(1), the total number of cutting planes with reification

steps is O(|𝐴| · |𝐵|). Asymptotically, this is the same number of steps required

to compute which elements are in 𝐸, so this is still linear in the time needed to

construct the encoding. □

As in the case of the unary sum in Proposition 2, adding the constraints

(27a)–(27b) maintains equisatisfiability, because the fresh variables ®𝑧 are free to

4. A General Framework for Certifying CNF Translations 79

Algorithm 10: Given a reified sparse unary sum, derive that the reification

variable is true.

⊲ helper function:

1 fix(sparse(®𝑥, 𝐴), 𝑎)
2 return 𝑥𝑎 + 𝑥succ(𝑎,𝐴) ; ⊲ replace 𝑥0 by 1 and 𝑥∞ by 0

⊲ main function:

3 try_all_values(sparse(®𝑥, 𝐴), sparse(®𝑦, 𝐵), 𝑧eq)
4 𝐶outer ← rup (0 ≥ 0);
5 for 𝑖 ∈ 𝐴 do
6 𝐶inner ← rup (0 ≥ 0);
7 for 𝑗 ∈ 𝐵 do

⊲ 𝑎 (respectively 𝑏) is the value encoded by sparse(®𝑥, 𝐴)
(sparse(®𝑦, 𝐵))

⊲ encode that (𝑎 = 𝑖 ∧ 𝑏 = 𝑗) ⇒ 𝑧eq

8 𝐷 ← rup
(
fix(sparse(®𝑥, 𝐴), 𝑖)

9 + fix(sparse(®𝑦, 𝐵), 𝑗) + 𝑧eq ≥ 1

)
;

10 𝐶inner ← add (𝐶inner , 𝐷);
11 𝐶outer ← add (𝐶outer , div (𝐶inner , |𝐵|));
12 𝐶outer ← div (𝐶outer , |𝐴|);
13 return 𝐶outer ; ⊲ 𝐶outer is now 𝑧eq ≥ 1

take values so that the constraints are satisfied. The general idea is again to

introduce ®𝑧 via reification, but the rest of the proof of Proposition 3 gets a bit more

complicated—we have to perform a brute-force search on the possible combinations

of values for 𝐴 and 𝐵, showing that the equality holds in all cases, and provide a

proof log for the correctness of this backtracking search.

To illustrate how the derivation in Algorithm 9 works, let us consider an

example.

Example 3. Let the set of possible values for the left child node be 𝐴 = {0, 2} and

the corresponding set for the right child node be 𝐵 = {0, 2, 4}. Hence, the set of

possible output values is 𝐸 = {0, 2, 4, 6}. Step 9.1 derives the reified constraints

𝑧2 ⇔ 2𝑥2 + 2𝑦2 + 2𝑦4 ≥ 2 (28a)

𝑧4 ⇔ 2𝑥2 + 2𝑦2 + 2𝑦4 ≥ 4 (28b)

𝑧6 ⇔ 2𝑥2 + 2𝑦2 + 2𝑦4 ≥ 6 (28c)

and the ordering constraints 𝑧2 ≥ 𝑧4 and 𝑧4 ≥ 𝑧6.

Then Step 9.2 uses reification to derive the constraints

6𝑧geq + 2𝑥2 + 2𝑦2 + 2𝑦4 + 2𝑧2 + 2𝑧4 + 2𝑧6 ≥ 6 (29a)

6𝑧leq + 2𝑥2 + 2𝑦
2
+ 2𝑦

4
+ 2𝑧2 + 2𝑧4 + 2𝑧6 ≥ 6 (29b)

𝑧eq ⇔ 𝑧geq + 𝑧leq ≥ 2 . (29c)

80 Certified CNF Translations for Pseudo-Boolean Solving

Then Step 9.3 derives 𝑧eq ≥ 1 using Algorithm 10 by checking all combinations

of values in 𝐴 and 𝐵. After the first iteration of the outer loop in Algorithm 10 the

clauses

𝑥2 + 𝑦2 + 𝑧eq ≥ 1 (30a)

𝑥2 + 𝑦
2
+ 𝑦4 + 𝑧eq ≥ 1 (30b)

𝑥2 + 𝑦
4
+ 𝑧eq ≥ 1 (30c)

have been derived. Deriving (30a) by RUP sets 𝑥2 = 𝑦2 = 𝑧eq = 0. This causes the

ordering constraints to propagate all variables in ®𝑥 and ®𝑦. As all ®𝑥 and ®𝑦 variables

are set, the reification constraints introduced in Step 9.1 will cause all ®𝑧 variables

to propagate. As the constraints reified in Step 9.2 are satisfied, 𝑧geq = 𝑧leq = 1 is

propagated and hence 𝑧eq should be 1. However, RUP already set 𝑧eq to 0, which

is a contradiction showing that (30a) can be derived. Deriving the other clauses

works analogously. Adding all clauses in (30) together results in 3𝑥2 + 3𝑧eq ≥ 1,

which is divided by 3 to obtain

𝑥2 + 𝑧eq ≥ 1 . (31)

Analogously, in the second iteration we derive the constraints

𝑥2 + 𝑦2 + 𝑧eq ≥ 1 (32a)

𝑥2 + 𝑦
2
+ 𝑦4 + 𝑧eq ≥ 1 (32b)

𝑥2 + 𝑦
4
+ 𝑧eq ≥ 1 (32c)

using RUP and then

𝑥2 + 𝑧eq ≥ 1 (33)

by adding all the constraints in (32) together and dividing the result by 3. Adding

the constraints (31) and (33) together yields 2𝑧eq ≥ 1 and dividing by 2 results in

𝑧eq ≥ 1.

Step 9.4 first computes the coefficient of 𝑧geq and 𝑧leq, which is 𝑀 = 6. Then the

constraints 𝑧geq ≥ 1 and 𝑧leq ≥ 1 are derived using RUP by setting either 𝑧geq = 0

or 𝑧leq = 0. Then 𝑧eq ≥ 1 propagates 𝑧eq = 1. However, (29c) propagates 𝑧eq = 0,

which is a contradiction. Then 𝑧geq ≥ 1 and 𝑧leq ≥ 1 are multiplied by 6 and added

to (29a) and (29b), respectively. This yields constraints

2𝑥2 + 2𝑦2 + 2𝑦4 + 2𝑧2 + 2𝑧4 + 2𝑧6 ≥ 6 (34a)

2𝑥2 + 2𝑦
2
+ 2𝑦

4
+ 2𝑧2 + 2𝑧4 + 2𝑧6 ≥ 6 , (34b)

which together represent the preservation equality for the sparse unary sum.

If we perform sums repeatedly as in Proposition 3, then the size of the domain

can double in every step in the worst case, leading to an exponential explosion

(this happens, for instance, if all values in the domains are distinct powers of 2).

4. A General Framework for Certifying CNF Translations 81

Algorithm 11: Proof logging for the encoding of a single full adder.

1 full_adder(𝑥, 𝑦, 𝑧)
2 𝐷⇒

carry
, 𝐷⇐

carry
← reify(𝑐 ⇔ 𝑥 + 𝑦 + 𝑧 ≥ 2);

3 𝐷⇒
sum

, 𝐷⇐
sum
← reify(𝑠 ⇔ 𝑥 + 𝑦 + 𝑧 + 2𝑐 ≥ 3);

4 𝐷⇒ ← div
(
add

(
mult

(
𝐷⇒

carry
, 2
)
, 𝐷⇒

sum

)
, 3
)
;

5 𝐷⇐ ← div
(
add

(
mult

(
𝐷⇐

carry
, 2
)
, 𝐷⇐

sum

)
, 3
)
;

⊲ 𝐷 is the preservation equality of the full adder

6 return 𝐷⇒ , 𝐷⇐ , 𝑐, 𝑠;

The third encoding we consider addresses this worst-case scenario by using a

binary encoding 𝑗 =
∑⌊log

2
(𝑚)⌋

𝑖=0
2
𝑖 · 𝑧𝑖 . To compute the binary representation, it is

sufficient—as we will discuss next in Section 5—to compose multiple full adders,

which compute the sum of up to three input bits, using a binary adder circuit as

described in [ES06].

Proposition 4. For literals ℓ1 , ℓ2 , ℓ3 and fresh variables 𝑐, 𝑠, we can derive the equality

ℓ1 + ℓ2 + ℓ3 = 2𝑐 + 𝑠 (35)

in cutting planes with reification using O(1) steps.

Proof. Algorithm 11 can be used to derive the constraints that represent the

preservation equality (35) for a single binary full adder.

Algorithm 11 first derives

𝑐 ⇔ ℓ1 + ℓ2 + ℓ3 ≥ 2 (36a)

𝑠 ⇔ ℓ1 + ℓ2 + ℓ3 + 2𝑐 ≥ 3 (36b)

using reification, since 𝑐 and 𝑠 are fresh variables, and then multiplies (36a)

by 2, add (36b), and divides the result by 3. To show how this works for the

⇒-direction of the reification, 2 times (36a) is 4𝑐 + 2ℓ1 + 2ℓ2 + 2ℓ3 ≥ 4, adding

3𝑠 + ℓ1 + ℓ2 + ℓ3 + 2𝑐 ≥ 3 as in (36b) yields 6𝑐 + 3𝑠 + 3ℓ1 + 3ℓ2 + 3ℓ3 ≥ 7, and dividing

by 3 gives us 2𝑐 + 𝑠 + ℓ1 + ℓ2 + ℓ3 ≥ 3 as desired. The other direction is equivalent.

We refer the reader to [GN21] for more details.

This algorithm uses 2 reification steps and 6 cutting planes steps. Thus, the

number of cutting planes with reification steps is in O(1). □

Again, it should be clear that this maintains equisatisfiability, since the carry-out

bit 𝑐 and sum bit 𝑠 can be set appropriately.

82 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 12: Construction of adder network [ES06]. Procedure

full_adder adds full adder to network.

1 adder_network(𝑏)
⊲ input: vector of buckets 𝑏

2 for 𝑖 from 0 to 𝑏.size() do
3 while 𝑏𝑖 .size()≥ 2 do
4 if 𝑏𝑖 .size()= 2 then
5 (𝑥, 𝑦) ← 𝑏𝑖 .dequeue();

6 (𝑐, 𝑠) ← full_adder(𝑥, 𝑦, 0);

7 else
8 (𝑥, 𝑦, 𝑧) ← 𝑏𝑖 .dequeue();

9 (𝑐, 𝑠) ← full_adder(𝑥, 𝑦, 𝑧);

10 𝑏𝑖 .enqueue(𝑠);
11 𝑏𝑖+1.enqueue(𝑐);

5 Certifying the Binary Adder Network Encoding

Now that this general framework has been introduced, we show how it can

be applied to implement proof logging for some specific pseudo-Boolean to

CNF encodings. In this section, we will consider the so-called binary adder

encoding [ES06].

The idea behind the binary adder encoding is to use an adder network to com-

pute the value of

∑
𝑖 𝑎𝑖ℓ𝑖 as a binary number

∑
bits

𝑖=0
2
𝑖𝑜𝑖 , where bits =

⌊
log

2
(∑𝑖 𝑎𝑖)

⌋
is the required bit width, and then compare this to the right-hand side constant in

the constraint

∑
𝑖 𝑎𝑖ℓ𝑖 ⊲⊳ 𝑘.

To recapitulate the algorithm for adder network construction in [ES06], let

us say that a 2
𝑚

-bit is a literal representing the numerical value 2
𝑚

and that a

2
𝑚

-bucket is a queue of 2
𝑚

-bits. We use [𝑚]2 to denote the binary representation of

a natural number 𝑚. The algorithm starts by initializing each 2
𝑚

-bucket with all

literals ℓ𝑖 in

∑
𝑖 𝑎𝑖ℓ𝑖 ⊲⊳ 𝑘 such that the 2

𝑚
-bit of

[
𝑎𝑖
]

2

is 1. Then for 𝑚 in increasing

order we repeat the following procedure: while there are at least 2 elements in

the 2
𝑚

-bucket, dequeue three bits 𝑥, 𝑦, 𝑧, or set 𝑧 = 0 if there are exactly 2 bits

left. Use 𝑥, 𝑦, and 𝑧 as input for a new full adder with fresh variables 𝑐 and 𝑠
as output (these are just placeholder names), and insert 𝑠 in the 2

𝑚
-bucket and

𝑐 in the 2
𝑚+1

-bucket (possibly creating a new bucket). See Algorithm 12 for the

pseudocode to generate this encoding.

The arithmetic graph is obtained from the adder network by representing each

full adder by a node. Each inner node constructed from a 2
𝑚

-bucket has 3 input

edges with labels 2
𝑚 · 𝑥, 2

𝑚 · 𝑦, and 2
𝑚 · 𝑧 and 2 output edges with labels 2

𝑚 · 𝑠 and

2
𝑚+1·𝑐. An example for the PB expression 5𝑥1+4𝑥2+𝑥3+𝑥4+𝑥5 is shown in Figure 4.

The preservation equality can be derived using Proposition 4 and multiplying the

5. Certifying the Binary Adder Network Encoding 83

source

Adder

Adder Adder Adder

sink

20-bit 21-bit 22-bit 23-bit

x1 + x3 + x4

x5

s1

s2

2c1

2c2

2s3

4c3

4x1 + 4x2

4s4
8c4

Figure 4: Layout of arithmetic graph for adder network encoding of 5𝑥1+4𝑥2+𝑥3+𝑥4+𝑥5.

resulting equality 𝑥+𝑦+𝑧 = 2𝑐+𝑠 by 2
𝑚

to obtain 2
𝑚·𝑥+2

𝑚·𝑦+2
𝑚·𝑧 = 2

𝑚+1·𝑐+2
𝑚·𝑠.

When the construction algorithm ends, each 2
𝑚

-bucket has at most one 2
𝑚

-bit left,

and we connect the corresponding edges to the sink, resulting in an output of the

form

∑
bits

𝑖=0
2
𝑖 · 𝑜𝑖 . If the 2

𝑖
-bucket is empty, 𝑜𝑖 is fixed to 0.

Each full adder of the network is encoded to CNF using clauses

𝑥 + 𝑦 + 𝑧 + 𝑠 ≥ 1 𝑥 + 𝑦 + 𝑧 + 𝑠 ≥ 1

𝑦 + 𝑧 + 𝑐 ≥ 1 𝑥 + 𝑦 + 𝑧 + 𝑠 ≥ 1 𝑦 + 𝑧 + 𝑐 ≥ 1 𝑥 + 𝑦 + 𝑧 + 𝑠 ≥ 1

𝑥 + 𝑧 + 𝑐 ≥ 1 𝑥 + 𝑦 + 𝑧 + 𝑠 ≥ 1 𝑥 + 𝑧 + 𝑐 ≥ 1 𝑥 + 𝑦 + 𝑧 + 𝑠 ≥ 1

𝑥 + 𝑦 + 𝑐 ≥ 1 𝑥 + 𝑦 + 𝑧 + 𝑠 ≥ 1 𝑥 + 𝑦 + 𝑐 ≥ 1 𝑥 + 𝑦 + 𝑧 + 𝑠 ≥ 1

(37)

which are all RUP with respect to the preservation equality 𝑥 + 𝑦 + 𝑧 = 2𝑐 + 𝑠.
To compare the constant 𝑘 in the PB constraint with the output of the circuit, we

encode a bitwise comparison ®𝑥 ≥ ®𝑦 for bit vectors ®𝑥 and ®𝑦, where ®𝑥 = 𝑜bits · · · 𝑜1𝑜0

and ®𝑦 = [𝑘]2 or vice versa, depending on whether we want to encode

∑𝑛
𝑖=1

𝑎𝑖ℓ𝑖 ≥ 𝑘
or

∑𝑛
𝑖=1

𝑎𝑖ℓ𝑖 ≤ 𝑘, respectively. The following encoding is standard and can also be

found in [ES06]. For

∑𝑛
𝑖=1

𝑎𝑖ℓ𝑖 = 𝑘, comparisons for both directions are performed.

If the sizes of the two vectors are different, the shorter vector is padded with 0,

after which the constraints

𝑥𝑖 + 𝑦 𝑖 +
∑

bits

𝑗=𝑖+1
𝑥 𝑗𝑦 𝑗 + 𝑥 𝑗𝑦 𝑗 ≥ 1 𝑖 = 0, 1, . . . , bits (38)

are added to the CNF encoding. Since either ®𝑥 or ®𝑦 is a vector of constant bits,

the constraints (38) are indeed clauses. Basically, the encoding compares the

two numbers from the most-significant bit to the least-significant bit. It is only

required to check the biggest first index 𝑖, where 𝑥𝑖 and 𝑦𝑖 are different. Then the

corresponding clause (38) for index 𝑖 is only satisfied if 𝑥𝑖 ≥ 𝑦𝑖 . The clauses (38)

are RUP with respect to the constraint

∑
bits

𝑖=0
2
𝑖 · 𝑜𝑖 ⊲⊳ 𝑘, which we obtain from

the arithmetic graph using Proposition 1. To see this, note that asserting (38) to

false will set all 2
𝑗
-bits for 𝑗 > 𝑖 equal but the 2

𝑖
-bits to opposite values, which

immediately falsifies

∑
bits

𝑖=0
2
𝑖 · 𝑜𝑖 ⊲⊳ 𝑘.

84 Certified CNF Translations for Pseudo-Boolean Solving

source

sink

x1 x2 x3 x4 2x5 2x6 2x7 2x8

z11 + z12 z21 + z22 2z32 + 2z34 2z42 + 2z44

z51 + z52 + z53 2z62 + 2z64

∑7

i=1
z7i

z54 2z66 + 2z68

Figure 5: Layout of the arithmetic graph for the generalized totalizer encoding of 𝑥1 + 𝑥2 +
𝑥3 + 𝑥4 + 2𝑥5 + 2𝑥6 + 2𝑥7 + 2𝑥8 ≤ 2. Edges introduced for k-simplification are colored

cyan.

6 Certifying the Totalizer and Generalized Totalizer
Encodings

To show that the framework developed in Section 4 can be applied to many

different pseudo-Boolean to CNF encodings, we detail in this section how our

framework can be applied to add certification to the totalizer [BB03] and generalized

totalizer [JMM15] encoding.

The totalizer and generalized totalizer encodings accumulate the input in the

form of a balanced binary tree. The totalizer encodes cardinality constraints and

uses the order encoding to represent values, while the generalized totalizer encodes

general pseudo-Boolean constraints and uses a sparse representation. An example

of an arithmetic graph for the generalized totalizer encoding is shown in Figure 5.

The nodes are combined in form of a binary tree, where we ensure that the value is

preserved for each inner node. To perform 𝑘-simplification, the arithmetic graph

has additional edges that go directly to the sink node. The formal definition of the

arithmetic graph for the (generalized) totalizer encoding is as follows.

Definition 2 (Arithmetic graph for the generalized totalizer encoding). Given

a linear sum

∑
𝑖 𝑎𝑖ℓ𝑖 over 𝑛 variables, let 𝐺 be a binary tree with edges directed

towards the root 𝑟, leaves 𝑠𝑖 for 𝑖 ∈ [𝑛] and an additional sink node 𝑡 with

an edge (𝑟, 𝑡). The edge (𝑠𝑖 , 𝑣) is labelled with 𝑎𝑖ℓ𝑖 . For an inner node 𝑣 with

two incoming edges labelled sparse(®𝑥, 𝐴) and sparse(®𝑦, 𝐵), the outgoing edge is

labelled sparse(®𝑧, 𝐸), where ®𝑧 are fresh variables and 𝐸 = {𝑖 + 𝑗 | 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵}.
All 𝑠𝑖 are combined into a single source node. For 𝑘-simplification we split

sparse(®𝑧, 𝐸) = ∑
𝑖∈𝐸 𝑎𝑖𝑧𝑖 into

∑
𝑖≤succ(𝑘,𝐸) 𝑎𝑖𝑧𝑖 and

∑
𝑖>succ(𝑘,𝐸) 𝑎𝑖𝑐𝑖 .

To see that this graph is an arithmetic graph, we only need to check that we

can derive the preservation equality for each inner node. We can use Proposition 3

to derive the required preservation equality. Proposition 3 also requires to have

ordering constraints on the input literals. However, it is easy to see by an inductive

7. Experimental Evaluation 85

argument that the ordering constraints on the literals can also be derived as we

process the nodes in topological order. For the base case, edges from source nodes

only contain a single literal, which is vacuously ordered. For inner nodes we get the

ordering constraints by applying Proposition 3. If 𝐸 contains all integers between

0 and max(𝐸), we can use Proposition 2 to derive the preservation equality, which

requires 𝑂(|𝐸 |) steps instead of 𝑂(|𝐴| · |𝐵|) steps and hence reduces overhead.

For each inner node in the graph with incoming edge labels sparse(®𝑥, 𝐴) and

sparse(®𝑦, 𝐵), the (generalized) totalizer encoding contains the clauses

𝑥 𝑖 + 𝑦 𝑗 + 𝑧𝑖+𝑗 ≥ 1 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 (39a)

𝑥succ(𝑖 ,𝐴) + 𝑦succ(𝑗 ,𝐵) + 𝑧succ(𝑖+𝑗 ,𝐸) ≥ 1 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵 (39b)

for succ(𝑖 , 𝐴) = min{ 𝑗 | 𝑗 ∈ 𝐴 ∪ {∞}, 𝑗 > 𝑖} and for 𝑥0 , 𝑦0 replaced by 1 and

𝑥∞ , 𝑦∞ , 𝑧∞ by 0, with ensuing simplification.

For the proof logging of the CNF encoding we can simply add all clauses

using reverse unit propagation. A RUP check of (39a) will assign 𝑥𝑖 = 𝑦 𝑗 = 1

and 𝑧𝑖+𝑗 = 0. The ordering constraints on ®𝑥, ®𝑦 will propagate variables in ®𝑥, ®𝑦
to true so that sparse(𝑥, 𝐴) + sparse(𝑦, 𝐵) has a value of at least 𝑖 + 𝑗, while the

ordering constraints on ®𝑧 will propagate variables in ®𝑧 to false so that sparse(𝑧, 𝐸)
can only take a value strictly less than 𝑖 + 𝑗. This will violate the preservation

equality sparse(𝑧, 𝐸) = sparse(𝑥, 𝐴) + sparse(𝑦, 𝐵), showing that (39a) is indeed a

RUP clause. Deriving the clause (39b) works analogously.

To enforce a pseudo-Boolean constraint

∑
𝑖 𝑎𝑖ℓ𝑖 ⊲⊳ 𝑘, we first derive a bound on

the output of the arithmetic graph

∑
𝑖 𝑐𝑖𝑜𝑖 ⊲⊳ 𝑘, using Proposition 1. Then we can

derive unit clauses on the output via reverse unit propagation.

To encode

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝑘 or

∑
𝑖 𝑎𝑖ℓ𝑖 ≤ 𝑘 the unit clause 𝑧succ(𝑘−1,𝐸) ≥ 1 or 𝑧succ(𝑘,𝐸) ≥

1 is added, respectively. This clause is RUP, as the derived sum

∑
𝑖 𝑐𝑖𝑜𝑖 has a value

of at most 𝑘 − 1 or at least 𝑘 + 1 and thus the constraint

∑
𝑖 𝑐𝑖𝑜𝑖 ≥ 𝑘 or

∑
𝑖 𝑐𝑖𝑜𝑖 ≤ 𝑘 is

falsified, respectively. To encode

∑
𝑖 𝑎𝑖ℓ𝑖 = 𝑘 both unit clauses are added.

7 Experimental Evaluation
To evaluate the proof logging methods developed in this paper, we have imple-

mented certified translations to CNF for the sequential counter [Sin05], adder

network [ES06], totalizer [BB03], and generalized totalizer [JMM15] encodings in

the tool VeritasPBLib which is publicly available at https://github.com/forge-
lab/VeritasPBLib. This tool takes a pseudo-Boolean formula in OPB for-

mat [RM16] and returns a CNF translation with a proof logging certificate. We

have employed the verifier VeriPB1 [GN21, BGMN22] to check the certificate

returned by VeritasPBLib, and have used the SAT solver Kissat2 [BFFH20], in a

lightly modified version outputting DRAT proofs in pseudo-Boolean format,3 to

1VeriPB is available at https://gitlab.com/MIAOresearch/software/VeriPB.

2The original version of Kissat is available at https://fmv.jku.at/kissat/.

3Our modified version of Kissat with pseudo-Boolean proof logging is available at https://gitlab.
com/MIAOresearch/tools-and-utilities/kissat_fork.

https://github.com/forge-lab/VeritasPBLib
https://github.com/forge-lab/VeritasPBLib
https://gitlab.com/MIAOresearch/software/VeriPB
https://fmv.jku.at/kissat/
https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork
https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork

86 Certified CNF Translations for Pseudo-Boolean Solving

solve the CNF formula. Finally, we have conjoined the certificates from the CNF

translation and the SAT solving and verified the end-to-end pipeline with VeriPB.

See [GMNO22] for source code and experimental data.

The experiments were conducted on Amazon EC2 r5.large instances (2 vCPU)

with Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz CPUs, 16 GB of memory,

and gp2 volumes. We ran one process on each instance with a memory limit of 15

GB and a time limit of 7,200 seconds for verifying the proof with VeriPB, and a

time limit of 1,800 seconds for CNF translation with VeritasPBLib and SAT solving

with Kissat. We gave additional time for verification, which tends to be slower

than solving the problem.

Our evaluation aimed to answer the following questions:

1. Can we use our end-to-end framework to verify the results of SAT-based

pseudo-Boolean solving, and how efficient is the verification?

2. How long does the verification of the proof log take when compared to the

translation of the pseudo-Boolean formula to CNF?

3. How does a verified SAT-based pseudo-Boolean approach compare against

other pseudo-Boolean solvers?

4. Can we use our end-to-end framework to certify the optimal solutions of

optimization problems, such as Maximum Satisfiability?

7.1 Benchmarks
To evaluate VeritasPBLib, we collected 1,803 pseudo-Boolean formulas from the

PB Evaluation 2016.4 These instances can be partitioned into formulas with

(1) only clauses (279 instances), (2) clauses and cardinality constraints (772 in-

stances) referred to as Card in what follows, (3) clauses and general PB constraints

(444 instances) called PB, and (4) clauses, cardinality and general PB constraints

(308 instances) called Card+PB. Since this work targets the verification of formulas

with non-clausal constraints, we excluded the 279 pure CNF formula instances, as

those can already be certified with existing techniques.

Table 1 shows some properties of the benchmarks used in the experimental

results, namely, the average number of constraints, the average number of literals

in each constraint, and the average size of coefficients associated with each literal.

For each average value (avg), we also show the respective standard deviation

(std) and denote it by 𝑎𝑣𝑔 ± 𝑠𝑡𝑑. This information is shown for both cardinality

constraints and PB constraints. Since the benchmark set is composed of instances

from multiple domains, there is a large variation of values between instances. For

example, the number of cardinality constraints for instances in the Card benchmark

set ranges from 1 to 2,720, whereas the number of PB constraints for instances in

the PB benchmark set ranges from 1 to 18,798. In the Card+PB benchmark set, we

4The benchmarks from the Pseudo-Boolean Evaluation 2016 are available at http://www.cril.
univ-artois.fr/PB16/.

http://www.cril.univ-artois.fr/PB16/
http://www.cril.univ-artois.fr/PB16/

7. Experimental Evaluation 87

Table 1: Properties of the pseudo-Boolean formulas used in the experiments.

Card PB Card+PB

#Inst. 772 442 308

Card

Avg. # 107.01±252.57 0.00 1,154.43±5,881.78

Avg. #Lits 36.45±47.43 0.00 16.96±26.57

Avg. Coeff. Size 1.00±0.00 0.00 1.00±0.00

PB

Avg. # 0.00 1,020.73±2,294.43 33,379.31±18,3229.66

Avg. #Lits 0.00 24.95±27.60 105.21±109.99

Avg. Coeff. Size 0.00 204.93±1,118.74 10.79±50.42

Table 2: Number of translated, solved and verified instances for each encoding.

Translation Solving

Category #Inst Encoding #CNF #Veri

#Solved #Verified

SAT UNSAT SAT UNSAT

Card 772

Sequential 772 772 139 480 133 479

Totalizer 772 772 139 475 130 474

PB 444

Adder 444 444 179 167 178 165

GTE 425 414 164 162 150 151

Card+PB 308 Seq+Adder 306 296 134 152 128 151

have an even larger dispersion with instances with 1 to 2,378,901 PB constraints

and 1 to 75,582 cardinality constraints.

7.2 End-to-End Solving and Verification

Table 2 shows how VeritasPBLib can be used to generate a CNF formula that can be

solved by Kissat and verified by VeriPB. For instances with cardinality constraints

(Card), we use the sequential counter and totalizer encodings to translate those

constraints to CNF. For instances with general PB constraints (PB), our translations

use the adder network and generalized totalizer (GTE) encodings. Finally, for

instances with both cardinality and general PB constraints (Card+PB), we use the

sequential counter encoding for cardinality constraints and the adder network

encoding for PB constraints, henceforth denoted by Seq+Adder. Even though other

combinations of cardinality and PB encodings could be explored, the goal of this

work is not to find the best-performing encoding but to show that we can verify

the final result for a variety of encodings.

The column #CNF shows for how many instances VeritasPBLib successfully

generated the CNF translation, which is almost all. The exceptions are 19 instances

using GTE and 2 instances using the Seq+Adder encoding. In those cases, the

number of clauses generated is too large and exceeds the resource limits used in

our evaluation.

88 Certified CNF Translations for Pseudo-Boolean Solving

The column #Veri under Translation shows results for VeriPB verification of

the translation certificate from VeritasPBLib. Except for a few instances for GTE

and Seq+Adder yielding large proofs, VeriPB is successful. If the translation check

passes, then this guarantees that the CNF encoding does not remove any solutions

of the pseudo-Boolean formula.

The columns #Solved and #Verified under Solving show how many instances can

be solved by Kissat, and from those, how many can be verified by VeriPB. If a

satisfiable formula is verified, then all clauses learned by Kissat are also valid for

the original pseudo-Boolean formula, as is the satisfying assignment found. If an

unsatisfiable formula is verified, then a correct proof of unsatisfiability for the PB

formula has been produced.

We can verify 99% of the solved unsatisfiable instances, which shows that the

current proof-of-concept approach is already practical in this setting. VeriPB proof

logs can also be produced for satisfiable instances. These proof logs contain the

derivations of all pseudo-Boolean constraints used in the solvers reasoning until a

solution is found. Hence, it is possible to verify that the reasoning of the solver

is sound, even if the instance is satisfiable. For satisfiable formulas we can verify

that the reasoning was correct for 95% of the solved instances. However, even

when VeriPB does not terminate within the time limit, we can still certify that

the satisfying assignment found by the SAT solver is valid for the original PB

formula. We note that there is still ample room for performance improvements in

VeriPB—in particular, when it comes to verifying the DRAT proofs produced by

the SAT solver, which do not even use pseudo-Boolean reasoning, but are simply

clausal proofs syntactically rewritten in pseudo-Boolean format. Implementing

backwards checking [GN03] and some minor engineering should get VeriPB close

to the performance of DRAT-trim [WHH14] on DRAT proofs. Hence, there is no

fundamental difficulty is improving the performance of VeriPB, but such work is

mostly a matter of engineering and is fairly orthogonal to the contributions of this

paper.

Figures 6 and 7 present the relationship between the end-to-end solving time

(encoding the pseudo-Boolean formula to CNF and solving the resulting formula

using Kissat) and the time to check the resulting proof log for the end-to-end

solving using VeriPB. It can be seen that even though we can verify most instances,

verification is often considerably slower than solving. The time to verify an instance

in proportion to solving it varies significantly. This is due to the verification of the

proof generated by the SAT solver, since VeriPB has not been optimized to check

such proofs.

Figure 6 compares end-to-end solving and verification time for formulas with

only cardinality constraints and Figure 7 does the same comparison for formulas

with general pseudo-Boolean constraints. We split the benchmarks between

satisfiable and unsatisfiable instances to analyze if the satisfiability of the formula

affects the overhead of verification.

For the sequential counter encoding, verification of the proof for satisfiable

instances takes on average 11.27 ± 6.98 times longer than solving and for un-

satisfiable instances 18.30 ± 22.12 times longer. Even though verification times

7. Experimental Evaluation 89

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
ri

fi
ca

ti
on

sequential
totalizer

(a) Satisfiable cardinality formulas.

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
ri

fi
ca

ti
on

sequential
totalizer

(b) Unsatisfiable cardinality formulas.

Figure 6: Comparing end-to-end solving and verification time for cardinality formulas.

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
ri

fi
ca

ti
on

adder
gte

seq+adder

(a) Satisfiable general PB formulas.

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
ri

fi
ca

ti
on

adder
gte

seq+adder

(b) Unsatisfiable general PB formulas.

Figure 7: Comparing end-to-end solving and verification time for pseudo-Boolean formulas.

vary significantly for unsatisfiable instances, in the median satisfiable instances

are checked within 8.45 times the solving time while unsatisfiable instances are

checked within 5.16 times the solving time. The overhead for satisfiable instances

may seem large, but note that VeriPB also checks if the derivations in the proof log

of these instances are sound and not just the correctness of the result, which is the

case in many occasions, e.g., the SAT competition.

We observe a similar behavior with the totalizer encoding, where verifying

the proof takes on average 11.30 ± 8.38 times longer than solving for satisfiable

instances and 14.83 ± 14.54 times longer than solving for unsatisfiable instances.

Similarly, there are quite different verification times for unsatisfiable instances,

in the median there is an 8.62 times overhead for satisfiable instances while only

having an overhead of 5.17 times for unsatisfiable instances.

90 Certified CNF Translations for Pseudo-Boolean Solving

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
on

sequential
totalizer

(a) Cardinality formulas.

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
on

adder
gte

seq+adder

(b) General pseudo-Boolean formulas.

Figure 8: Comparison between CNF translation and verification of proof logging.

For the general pseudo-Boolean formulas, we observe a higher verification

overhead with respect to solving time. In particular, GTE has an average overhead

of 54.67 ± 61.85 times for unsatisfiable instances and 89.88 ± 134.77 times for

satisfiable instances, with a median overhead of 36.71 times for unsatisfiable

instances and 18.68 times for satisfiable instances. A similar scenario applies with

the Adder encoding with an average 29.69 ± 28.41 times overhead for unsatisfiable

instances and 54.00 ± 99.29 times for satisfiable instances, with a median overhead

of 28.42 times for unsatisfiable instances and 5.44 times for satisfiable instances.

Verifying the results reported by the SAT solver are harder for formulas containing

PB constraints than for formulas containing cardinality constraints.

When considering formulas with both cardinality and pseudo-Boolean con-

straints, the observed overhead is smaller than for the other formulas with an

average overhead of 7.89 ± 9.44 times for unsatisfiable instances and 13.11 ± 19.39

times for satisfiable instances, with a median overhead of 4.33 times for unsatisfiable

instances and 5.21 times for satisfiable instances.

7.3 Translation and Verification
For a more detailed discussion of our results, let us first turn to the certified

translation. Figure 8 compares the time for VeritasPBLib to generate the CNF

translation and VeriPB to verify it. The verification overhead is far from negligible,

but is not unreasonable. Over all encodings, for 75% of benchmarks verification

takes at most 49 times longer than translation, and for 98% of benchmarks at

most 100 times longer. While some overhead is natural, since the translation

algorithm can just output a claimed proof while the verifier needs to perform the

calculations to actually check it, our experiments do show that there is room for

further improvements in efficiency both for the verifier and for the proof logging

methods.

7. Experimental Evaluation 91

10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

104

timeout

without proof logging

w
it
h
p
ro
of

lo
g
gi
n
g

memout

sequential
totalizer

(a) Cardinality formulas.

10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

104

timeout

without proof logging

w
it
h
p
ro
o
f
lo
gg
in
g

memout

adder
gte

seq+adder

(b) General pseudo-Boolean formulas.

Figure 9: Comparison of running times for CNF translation with and without proof

logging.

7.4 Overhead of Proof Logging

Figure 9 shows the overhead of proof logging when translating the pseudo-

Boolean formulas to CNF. For the majority of the instances, the overhead is not too

significant, and formulas with just cardinality constraints can still be translated

under 10 seconds, while formulas with PB constraints can be translated under 100

seconds. The average overhead in running time for proof logging is a factor of 2–3

for all encodings except GTE, which incurs around a factor 5 in overhead. However,

since translation is fast for the majority of instances, the additional overhead of

proof logging is not an issue when translating the pseudo-Boolean formulas to

CNF.

The proof logging overhead can be explained by the proofs being larger than

the generated CNF formulas, as shown in Figure 10. For most instances the

proof size seems to be within a constant factor of the CNF formula size, but for

a collection of crafted vertex cover problems [EGNV18] the sequential counter

encoding turns out to require proofs of super-linear size. These instances contain a

cardinality constraint enforcing a constant fraction of the variables in the formula

to be false, which is a worst-case scenario for the sequential counter encoding.

While the number of clauses in the CNF translation and the number of proof steps

are quadratic in the number of literals in the constraint, each reification step in

the unary sum derivation in Proposition 2 introduces a constraint of linear size,

making the total proof size cubic while the size of the CNF encoding remains

quadratic. It would be desirable to find a more efficient derivation that only

requires quadratic proof size in the number of literals in the constraint.

Additionally, there were 6 instances where VeritasPBLib had memory outs, as

the whole proof for the translation is stored in memory. This could be improved in

the future by only storing the proof for one constraint at a time in VeritasPBLib.

92 Certified CNF Translations for Pseudo-Boolean Solving

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
o
gg

in
g

sequential
totalizer

(a) Cardinality formulas.

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
o
gg

in
g

adder
gte

seq+adder

(b) General pseudo-Boolean formulas.

Figure 10: Comparison between CNF file size and proof logging file size in KiB.

7.5 Comparison with PB Solvers
In Table 3, we report results on how VeritasPBLib together with Kissat used as a

pseudo-Boolean solver using the sequential counter and adder encodings compares

to state-of-the-art PB solvers, namely, MiniSat+ [ES06], Gurobi [Opt22] (version

9.5.1), NaPS [SN15] (version 1.02b), Open-WBO [MML14], RoundingSat [EN18]

(commit b5de84d), and Sat4j [LP10] (version v20220212). All solvers were run

with their respective default configurations.

The approach of VeritasPBLib+Kissat to transform a PB formula into CNF and

using a CDCL SAT solver to solve the resulting formula is also made by other PB

solvers such as MiniSat+, NaPS, and Open-WBO. However, the encodings used

in these solvers differ, and VeritasPBLib uses a more recent SAT solver (Kissat).

For this benchmark set, VeritasPBLib+Kissat outperforms other PB solvers in the

Card+PB and PB categories while being third in the Card category. Note that for

Sat4j, we ran the default version, which has native support for PB constraints and

does not translate them to CNF but still uses a SAT solver to solve the resulting

formula.5 However, since Sat4j is written in Java and the underlying SAT solver is

not as powerful as the other solvers, its performance is worse when compared to

the other solvers.

Instead of using resolution like the SAT-based approaches, RoundingSat

uses stronger pseudo-Boolean reasoning in the form of cutting planes. For this

benchmark set, RoundingSat performed better than SAT-based solvers for the Card

category but worse for the Card+PB and PB categories.

Figure 11 shows a cumulative plot with the runtime comparison of pseudo-

Boolean solvers. We can observe that a majority of the instances are solved after

5Sat4j best-performing version for PB formulas is to run a cutting-planes-based solver with a

resolution solver in parallel. We did not present results for this version since we only run single-

threaded solvers, and this is not the default configuration of Sat4j. However, even with this version

Sat4j consistently performs worse than other cutting-planes-based solvers like RoundingSat [EN18].

7. Experimental Evaluation 93

Table 3: Number of solved instances by each PB solver

Solver Card Card+PB PB Total

MiniSat+ 490 269 323 1,082

Gurobi 610 256 230 1,096

NaPS 555 265 283 1,103

Open-WBO 600 275 316 1,191

RoundingSat 663 270 273 1,206

Sat4j 455 265 275 995

VeritasPBLib+Kissat 619 286 346 1,251

a few seconds. Overall, VeritasPBLib+Kissat not only provides certificates that

can be checked by VeriPB, but is also one of the best approaches to solving

pseudo-Boolean decision problems.

7.6 Certifying MaxSAT Optimal Values
Maximum Satisfiability (MaxSAT) [BJM21] is the optimization counterpart of SAT,

where the goal is to maximize the number of satisfied clauses. The MaxSAT

problem can be generalized to have hard and soft clauses, where hard clauses must

be satisfied and soft clauses may or may not be satisfied. Each soft clause has a

weight associated with it that corresponds to the cost of falsifying that soft clause.

For the general MaxSAT problem, the optimization goal becomes to maximize

the sum of the weights of the satisfied soft clauses. This optimization problem

can also be viewed as minimizing the sum of the weights of falsified soft clauses.

An optimal value of a MaxSAT formula corresponds to the minimal sum of the

weights of the falsified soft clauses.

The annual MaxSAT Evaluation6 focus on evaluating the current state-of-the-art

in MaxSAT solvers. It has two main categories: (1) unweighted, where all soft

clauses have a weight of 1, and (2) weighted, where soft clauses have a weight

between 1 and 2
63

. In contrast to the SAT competition, the results of MaxSAT

solvers are not verified since there is no verification tool for MaxSAT. Instead,

the optimal solution claimed by the solvers is checked to be a valid solution (i.e.,

satisfies all hard clauses, and the optimal value corresponds to the sum of the

weights of the falsified soft clauses), and any of the competing solvers found

no solution with a smaller value. However, this procedure does not give any

correctness guarantees. It has occurred in previous years that a single solver found

a (claimed) optimal solution for an instance, but this solution was later found not

to be optimal.7

Even though VeritasPBLib+Kissat cannot be used to show the correctness of

the solving procedure of a MaxSAT solver, it may be used to certify that the optimal

value of a given instance is correct. Given a MaxSAT formula 𝐹 and its respective

6https://maxsat-evaluations.github.io/
7http://www.maxsat.udl.cat/15/results/index.html

https://maxsat-evaluations.github.io/
http://www.maxsat.udl.cat/15/results/index.html

94 Certified CNF Translations for Pseudo-Boolean Solving

300 600 900 1,200 1,500 1,800

200

400

600

800

1,000

1,200

time (s)

#solved

VeritasPBLib+Kissat
RoundingSat
Open-WBO

NaPS
Gurobi

MiniSAT+
Sat4j

Figure 11: Cumulative plot with runtime comparison of PB solvers.

optimal value 𝑘, we turn the task of proving optimality of a MaxSAT instance 𝐹
into solving a PB decision instance 𝐹𝑃𝐵 that encodes that no smaller optimal value

exists for 𝐹. Let 𝐹 = 𝐹ℎ ∪ 𝐹𝑠 be a MaxSAT formula, where 𝐹ℎ represents ℎ hard

clauses and 𝐹𝑠 represents 𝑠 soft clauses. Let the weight associated with each soft

clause 𝐷𝑗 ∈ 𝐹𝑠 be 𝑎 𝑗 and 𝑘 the optimal value of 𝐹. We construct 𝐹𝑃𝐵 as follows.

• Each clause 𝐶 = (ℓ1 ∨ . . . ∨ ℓ𝑛) ∈ 𝐹ℎ is added in pseudo-Boolean form to 𝐹𝑃𝐵:

ℓ1 + . . . + ℓ𝑛 ≥ 1;

• For each clause 𝐷𝑗 = (ℓ1 ∨ . . .∨ ℓ𝑚) ∈ 𝐹𝑠 , we introduce a fresh variable 𝑏 𝑗 and

add the clause in pseudo-Boolean form to 𝐹𝑃𝐵: ℓ1 + . . . + ℓ𝑚 + 𝑏 𝑗 ≥ 1;

• Add a PB constraint to 𝐹𝑃𝐵 that restricts the sum of the weights of falsifying

soft clauses to be at most 𝑘 − 1: 𝑎1𝑏1 + . . . + 𝑎𝑠𝑏𝑠 ≤ 𝑘 − 1.

We can use VeritasPBLib to translate 𝐹𝑃𝐵 to CNF, use Kissat to solve the

resulting formula, and then verify the results with VeriPB. If the formula is

unsatisfiable, we can certify that there is no solution with an objective value smaller

than 𝑘. The solution that results in the optimal value 𝑘 has already been tested to

be a valid solution. Therefore, if we prove that no better solution exists, we can

show that the optimal value returned by the MaxSAT solver is correct.

7. Experimental Evaluation 95

Table 4: Number of translated, solved and verified instances for each encoding when

certifying the results from the MaxSAT Evaluation 2022.

Translation Solving

Category #Inst Encoding #CNF #Verified #Solved #Verified

Unweighted 468

Sequential 411 333 329 265

Totalizer 448 408 358 307

Weighted 473

Adder 455 346 193 139

GTE 262 186 221 169

To evaluate how effective VeritasPBLib+Kissat is to certify the results of the

MaxSAT Evaluation 2022,8 we used the instances for which at least one solver

found an optimal solution, namely, 468 unweighted instances and 473 weighted

instances. Similarly to the previous experiments, we used a memory limit of 15

GB, a time limit of 7,200 seconds for verifying the proof with VeriPB, and a time

limit of 1,800 seconds for CNF translation with VeritasPBLib. We increase the

SAT solving time for Kissat to 3,600 seconds to match the time limit used in the

MaxSAT Evaluation.

Table 4 shows the number of instances for which VeritasPBLib+Kissat could

verify the optimal value. The information is split into Translation and Solving. The

column #CNF presents the number of instances where VeritasPBLib successfully

generated a CNF formula from the pseudo-Boolean formula 𝐹𝑃𝐵. Note that all 𝐹𝑃𝐵
are unsatisfiable, and each of them only contains either a single cardinality constraint

(in the case of unweighted) or a single PB constraint (in the case of weighted), with

the remaining constraints being clauses. The column Verified under Translation

shows how many instances were verified by VeriPB for the proof logging certificate

generated by VeritasPBLib when translating each 𝐹𝑃𝐵 to CNF. The columns #Solved

and #Verified under Solving present how many instances were solved by Kissat,

and from those, how many were verified by VeriPB.

For the unweighted category, we can observe that 20 instances cannot be

translated to CNF with the totalizer encoding, which shows the blowup in the

CNF encoding when translating a single cardinality constraint to CNF. Overall,

Kissat can solve 358 out of 468 instances (76%) using this approach. Even though

this is a large percentage of instances, it does not match the performance of the

best MaxSAT solvers, since they are able to prove optimality by solving a different

CNF formula that is equivalent but simpler than the one we are solving with our

approach. Nevertheless, by using VeritasPBLib+Kissat, we can certify 307 out of

358 instances (86%), which shows the positive result that if we can solve the formula

with Kissat, we are likely able to certify the results. We can observe a similar

behavior with the sequential counter encoding, albeit with worse performance,

since this encoding is not as efficient for solving instances with a single large

cardinality constraint.

8https://maxsat-evaluations.github.io/2022/

https://maxsat-evaluations.github.io/2022/

96 Certified CNF Translations for Pseudo-Boolean Solving

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
ri

fi
ca

ti
on

sequential
totalizer

(a) Unweighted MaxSAT.

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
ri

fi
ca

ti
on

adder
gte

(b) Weighted MaxSAT.

Figure 12: Comparison between end-to-end solving and verification time for the MaxSAT

Evaluation 2022 instances that can be solved by VeritasPBLib+Kissat.

For the weighted category, when using the GTE encoding, we can translate 262

out of 473 instances (55%) to CNF and when using the adder network encoding,

we can translate 455 out of 473 instances (96%). This large difference is due to the

exponential growth of the GTE encoding concerning the size of the weights, while

the adder network encoding only grows linearly. However, despite this significant

difference, Kissat can solve more instances with the GTE encoding than with the

adder network encoding since the GTE encoding is arc consistent [Gen02] and the

adder network encoding is not. When the formula can be translated to CNF using

the GTE encoding, then Kissat can solve it in 221 out of 262 cases (84%). Overall,

using VeritasPBLib+Kissat, we can certify 169 out of 221 instances (76%) when

using the GTE encoding and 139 out of 193 instances (72%) when using the adder

network encoding. If we consider instances that can be solved or certified by either

using the adder network encoding or the GTE encoding, then Kissat can solve 247

instances, and VeriPB can certify 199 of those. This shows that the adder network

encoding and GTE encoding are complementary and using both encoding can

increase the number of certified instances.

Figure 12 compares the end-to-end time between translation plus solving with

VeritasPBLib+Kissat and verifying the proof using VeriPB. As in Section 7.2, we

can observe that although we can verify most instances that the SAT solver solves,

verification is often considerably slower than solving the problem.

8 Concluding Remarks
In this work, we develop a general framework for certified translations of linear

pseudo-Boolean constraints into CNF using cutting-planes-based proof logging.

Since our method is a strict extension of the DRAT proof logging method used by

8. Concluding Remarks 97

conflict-driven clause learning (CDCL) SAT solvers, the proof for the PB-to-CNF

translation can be combined with a SAT solver DRAT proof log to provide, for the

first time, end-to-end verification for SAT-based pseudo-Boolean solvers. Our use

of the cutting planes method is not only crucial to deal with the pseudo-Boolean

format of the input, but the expressivity of the 0-1 linear constraints also allows us

to certify the correctness of the translation to CNF in a concise and elegant way.

While there is still room for performance improvements in proof logging and

verification, the experimental evaluation shows that our approach is feasible in

practice. We believe that the generality of our method, which expresses the proof

logging steps in terms of simple operations on a graph representation of the

PB-to-CNF translation, is an important aspect of our work. To demonstrate this

generality of our framework we show how to do proof logging for the sequential

counter, binary adder and (generalized) totalizer encodings. We are optimistic that

our framework can also be used for the watchdog encoding [BBR09], which builds

on top of the totalizer encoding. It is less clear whether the graph representation

can also be used in an elegant way to capture some of the sorting networks encodings

found to be particularly efficient in [ES06], such as the odd-even merge sorters [Bat68]

used in MiniSat+, or BDD-based encodings [Bry86, ES06], or whether more ad-hoc

pseudo-Boolean proof logging methods would be needed for such encodings.

As discussed already in the introduction, our paper does not quite reach the

goal of certifying equivalence of the original pseudo-Boolean formula 𝐹 and the

CNF translation 𝐹′. In one direction, it is clear that as long as 𝐹′ is derived from

𝐹 using cutting planes with reification, any satisfying assignment 𝛼 to 𝐹 yields a

unique extended assignment 𝛼′ ⊇ 𝛼 satisfying 𝐹′ by giving all newly introduced

variables the values determined by the reification rules (5a)–(5b). In the other

direction, however, we do not formally establish that the CNF translation 𝐹′ is as

strong as the original pseudo-Boolean formula 𝐹 in the sense that any satisfying

assignment 𝛼′ for 𝐹′ is guaranteed to also satisfy 𝐹. As a quick technical detour,

one way of achieving such guarantees would be, after having derived all clauses

in 𝐹′, to erase all constraints in 𝐹 using the “checked deletion” rule in [BGMN22].

This is certainly doable in principle, but we currently know of no clean and simple

way to formalize this in our graph-based translation framework. This is therefore

another problem that we have to leave as future research.

Our work on proof logging for PB-to-CNF translations has also uncovered

some technical questions that, to the best of our knowledge, have not been studied

in the literature before, but would seem to merit further investigations. A common

theme is that these questions revolve around possible trade-offs between encoding

strength and encoding size, as explained below.

In our proofs of correctness for the order encoding, the derivation of binary

clauses enforcing 𝑧𝑖 ≥ 𝑧𝑖+1 play a key role in the derivations, but are not included

in the final CNF translation. This is a little bit surprising, since it would seem

that such clauses would improve propagation and hence potentially help the SAT

solver discover more facts. On the other hand, it is not clear how the presence of

such clauses in the solver trail would affect the conflict analysis. Thus it would be

98 Certified CNF Translations for Pseudo-Boolean Solving

interesting to study whether including such clauses in the PB-to-CNF translation

would affect the SAT solving process in any systematic way.

Another question concerns the translation of cardinality constraints. When

given a constraint

∑𝑛
𝑖=1

𝑎𝑖ℓ𝑖 ≥ 𝑘 such that

∑𝑛
𝑖=1

𝑎𝑖 − 𝑘 < 𝑘, the PB-to-CNF translation

instead uses the equivalent constraint

∑𝑛
𝑖=1

𝑎𝑖ℓ𝑖 ≤
∑𝑛
𝑖=1

𝑎𝑖 − 𝑘 because it introduces

fewer auxiliary variables. On the other hand, it seems that the presence of auxiliary

variables encoding partial information about constraints is precisely what allows

SAT-based pseudo-Boolean solvers to compete with, and not seldom outperform,

cutting-planes-based solvers [EGNV18]. And perhaps there could be a reason

why the problem at hand was encoded with a greater-than-or-equal constraint

rather than less-than-or-equal. It would seem relevant to investigate if there is a

trade-off here between propagation strength (potentially leading to more efficient

SAT solver search) and encoding size (potentially slowing down the solver due to

the increased number of auxiliary variables).

A final question regarding CNF translation of circuits is whether it is better to

encode propagations in both directions or only in one direction. If a circuit encodes

the evaluation of a PB constraint

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴, then one direction of propagation is

that any assignment to the literals ℓ𝑖 making the constraint true should make the

output gate of the circuit evaluate to true. The other direction of propagation is

that any literal assignment violating the constraint should make the output gate of

the circuit evaluate to false. In our proofs of correctness we generate constraints

encoding both types of propagation, but it seems that in the final CNF translation

it is most common to include only clauses enforcing one of the directions. This

cuts the encoding size in half, but at the price of losing propagation power of

the encoding. It would be quite interesting to investigate how enforcing two-way

propagation or only one-way propagation affects the efficiency of the SAT solver

search.

Concluding this section, we wish to emphasize that we view certified trans-

lations to CNF of pseudo-Boolean decision problems as only a first step. In the

conference version of this paper, we expressed optimism that the techniques

developed in this work should also be possible to extend to core-guided MaxSAT

solving [FM06, MHL
+
13], including proof logging support for derivation of clauses

added during core extraction and objective function reformulation, and such

results have very recently been announced in [BBN
+
23]. While designing efficient

proof logging for other MaxSAT approaches such as implicit hitting sets (IHS) [DB11]

and abstract cores [BBP20] seems more challenging, we are hopeful that our work

could lead to a unified proof logging method for all modern MaxSAT solving

techniques, and also for pseudo-Boolean optimization using cutting-planes-based

reasoning as in [DGN21, DGD
+
21, EN18, LP10, SBJ21, SBJ22].

Acknowledgements
The authors wish to acknowledge helpful and stimulating discussions with

Bart Bogaerts and Ciaran McCreesh. We are particularly grateful to Bart for

References 99

sharing the manuscript [VWB22] using a very elegant reification technique that

we wish we would have thought of, and we believe it would be worth exploring

whether similar ideas could be used in our framework to improve the efficiency of

verification. We are also thankful for discussions and feedback at the workshops

Pragmatics of SAT and Proof eXchange for Theorem Proving in 2021 and the conference

SAT in 2022, where a preliminary version of this work was presented. We would

like to extend a special thanks to the SAT ’22 and JAIR anonymous reviewers

for a wealth of comments and questions that helped to improve this manuscript

considerably.

This work has been financially supported by the Swedish Research Council

grant 2016-00782, the Independent Research Fund Denmark grant 9040-00389B, the

National Science Foundation award CCF-1762363, the Amazon Research Award,

and the Wallenberg AI, Autonomous Systems and Software Program (WASP)

funded by the Knut and Alice Wallenberg Foundation.

References
[AGJ

+
18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and

Peter Nightingale. Metamorphic testing of constraint solvers. In

Proceedings of the 24th International Conference on Principles and Practice

of Constraint Programming (CP ’18), volume 11008 of Lecture Notes in

Computer Science, pages 727–736. Springer, August 2018.

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for

linear pseudo-Boolean optimization. Technical Report MPI-I-95-2-

003, Max-Planck-Institut für Informatik, January 1995.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In

Proceedings of the Spring Joint Computer Conference of the American

Federation of Information Processing Societies (AFIPS ’68), volume 32,

pages 307–314, April 1968.

[BB03] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of

Boolean cardinality constraints. In Proceedings of the 9th International

Conference on Principles and Practice of Constraint Programming (CP ’03),

volume 2833 of Lecture Notes in Computer Science, pages 108–122.

Springer, September 2003.

[BB21] Lee A. Barnett and Armin Biere. Non-clausal redundancy properties.

In Proceedings of the 28th International Conference on Automated Deduc-

tion (CADE-28), volume 12699 of Lecture Notes in Computer Science,

pages 252–272. Springer, July 2021.

[BBH22] Randal E. Bryant, Armin Biere, and Marĳn J. H. Heule. Clausal

proofs for pseudo-Boolean reasoning. In Proceedings of the 28th

International Conference on Tools and Algorithms for the Construction

100 Certified CNF Translations for Pseudo-Boolean Solving

and Analysis of Systems (TACAS ’22), volume 13243 of Lecture Notes in

Computer Science, pages 443–461. Springer, April 2022.

[BBHJ13] Adrian Balint, Anton Belov, Marĳn JH Heule, and Matti Järvisalo.

Proceedings of sat competition 2013: Solver and benchmark descrip-

tions, 2013.

[BBN
+
23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Di-

eter Vandesande. Certified core-guided MaxSAT solving. Submitted

manuscript, March 2023.

[BBP20] Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores

in implicit hitting set MaxSat solving. In Proceedings of the 23rd

International Conference on Theory and Applications of Satisfiability

Testing (SAT ’20), volume 12178 of Lecture Notes in Computer Science,

pages 277–294. Springer, July 2020.

[BBR09] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encod-

ings of pseudo-Boolean constraints into CNF. In Proceedings of the

12th International Conference on Theory and Applications of Satisfiability

Testing (SAT ’09), volume 5584 of Lecture Notes in Computer Science,

pages 181–194. Springer, June 2009.

[BCH21] Seulkee Baek, Mario Carneiro, and Marĳn J. H. Heule. A flexible

proof format for SAT solver-elaborator communication. In Proceedings

of the 27th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS ’21), volume 12651 of

Lecture Notes in Computer Science, pages 59–75. Springer, March-April

2021.

[BFFH20] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian

Heisinger. CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling

entering the SAT Competition 2020. In Tomas Balyo, Nils Froleyks,

Marĳn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors,

Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions,

volume B-2020-1 of Department of Computer Science Report Series B,

pages 51–53. University of Helsinki, 2020.

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nord-

ström. Certified symmetry and dominance breaking for combina-

torial optimisation. In Proceedings of the 36th AAAI Conference on

Artificial Intelligence (AAAI ’22), pages 3698–3707, February 2022.

[BHvMW21] Armin Biere, Marĳn J. H. Heule, Hans van Maaren, and Toby Walsh,

editors. Handbook of Satisfiability, volume 336 of Frontiers in Artificial

Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[Bie06] Armin Biere. Tracecheck. http://fmv.jku.at/tracecheck/, 2006.

http://fmv.jku.at/tracecheck/

References 101

[BJM21] Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum

satisfiabiliy. In Armin Biere, Marĳn Heule, Hans van Maaren, and

Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume

336 of Frontiers in Artificial Intelligence and Applications, pages 929–991.

IOS Press, 2021.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated

testing and debugging of SAT and QBF solvers. In Proceedings of the

13th International Conference on Theory and Applications of Satisfiability

Testing (SAT ’10), volume 6175 of Lecture Notes in Computer Science,

pages 44–57. Springer, July 2010.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT

solving. In Biere et al. [BHvMW21], chapter 7, pages 233–350.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function

manipulation. IEEE Transactions on Computers, C-35(8):677–691,

August 1986.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the

complexity of cutting-plane proofs. Discrete Applied Mathematics,

18(1):25–38, November 1987.

[CFHH
+
17] Luís Cruz-Filipe, Marĳn J. H. Heule, Warren A. Hunt, Matt Kauf-

mann, and Peter Schneider-Kamp. Efficient certified RAT verification.

In Proceedings of the 26th International Conference on Automated De-

duction (CADE-26), volume 10395 of LNCS, pages 220–236. Springer,

2017.

[CFMSSK17] Luís Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp.

Efficient certified resolution proof checking. In Proceedings of the 23rd

International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS ’17), volume 10205 of LNCS, pages

118–135. Springer, 2017.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy.

Verifying integer programming results. In Proceedings of the 19th

International Conference on Integer Programming and Combinatorial

Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer

Science, pages 148–160. Springer, June 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A

hybrid branch-and-bound approach for exact rational mixed-integer

programming. Mathematical Programming Computation, 5(3):305–344,

September 2013.

[DB11] Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a

sequence of simpler SAT instances. In Proceedings of the 17th Interna-

tional Conference on Principles and Practice of Constraint Programming

102 Certified CNF Translations for Pseudo-Boolean Solving

(CP ’11), volume 6876 of Lecture Notes in Computer Science, pages

225–239. Springer, September 2011.

[DGD
+
21] Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström,

and Peter Stuckey. Cutting to the core of pseudo-Boolean optimiza-

tion: Combining core-guided search with cutting planes reasoning.

In Proceedings of the 35th AAAI Conference on Artificial Intelligence

(AAAI ’21), pages 3750–3758, February 2021.

[DGN21] Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to

relax: Integrating 0-1 integer linear programming with pseudo-

Boolean conflict-driven search. Constraints, 26(1–4):26–55, October

2021. Preliminary version in CPAIOR ’20.

[EG21] Leon Eifler and Ambros Gleixner. A computational status update

for exact rational mixed integer programming. In Proceedings of the

22nd International Conference on Integer Programming and Combinatorial

Optimization (IPCO ’21), volume 12707 of Lecture Notes in Computer

Science, pages 163–177. Springer, May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.

Justifying all differences using pseudo-Boolean reasoning. In Pro-

ceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),

pages 1486–1494, February 2020.

[EGNV18] Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc Vinyals.

Using combinatorial benchmarks to probe the reasoning power

of pseudo-Boolean solvers. In Proceedings of the 21st International

Conference on Theory and Applications of Satisfiability Testing (SAT ’18),

volume 10929 of Lecture Notes in Computer Science, pages 75–93.

Springer, July 2018.

[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards

faster pseudo-Boolean solving. In Proceedings of the 27th International

Joint Conference on Artificial Intelligence (ĲCAI ’18), pages 1291–1299,

July 2018.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean

constraints into SAT. Journal on Satisfiability, Boolean Modeling and

Computation, 2(1-4):1–26, March 2006.

[FM06] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT

problem. In Proceedings of the 9th International Conference on Theory

and Applications of Satisfiability Testing (SAT ’06), volume 4121 of

Lecture Notes in Computer Science, pages 252–265. Springer, August

2006.

References 103

[Gen02] Ian P. Gent. Arc consistency in SAT. In Frank van Harmelen, editor,

Proceedings of the 15th European Conference on Artificial Intelligence,

ECAI’2002, Lyon, France, July 2002, pages 121–125. IOS Press, 2002.

[GMM
+
20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström,

Patrick Prosser, and James Trimble. Certifying solvers for clique and

maximum common (connected) subgraph problems. In Proceedings of

the 26th International Conference on Principles and Practice of Constraint

Programming (CP ’20), volume 12333 of Lecture Notes in Computer

Science, pages 338–357. Springer, September 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph

isomorphism meets cutting planes: Solving with certified solutions.

In Proceedings of the 29th International Joint Conference on Artificial

Intelligence (ĲCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An au-

ditable constraint programming solver. In Proceedings of the 28th

International Conference on Principles and Practice of Constraint Pro-

gramming (CP ’22), volume 235 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel.

Experimental repository for “Certified CNF translations for pseudo-

Boolean solving”. Available athttps://doi.org/10.5281/zenodo.
6610581, June 2022.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of

unsatisfiability for CNF formulas. In Proceedings of the Conference

on Design, Automation and Test in Europe (DATE ’03), pages 886–891,

March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning

efficiently using pseudo-Boolean proofs. In Proceedings of the 35th

AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777,

February 2021.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declar-

ative testing of constraints. In Proceedings of the 25th International

Conference on Principles and Practice of Constraint Programming (CP ’19),

volume 11802 of Lecture Notes in Computer Science, pages 565–582.

Springer, October 2019.

[HHW13a] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trim-

ming while checking clausal proofs. In Proceedings of the 13th In-

ternational Conference on Formal Methods in Computer-Aided Design

(FMCAD ’13), pages 181–188, October 2013.

https://doi.org/10.5281/zenodo.6610581
https://doi.org/10.5281/zenodo.6610581

104 Certified CNF Translations for Pseudo-Boolean Solving

[HHW13b] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying

refutations with extended resolution. In Proceedings of the 24th

International Conference on Automated Deduction (CADE-24), volume

7898 of Lecture Notes in Computer Science, pages 345–359. Springer,

June 2013.

[HMS12] Steffen Hölldobler, Norbert Manthey, and Peter Steinke. A compact

encoding of pseudo-Boolean constraints into SAT. In Proceedings of

KI 2012: Advances in Artificial Intelligence, the 35th Annual German

Conference on AI, volume 7526 of Lecture Notes in Computer Science,

pages 107–118. Springer, 2012.

[JMM15] Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. General-

ized totalizer encoding for pseudo-Boolean constraints. In Proceedings

of the 21st International Conference on Principles and Practice of Con-

straint Programming (CP ’15), volume 9255 of Lecture Notes in Computer

Science, pages 200–209. Springer, August-September 2015.

[KB21] Daniela Kaufmann and Armin Biere. AMulet 2.0 for verifying

multiplier circuits. In Proceedings of the 27th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS ’21), volume 12652 of Lecture Notes in Computer Science, pages

357–364. Springer, March-April 2021.

[KBBN22] Daniela Kaufmann, Paul Beame, Armin Biere, and Jakob Nordström.

Adding dual variables to algebraic reasoning for circuit verifica-

tion. In Proceedings of the 25th Design, Automation and Test in Europe

Conference (DATE ’22), pages 1435–1440, March 2022.

[KFB20] Daniela Kaufmann, Mathias Fleury, and Armin Biere. The proof

checkers Pacheck and Pastèque for the practical algebraic calculus. In

Proceedings of the 20th Conference on Formal Methods in Computer-Aided

Design (FMCAD ’20), pages 264–269, September 2020.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2.

Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64,

July 2010.

[MHL
+
13] António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and

João P. Marques-Silva. Iterative and core-guided MaxSAT solving:

A survey and assessment. Constraints, 18(4):478–534, October 2013.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO:

A modular MaxSAT solver. In Proceedings of the 17th International

Conference on Theory and Applications of Satisfiability Testing (SAT ’14),

volume 8561 of Lecture Notes in Computer Science, pages 438–445.

Springer, July 2014.

References 105

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pas-

cal Schweitzer. Certifying algorithms. Computer Science Review,

5(2):119–161, May 2011.

[MMZ
+
01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao

Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT solver.

In Proceedings of the 38th Design Automation Conference (DAC ’01),

pages 530–535, June 2001.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algo-

rithm for propositional satisfiability. IEEE Transactions on Computers,

48(5):506–521, May 1999. Preliminary version in ICCAD ’96.

[Opt22] Gurobi Optimization. Gurobi Optimization. Available at https:
//www.gurobi.com/, 2022.

[PS15] Tobias Philipp and Peter Steinke. PBLib – a library for encoding

pseudo-Boolean constraints into CNF. In Proceedings of the 18th

International Conference on Theory and Applications of Satisfiability

Testing (SAT ’15), volume 9340 of Lecture Notes in Computer Science,

pages 9–16. Springer, September 2015.

[RBK
+
18] Daniela Ritirc, Armin Biere, Manuel Kauers, A Bigatti, and M Brain.

A practical polynomial calculus for arithmetic circuit verification.

In 3rd International Workshop on Satisfiability Checking and Symbolic

Computation (SC2 ’18), pages 61–76, 2018.

[RM16] Olivier Roussel and Vasco M. Manquinho. Input/output format and

solver requirements for the competitions of pseudo-Boolean solvers.

Revision 2324. Available at http://www.cril.univ-artois.fr/
PB16/format.pdf, January 2016.

[SBJ21] Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-Boolean

optimization by implicit hitting sets. In Proceedings of the 27th Interna-

tional Conference on Principles and Practice of Constraint Programming

(CP ’21), volume 210 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 51:1–51:20, October 2021.

[SBJ22] Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Improvements

to the implicit hitting set approach to pseudo-Boolean optimiza-

tion. In Proceedings of the 25th International Conference on Theory and

Applications of Satisfiability Testing (SAT ’22), volume 236 of Leib-

niz International Proceedings in Informatics (LIPIcs), pages 13:1–13:18,

August 2022.

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of Boolean cardi-

nality constraints. In Proceedings of the 11th International Conference

on Principles and Practice of Constraint Programming (CP ’05), volume

https://www.gurobi.com/
https://www.gurobi.com/
http://www.cril.univ-artois.fr/PB16/format.pdf
http://www.cril.univ-artois.fr/PB16/format.pdf

106 Certified CNF Translations for Pseudo-Boolean Solving

3709 of Lecture Notes in Computer Science, pages 827–831. Springer,

October 2005.

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an

ROBDD for a PB-constraint in band form and related techniques

for PB-solvers. IEICE Transactions on Information and Systems,

98-D(6):1121–1127, June 2015.

[Van08] Allen Van Gelder. Verifying RUP proofs of propositional un-

satisfiability. In 10th International Symposium on Artificial Intel-

ligence and Mathematics (ISAIM ’08), 2008. Available at http:
//isaim2008.unl.edu/index.php?page=proceedings.

[VWB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. Qmaxsatpb:

A certified maxsat solver. In Georg Gottlob, Daniela Inclezan,

and Marco Maratea, editors, Logic Programming and Nonmonotonic

Reasoning - 16th International Conference, LPNMR 2022, Genova, Italy,

September 5-9, 2022, Proceedings, volume 13416 of Lecture Notes in

Computer Science, pages 429–442. Springer, 2022.

[War98] Joost P. Warners. A linear-time transformation of linear inequalities

into conjunctive normal form. Information Processing Letters, 68(2):63–

69, 1998.

[WHH14] Nathan Wetzler, Marĳn J. H. Heule, and Warren A. Hunt Jr. DRAT-

trim: Efficient checking and trimming using expressive clausal

proofs. In Proceedings of the 17th International Conference on Theory and

Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture

Notes in Computer Science, pages 422–429. Springer, July 2014.

http://isaim2008.unl.edu/index.php?page=proceedings
http://isaim2008.unl.edu/index.php?page=proceedings

Pa
pe

r
II

Certified Core-Guided MaxSAT
Solving

Abstract
In the last couple of decades, developments in SAT-based optimization have led to

highly efficient maximum satisfiability (MaxSAT) solvers, but in contrast to the SAT

solvers on which MaxSAT solving rests, there has been little parallel development

of techniques to prove the correctness of MaxSAT results. We show how pseudo-

Boolean proof logging can be used to certify state-of-the-art core-guided MaxSAT

solving, including advanced techniques like structure sharing, weight-aware core

extraction and hardening. Our experimental evaluation demonstrates that this

approach is viable in practice. We are hopeful that this is the first step towards

general proof logging techniques for MaxSAT solvers.

1 Introduction
Combinatorial optimization is one of the most impressive, and most intriguing,

success stories in computer science. This area deals with computationally very

challenging problems, which are widely believed to require exponential time in

the worst case [IP01, CIP09]. In spite of this, during the last couple of decades

astonishing progress has been made on so-called combinatorial solvers for a

number of different algorithmic paradigms such as Boolean satisfiability (SAT)

solving and optimization [BHvMW21], constraint programming (CP) [RvBW06],

and mixed integer programming (MIP) [AW13, BR07]. Today, such solvers are

routinely used to solve real-world problems with hundreds of thousands or even

millions of variables.

While the performance of modern combinatorial solvers is truly impressive,

one negative aspect is that they are highly complex pieces of software, and it is

well documented that even mature state-of-the-art solvers sometimes give wrong

Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. “Certified

Core-Guided MaxSAT Solving”. In Proceedings of the 29th International Conference on Automated Deduction

(CADE-29), volume 14132 of Lecture Notes in Computer Science, pages 1–22. Springer, July 2023.

108 Certified Core-Guided MaxSAT Solving

results [CKSW13, AGJ
+
18, GSD19, BMN22]. This can be fatal for applications

where correctness is a non-negotiable demand. Perhaps the most successful

approach for addressing this problem so far is the requirement in the SAT solving

community that solvers should be certifying [ABM
+
11, MMNS11], meaning that

when given a formula a solver should output not only a verdict whether the

formula is satisfiable or unsatisfiable, but also an efficiently machine-verifiable

proof log establishing that this verdict is guaranteed to be correct. One can then

feed the input formula, the verdict, and the proof log to a special, dedicated proof

checker, and accept the result if the proof checker agrees that the proof log shows

that the solver computation is valid. Over the years, different proof formats such as

RUP [GN03], TraceCheck [Bie06], DRAT [HHW13a, HHW13b], GRIT [CMS17], and

LRAT [CHH
+
17] have been developed, and for almost a decade DRAT proof logging

has been compulsory in the (main track of the) SAT competition. However, there

has been very limited progress in designing analogous proof logging techniques

for more powerful algorithmic paradigms.

Our focus in this work is on the optimization paradigm that is arguably closest

to SAT solving, namely maximum satisfiability or MaxSAT solving [BJM21, LM21],

and the challenge of developing proof logging techniques for MaxSAT solvers.

1.1 Previous Work
Since essentially all modern MaxSAT solvers are based on repeated invocations

of SAT solvers, a first question is why SAT proof logging techniques are not

sufficient. While DRAT is a very powerful proof system, it seems that the

overhead of generating proofs of correctness for the rewriting steps in between

SAT solver calls in MaxSAT solvers is too large to be tolerable for practical

purposes. Another, related, problem is that for optimization problems one needs

to reason about the objective function, which DRAT struggles to do since its

language is limited to disjunctive clauses. But perhaps the biggest challenge is

that while modern SAT solving is completely dominated by the conflict-driven

clause learning (CDCL) method [BS97, MS99, MMZ
+
01], for MaxSAT there is

a rich variety of approaches including linear SAT-UNSAT (or model-improving

search) [ES06, LP10, PRB18], core-guided search [FM06, NB14, ADR15, AG17], implicit

hitting set (IHS) search [DB13a, DB13b], and some recent work on branch-and-

bound methods [LXC
+
22] (where we stress that the lists of references are far from

exhaustive).

One tempting solution to circumvent this heterogeneity of solving approaches

is to treat the MaxSAT solver as a black box and use a single call to a certifying SAT

solver to prove optimality of the final solution found. However, there are several

problems with this proposal. Firstly, we would still need proof logging to ensure

that the input to the SAT solver is a correct encoding of a claim of optimality for the

correct problem instance. Secondly, such a SAT call could be extremely expensive,

running counter to the goal of proof logging with low (and predictable) overhead.

Finally, even if the SAT-call approach could be made to work efficiently, this would

just certify the final result, and would not help validate the correctness of the

1. Introduction 109

reasoning of the solver. For these reasons, our goal is to provide proof logging for

the actual computations of the MaxSAT algorithm.

While some proof systems and tools have been developed specifically for

MaxSAT [BLM07, LNOR11, MM11, MIB
+
19, FMSV20, PCH20, PCH21, PCH22,

IBJ22], none of them comes close to providing general-purpose proof logging,

because they apply only for very specific algorithm implementations and/or

fail to capture the full range of reasoning used in an algorithmic approach. A

recent work [VDB22] by two co-authors on the current paper instead leverages

the pseudo-Boolean proof logging system VeriPB [Ver] to certify correctness of

the unweighted linear SAT-UNSAT solver QMaxSAT. VeriPB is similar in spirit

to DRAT, but operates with more general 0–1 linear inequalities rather than

just clauses. This simplifies reasoning about optimization problems, and also

makes it possible to capture the powerful MaxSAT solver inferences in a more

concise way. VeriPB has previously been used for proof logging of enhanced SAT

solving techniques [GN21, BGMN22] and pseudo-Boolean solving [GMNO22], as

well as for providing proof-of-concept tools for a nontrivial range of techniques

in constraint programming [EGMN20, GMN22] and subgraph solving [GMN20,

GMM
+
20].

1.2 Our Contributions

In this work, we use VeriPB to provide, to the best of our knowledge for the first

time, efficient proof logging for the full range of techniques in a cutting-edge

MaxSAT solver. We consider the state-of-the-art core-guided solver CGSS [IBJ21],

based on RC2 [IMM19], and show how to enhance CGSS to output proofs of

correctness of its reasoning, including sophisticated techniques such as stratifi-

cation [ABGL12, MAGL11], intrinsic-at-most-one constraints [IMM19], harden-

ing [ABGL12], weight-aware core-extraction [BJ17], and structure sharing [IBJ21].

We find that the overhead for such proof logging is perfectly manageable, and

although there is certainly room to improve the proof verification time, our experi-

ments demonstrate that already a first proof-of-concept implementation of this

approach is practically feasible.

It has been shown previously [EG21, GMM
+
20, KM21] that proof logging can

also serve as a powerful debugging tool. This is because faulty reasoning is likely

to lead to unsound proofs, which can be detected even if the solver produces

correct output for all test cases. We exhibit yet another example of this—some

proofs for which we struggled to make the verification work turned out to reveal

two well-hidden bugs in RC2 and CGSS that earlier extensive testing had failed to

uncover.

Although it still remains to provide proof logging for other MaxSAT approaches

such as (general, weighted) linear SAT-UNSAT and implicit hitting set (IHS) search,

we are optimistic that our work could serve as an important step towards general

adoption of proof logging techniques for MaxSAT solvers.

110 Certified Core-Guided MaxSAT Solving

1.3 Outline of This Paper
After reviewing preliminaries for pseudo-Boolean reasoning and core-guided

MaxSAT solving in Sections 2 and 3, we explain how core-guided MaxSAT solvers

can be equipped with proof logging methods in Section 4. In Section 5 we present

our experimental evaluation, after which some concluding remarks and directions

for future research are given in Section 6.

2 Preliminaries
We start by a review of some standard material which can be found, e.g., in [BN21,

GN21, GMNO22]. A literal ℓ over a Boolean variable 𝑥 (taking values in {0, 1},
which we identify with false and true, respectively) is 𝑥 itself or its negation 𝑥,

where 𝑥 = 1 − 𝑥. A pseudo-Boolean (PB) constraint is a 0-1 integer linear inequality

𝐶 �
∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴 (where � denotes syntactic equality). When convenient, we can

assume without loss of generality that PB constraints are in normalized form [Bar95];

i.e., all literals ℓ𝑖 are over distinct variables and the coefficients 𝑎𝑖 and the degree (of

falsity) 𝐴 are non-negative integers. The set of literals in 𝐶 is denoted lits(𝐶). The

negation of 𝐶 is ¬𝐶 � ∑
𝑖 𝑎𝑖ℓ𝑖 ≤ 𝐴 − 1 (rewritten in normalized form when needed).

A pseudo-Boolean formula is a conjunction 𝐹 �
∧
𝑗 𝐶 𝑗 of PB constraints. Note that a

disjunctive clause can be viewed as a PB constraint with all coefficients and the

degree equal to 1, and so formulas in conjunctive normal form (CNF) are special

cases of PB formulas.

A (partial) assignment 𝜌 is a (partial) function from variables to {0, 1}, which we

extend to literals by respecting the meaning of negation. Applying 𝜌 to a constraint

𝐶 yields 𝐶↾𝜌 by substituting the variables assigned in 𝜌 by their values, and for

a formula 𝐹 �
∧
𝑗 𝐶 𝑗 we define 𝐹↾𝜌�

∧
𝑗 𝐶 𝑗↾𝜌. The constraint 𝐶 is satisfied by 𝜌 if∑

𝜌(ℓ𝑖)=1
𝑎𝑖 ≥ 𝐴, and 𝜌 satisfies 𝐹 if it satisfies all 𝐶 ∈ 𝐹, in which case 𝐹 is satisfiable.

A formula lacking satisfying assignments is unsatisfiable. We say that 𝐹 implies 𝐶,

denoted 𝐹 |= 𝐶, if any assignment satisfying 𝐹 also satisfies 𝐶.

An objective𝑂 �
∑
𝑖 𝑤𝑖ℓ𝑖+𝑀 is an affine function over literals ℓ𝑖 to be minimized

by (total) assignments 𝛼 satisfying 𝐹. The value (or cost) of an objective 𝑂 under

such an 𝛼, which we refer to as a solution, is 𝑂(𝛼) = ∑
𝛼(ℓ𝑖)=1

𝑤𝑖 + 𝑀. We write

coeff (𝑂, ℓ𝑖) to denote the coefficient 𝑤𝑖 of a literal ℓ𝑖 ∈ lits(𝑂).
The foundation of the pseudo-Boolean proof logging in this paper is the

cutting planes proof system [CCT87], which is a method to iteratively derive new

constraints implied by a pseudo-Boolean formula 𝐹. If 𝐶 and 𝐷 have been derived

before or are axiom constraints in 𝐹, then any positive linear combination of these

constraints can be derived. Literal axioms ℓ ≥ 0 can also be added to any previously

derived constraints. For a constraint

∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴 in normalized form, division by a

positive integer 𝑑 derives

∑
𝑖 ⌈𝑎𝑖/𝑑⌉ℓ𝑖 ≥ ⌈𝐴/𝑑⌉, and we also add a saturation rule

that derives

∑
𝑖 min{𝑎𝑖 , 𝐴} · ℓ𝑖 ≥ 𝐴 (where the soundness of these rules crucially

depends on the normalized form). It is well known that any PB constraint implied

by 𝐹 can be derived using these rules.

3. The OLL Algorithm for Core-Guided MaxSAT Solving 111

A constraint 𝐶 is said to unit propagate the literal ℓ to true under an assignment

𝜌 if 𝐶↾𝜌 cannot be satisfied unless ℓ is true. During unit propagation on 𝐹 under 𝜌,

we extend 𝜌 iteratively by any propagated literals until an assignment 𝜌′ is reached

under which no constraint 𝐶 ∈ 𝐹 is propagating or some constraint 𝐶 wants to

propagate a literal that has already been assigned to the opposite value. The latter

case is called a conflict, since 𝐶 is violated by 𝜌′. We say that 𝐹 implies 𝐶 by reverse

unit propagation (RUP), and that 𝐶 is a RUP constraint with respect to 𝐹, if 𝐹 ∧ ¬𝐶
unit propagates to conflict under the empty assignment. It is not hard to see that

𝐹 |= 𝐶 holds if 𝐶 is a RUP constraint, and as a convenient shorthand we will add a

RUP rule for deriving new constraints.

In addition to deriving constraints that are implied by a formula 𝐹, we also

allow deriving so-called redundant constraints 𝐶 that are not implied by 𝐹 as long

as some optimal solution is guaranteed to be preserved. This is done by extending

the proof system with a redundance-based strengthening rule [GN21, BGMN22]. We

will only need the special case of this rule saying that for a fresh variable 𝑧 and for

any constraint 𝐷 �
∑
𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴 we can introduce the reified constraints

𝐶⇒
reif
(𝑧, 𝐷) � 𝐴𝑧 +∑𝑖 𝑎𝑖ℓ𝑖 ≥ 𝐴 (1a)

𝐶⇐
reif
(𝑧, 𝐷) � (∑𝑖 𝑎𝑖 − 𝐴 + 1) 𝑧 +∑𝑖 𝑎𝑖ℓ 𝑖 ≥

∑
𝑖 𝑎𝑖 − 𝐴 + 1 (1b)

encoding the implications 𝑧 ⇒ 𝐷 and 𝑧 ⇐ 𝐷, respectively. We refer to 𝑧 as the

reification variable, and when 𝐷 is clear from context, we will sometimes write just

𝐶⇒
reif
(𝑧) for (1a) and 𝐶⇐

reif
(𝑧) for (1b).

The maximum satisfiability (MaxSAT) problem can be described conveniently as a

special case of pseudo-Boolean optimization. A discussion on the equivalence of

the following and the—more classical—clause-centric definition can be found in,

for instance, [LBJ20, BJM21]. An instance (𝐹, 𝑂) of the (weighted partial) MaxSAT

problem consists of a CNF formula 𝐹 and an objective function 𝑂 written as a

non-negative affine combination of literals. The goal is to find a solution 𝛼 that

satisfies 𝐹 and minimizes 𝑂(𝛼). We say that such a solution 𝛼 is optimal for the

instance and that the optimal cost of the instance (𝐹, 𝑂) is 𝑂(𝛼).

3 The OLL Algorithm for Core-Guided MaxSAT Solv-
ing

We now proceed to discuss the core-guided MaxSAT solving in CGSS, which is

based on the OLL algorithm [AKMS12, MDM14], and describe the main heuristics

used in efficient implementations of this algorithm. Given a MaxSAT instance

(𝐹orig , 𝑂orig), OLL takes an optimistic view and attempts to find an assignment

satisfying 𝐹orig in which 𝑂orig equals its constant term (i.e., all literals in lits(𝑂orig)
are false). If such a solution exists, it is clearly optimal. Otherwise, the solver will

extract a core 𝐾, which is a clause such that (i) 𝐾 only contains objective literals, i.e.,

lits(𝐾) ⊆ lits(𝑂orig), and (ii) 𝐹orig implies 𝐾, which means that any solution to 𝐹orig

has to set at least one literal in lits(𝐾) to true. The cost w(𝐾, 𝑂) = min{coeff (𝑂, ℓ) :

112 Certified Core-Guided MaxSAT Solving

ℓ ∈ lits(𝐾)} of a core 𝐾 is the smallest coefficient in the objective 𝑂 of any literal

in 𝐾. The core 𝐾 is used to (conceptually) reformulate the instance into (𝐹ref , 𝑂ref)
which has the same minimal-cost solutions. The constant term LB in 𝑂ref is a lower

bound on the optimal cost of the instance, and the reformulation is done in such a

way that the lower bound increases (exactly) with the cost of the core 𝐾 as defined

above.

In more detail, the algorithm maintains a reformulated objective𝑂ref (initialized

to 𝑂orig) such that the (non-normalized) pseudo-Boolean constraint

𝑂orig ≥ 𝑂ref �
∑

𝑏∈lits(𝑂orig)
coeff (𝑂orig , 𝑏) · 𝑏 ≥

∑
𝑏′∈lits(𝑂ref)

coeff (𝑂ref , 𝑏
′) · 𝑏′ + LB (2)

is satisfied by all solutions of 𝐹ref . Note that the constraint (2), which we refer to

as an objective reformulation constraint, implies that the constant term LB is a lower

bound on the optimal cost.

In each iteration, a SAT solver is queried for a solution 𝛼 to 𝐹ref with𝑂ref (𝛼) = LB.

If such an 𝛼 exists, the constraint (2) yields that𝑂orig(𝛼) = LB, and so 𝛼 is a minimal-

cost solution to (𝐹orig , 𝑂orig). Otherwise, the solver returns a new core𝐾 that requires

at least one literal in lits(𝑂ref) to be set to 1. This implies that the optimal cost is

strictly larger than LB, and the core 𝐾 is used for a new reformulation step.

The objective reformulation step adds new clauses to 𝐹ref encoding the con-

straints 𝑦𝐾,𝑘 ⇐
∑
𝑏∈lits(𝐾) 𝑏 ≥ 𝑘 for 𝑘 = 2, . . . , |𝐾 |. The new variables 𝑦𝐾,𝑘 are added

to𝑂ref with coefficient w(𝐾, 𝑂ref) equalling the cost of 𝐾, and the coefficient in𝑂ref of

each literal in 𝐾 is decreased by the same amount. Finally, the lower bound LB—the

constant term of 𝑂ref —is also increased by w(𝐾, 𝑂ref). Since 𝑦𝐾,𝑘 encodes that at

least 𝑘 literals in 𝐾 are true, we have the equality

∑
𝑏∈lits(𝐾) 𝑏 = 1+∑|𝐾 |

𝑘=2
𝑦𝐾,𝑘 , where

the additive 1 comes from the fact that at least one literal in 𝐾 has to be true,

and the reformulation step is just applying this equality multiplied by w(𝐾, 𝑂ref)
to 𝑂ref . Notice that the variables added during objective reformulation can later be

discovered in other cores. In practice, all implementations of OLL we are aware of

encode the semantics of counting variables incrementally [MJML14]. This means

that initially only the variable 𝑦𝐾,2 is defined, and the variable 𝑦𝐾,𝑖+1 is introduced

only after 𝑦𝐾,𝑖 is found in a core.

Implementations of OLL for MaxSAT—including the CGSS solver that we

enhance with proof logging in this work—extend the algorithm with a number

of heuristics such as stratification [ABGL12, MAGL11], hardening [ABGL12], the

intrinsic-at-most-ones technique [IMM19], weight-aware core extraction [BJ17],

and structure sharing [IBJ21].

Stratification extracts cores not over all literals in 𝑂ref but only over those whose

coefficient is above some bound wstrat. This steers search toward cores containing

literals with high coefficients, resulting in larger increases of LB. Once no more

cores over such variables can be found, the algorithm lowers wstrat, terminating

only after no more cores can be found with wstrat = 1. The fact that no more cores

containing only variables with coefficients above wstrat exist is detected by the SAT

solver returning a (possibly non-optimal) solution 𝛼. The minimal cost 𝑂orig(𝛼) of

4. Proof Logging for the OLL Algorithm for MaxSAT 113

all such solutions gives an upper bound UB on the optimal cost of the instance,

allowing OLL to terminate as soon as LB = UB.

Hardening fixes literals in 𝑂ref to 0 based on information provided by the

current upper and lower bounds UB and LB. If for any 𝑏 ∈ lits(𝑂ref) it holds that

coeff (𝑂ref , 𝑏) + LB > UB, then any solution 𝛼 with 𝑏 = 1 would have higher cost

than the current best solution known, and would thus not be optimal.

The intrinsic-at-most-one technique identifies subsets 𝒮 ⊆ lits(𝑂ref) of objective

literals such that

∑
𝑏∈𝒮 𝑏 ≤ 1 is implied, i.e., any solution can assign at most one

literal in 𝒮 to 0. This is used both to increase the lower bound and to reformulate

the objective. If we let wmin = min{coeff (𝑂ref , 𝑏) : 𝑏 ∈ 𝒮}, then 𝒮 implies a lower

bound increase of LB𝒮 = (|𝒮| − 1) ·wmin. Additionally, we define a new variable ℓ𝒮
by the clause ℓ𝒮 +

∑
𝑏∈𝒮 𝑏 ≥ 1 to indicate if in fact all literals in 𝒮 are true, and

introduce it in the reformulated objective with coefficient wmin. This means that we

remove the already known lower bound LB𝒮 from 𝑂ref and transfer the possible

additional cost wmin from 𝒮 to the variable ℓ𝒮 .

Weight-aware core extraction (WCE) delays objective reformulation, and the

accompanying increase in new variables and clauses, for as long as possible. When

a new core 𝐾 is extracted by a solver that uses WCE, initially only the coefficient

of each 𝑏 ∈ lits(𝐾) is lowered and the lower bound LB is increased by w(𝐾, 𝑂ref).
Then the SAT solver is invoked again with the literals, that still have coefficients

above wstrat in 𝑂ref , set to 0. When the SAT solver finds a satisfying assignment

extending the assumptions, all objective reformulations steps are then performed

at once. This is correct since the final effect is the same as if the core would have

been discovered one by one and immediately followed by objective reformulation.

Notice that this core extraction loop is guaranteed to terminate since the coefficient

of at least one variable is decreased to 0 for each new core. Structure sharing is a

recent extension to weight-aware core extraction that makes use of the potential

overlap in cores detected in order to achieve more compact encodings of counting

variable semantics.

4 Proof Logging for the OLL Algorithm for MaxSAT
We have now reached a point where we can describe the contribution of this work,

namely how to add proof logging to an OLL-based core-guided MaxSAT solver,

including all the state-of-the-art techniques described in Section 3.

In our proof logging routines we maintain the invariants described next. The

reformulated objective 𝑂ref is already implicitly tracked by the solver and at all

times it is possible to derive that 𝑂orig ≥ 𝑂ref as in (2). We also keep track of the

current upper bound UB on 𝑂orig and best solution 𝛼best found so far. All cores that

have been found and processed are in the set𝒦 .

SAT Solver Calls. The CDCL SAT solvers used in core-guided MaxSAT algorithms

can support DRAT proof logging, and since the proof format used by VeriPB is a

114 Certified Core-Guided MaxSAT Solving

strict extension of DRAT (modulo small and purely syntactical modifications) it is

straightforward to provide proof logging for the part of the reasoning done in SAT

solver calls, and to add all learned clauses to the proof checker database.

Each invocation of the SAT solver returns either a new solution 𝛼 or a new

core 𝐾. When a solution 𝛼 with 𝑂orig(𝛼) < UB is obtained, it is logged in the proof,

which adds the objective-improving constraint

𝑂orig ≤ UB − 1 (3a)

(which is ∑
𝑏∈lits(𝑂orig)

coeff (𝑂orig , 𝑏) · 𝑏 ≥ 1 +
∑

𝑏∈lits(𝑂orig)
coeff (𝑂orig , 𝑏) −UB (3b)

in normalized form). A technical side remark is that later solutions with cost

greater than UB cannot successfully be logged, since they violate the constraint (3a)

added to the proof checker database, and so the proof logging routines make sure

to only log solutions that improve the current upper bound.

If the SAT solver instead returns a new core 𝐾, this clause is guaranteed to be a

reverse unit propagation (RUP) clause with respect to the set of clauses currently in

the solver database, and so we can use the RUP rule to add 𝐾 to the proof checker

database (which contains a superset of the clauses known by the solver). For our

book-keeping, we also add 𝐾 to the set 𝒦 . A special case is that 𝐾 could be the

contradictory empty clause, corresponding to the pseudo-Boolean constraint 0 ≥ 1.

This means that there are no solutions to the formula.

To optimize the efficiency of proof verification, constraints should be deleted

from the proof when they are no longer needed. Since SAT solver proofs are only

used to prove unsatisfiability this does not cause any issues, but when certifying

optimality we have to be careful in order not to create better-than-optimal solutions

(which could happen if, e.g., constraints in the input formula are removed). The

checked deletion rule [BGMN22] ensuring this in VeriPB does not have any analogue

in DRAT, so some care is needed here when translating SAT solver proofs into the

VeriPB format.

Incremental Totalizer with Structure Sharing. Different implementations of

OLL for MaxSAT differ in which encoding is used for the counting variables

introduced during objective reformulation [KP18, KP19, BB03]. The two solvers

we consider use totalizers [BB03], so we start by explaining this encoding and then

show how to provide proof logging for the clauses added to the proof checker

database.

The totalizer encoding for a set 𝐼 = {ℓ1 , . . . , ℓ𝑛} of literals is a CNF formula 𝒯
that defines counting variables 𝑦𝐼 , 𝑗 for 𝑗 = 1, . . . , 𝑛 such that for any assignment that

satisfies 𝒯 the variable 𝑦𝐼 , 𝑗 is true if and only if

∑𝑛
𝑖=1
ℓ𝑖 ≥ 𝑗. The structure of 𝒯 can

be viewed as a binary tree, with literals in 𝐼 at the leaves and with each internal

node 𝜂 associated with variables counting the true leaf literals in the subtree rooted

at 𝜂. The variables 𝑦𝐼 , 𝑗 are associated with the root of the tree.

4. Proof Logging for the OLL Algorithm for MaxSAT 115

More formally, given a set of literals 𝐼, we construct a binary tree with leaves

labelled by the literals in 𝐼. For every node 𝜂 of 𝒯 , let lits(𝜂) denote the leaves

in the subtree rooted at 𝜂; where it is convenient, we will overload 𝐼 to also refer

to the root note. For each internal node 𝜂, the totalizer encoding introduces the

counting variables 𝑆𝜂 = {𝑦𝜂,1 , . . . , 𝑦𝜂,|lits(𝜂)|}, the meaning of which can be encoded

recursively in terms of the variables 𝑆𝜂1
and 𝑆𝜂2

for the children 𝜂1 and 𝜂2 of 𝜂 by

the (pseudo-Boolean form of the) clauses

𝐶⇐𝜂 (𝛼, 𝛽, 𝜎) � 𝑦𝜂,𝜎 + 𝑦𝜂1 ,𝛼
+ 𝑦𝜂2 ,𝛽

≥ 1 (4a)

𝐶⇒𝜂 (𝛼, 𝛽, 𝜎) � 𝑦𝜂,𝜎+1
+ 𝑦𝜂1 ,𝛼+1 + 𝑦𝜂2 ,𝛽+1 ≥ 1 (4b)

for all integers 𝛼, 𝛽, 𝜎 such that 𝛼 + 𝛽 = 𝜎 and 0 ≤ 𝛼 ≤ |lits(𝜂1)|, 0 ≤ 𝛽 ≤ |lits(𝜂2)|,
and 0 ≤ 𝜎 ≤ |lits(𝜂)|. We use the notational conventions in (4a)–(4b) that 𝑦ℓ ,1 = ℓ
for all leaves ℓ , and that 𝑦𝜂,0 = 1 and 𝑦𝜂,|lits(𝜂)|+1

= 0 for all nodes 𝜂 (so that clauses

containing 𝑦𝜂,0 or 𝑦𝜂,|lits(𝜂)|+1
can be simplified to binary clauses or be omitted when

they are satisfied). The clauses 𝐶⇒𝜂 (𝛼, 𝛽, 𝜎) in (4b) are not necessarily added to the

clause database of the MaxSAT solver, but are sometimes included for improved

propagation.

We now turn to the question of how to derive the clauses (4a)–(4b) encoding

the meaning of the counting variables 𝑦𝐼 , 𝑗 in the proof. This is a two-step process.

First, reified pseudo-Boolean (and, in general, non-clausal) constraints 𝐶⇒
reif
(𝑦𝜂, 𝑗)

and 𝐶⇐
reif
(𝑦𝜂, 𝑗) as in (1a)–(1b), encoding that 𝑦𝜂, 𝑗 holds if and only if

∑
ℓ∈lits(𝜂) ℓ ≥ 𝑗,

are derived by redundance-based strengthening. Then the clauses added to the

MaxSAT solver are derived from these pseudo-Boolean constraints. Although we

omit the details due to space constraints, it is not hard to show that for any internal

node 𝜂 with children 𝜂1 and 𝜂2, the clauses 𝐶⇐𝜂 (𝛼, 𝛽, 𝜎) and 𝐶⇒𝜂 (𝛼, 𝛽, 𝜎) in (4a)–(4b)

can be derived from the constraints 𝐶⇐
reif
(𝑦𝜂,𝜎), 𝐶⇒

reif
(𝑦𝜂,𝜎), 𝐶⇐

reif
(𝑦𝜂1 ,𝛼), 𝐶⇒reif

(𝑦𝜂1 ,𝛼),
𝐶⇐

reif
(𝑦𝜂2 ,𝛽), and 𝐶⇒

reif
(𝑦𝜂2 ,𝛽) by standard cutting planes derivations as in [VDB22].

In particular, the certification of these totalizers can be done incrementally: clauses

in the encoding can be derived as the corresponding counter variables are lazily

introduced in the OLL algorithm.

This approach is also compatible with structure sharing, where subtrees of

a previously constructed totalizer tree can be reused (to avoid doing the same

work twice). The only constraints from a subtree rooted at 𝜂∗ that are needed

when generating another totalizer encoding at a higher level are the constraints

𝐶⇒
reif
(𝑦𝜂∗ ,𝜎) and 𝐶⇐

reif
(𝑦𝜂∗ ,𝜎) defining the counter variables in the subtree root 𝜂∗.

To decrease the memory usage of the proof checker, it can be useful to delete

reification constraints from the proof once we know that they will no longer be

needed. Without structure sharing, for an internal node 𝜂, once all clauses that

mention 𝑦𝜂, 𝑗 are created, the constraints 𝐶⇐
reif
(𝑦𝜂, 𝑗) and 𝐶⇒

reif
(𝑦𝜂, 𝑗)will not be used

anymore and can thus be deleted. On the other hand, structure sharing reuses as

many counting variables as possible, even over multiple iterations of weight-aware

core extraction. This means that 𝐶⇐
reif
(𝑦𝜂, 𝑗) and 𝐶⇒

reif
(𝑦𝜂, 𝑗) need to be retained, even

after all clauses in the totalizer encoding for all parents of node 𝜂 have been created.

116 Certified Core-Guided MaxSAT Solving

Objective Reformulation. If counting variables 𝑦𝐾,𝑖 for 𝑖 = 2, . . . , 𝑠𝐾 have been

introduced for the core 𝐾, then the objective reformulation with respect to 𝐾 is

derived with the help of the constraint∑
𝑏∈𝐾

𝑏 ≥ 1 +
𝑠𝐾∑
𝑖=2

𝑦𝐾,𝑖 (5a)

(or ∑
𝑏∈𝐾

𝑏 +
𝑠𝐾∑
𝑖=2

𝑦𝐾,𝑖 ≥ 𝑠𝐾 (5b)

in normalized form). The constraint (5b) can in turn be obtained from the core

clause 𝐾 and the reified constraints 𝐶⇒
reif
(𝑦𝐾,𝑗). It is clear that this should be possible,

since the latter constraints define the variables 𝑦𝐾,𝑗 precisely so that (5b) should

hold, and we refer to Algorithm 5 in [GMNO22] for the details. Also, each time a

new counting variable 𝑦𝐾,𝑗 is introduced for a core 𝐾, we add it to (5b) to maintain

this constraint as an invariant.

To illustrate how this update works, suppose we have a core 𝐾 �
∑𝑛
𝑖=1
𝑏𝑖 ≥ 1

for which

∑𝑛
𝑖=1
𝑏 +∑𝑠𝐾−1

𝑖=2
𝑦𝐾,𝑖 ≥ 𝑠𝐾 − 1 has already been derived. The next counting

variable 𝑦𝐾,𝑠𝐾 is introduced by the reification 𝑠𝐾 · 𝑦𝐾,𝑠𝐾 +
∑𝑛
𝑖=1
𝑏𝑖 ≥ 𝑠𝐾 . The previous

constraint is multiplied by 𝑠𝐾 − 1 and added to the new reified constraint, yielding

𝑠𝐾 ·
∑𝑛
𝑖=1
𝑏 + (𝑠𝐾 − 1) · ∑𝑠𝐾−1

𝑖=2
𝑦𝐾,𝑖 + 𝑠𝐾 · 𝑦𝐾,𝑠𝐾 ≥ (𝑠𝐾 − 1) · 𝑠𝐾 + 1. Dividing this last

constraint by 𝑠𝐾 results in

∑𝑛
𝑖=1
𝑏 +∑𝑠𝐾

𝑖=2
𝑦𝐾,𝑖 ≥ 𝑠𝐾 , which is the desired updated

constraint.

For a set of extracted cores 𝒦 , we can derive the objective reformulation

constraint 𝑂orig ≥ 𝑂ref by multiplying (5b) for each 𝐾 ∈ 𝒦 by the cost w(𝐾, 𝑂ref)
of 𝐾 and summing up all these multiplied constraints. The fact that we have

an inequality 𝑂orig ≥ 𝑂ref rather than an equality is due to the incremental use

of totalizers. More specifically, if 𝑠𝐾 = |lits(𝐾)| would hold for every 𝐾 ∈ 𝒦 , it

would be possible to derive 𝑂orig = 𝑂ref instead. Here we would like to stress one

subtlety for developing proof logging for OLL: as the algorithm progresses and

more output variables of totalizers are introduced (i.e., the counters 𝑠𝐾 increase),

the reformulated objective potentially also increases—because of added counted

variables when 𝑠𝐾 increases we have the inequality 𝑂orig ≥ 𝑂new

ref
≥ 𝑂old

ref
. For this

reason, the old constraint 𝑂orig ≥ 𝑂old

ref
cannot be used to derive 𝑂orig ≥ 𝑂new

ref
after

objective reformulation. Instead, we have to derive 𝑂orig ≥ 𝑂ref from scratch each

time the solver argues with the reformulated objective. For doing this we need to

have access to the entire set𝒦 of cores.

Proving Optimality. When the solver has found an optimal solution and estab-

lished a matching lower bound, optimality is certified in the proof log using a proof

by contradiction from the objective reformulation constraint 𝑂orig ≥ 𝑂ref in (2) and

the (normalized form of the) objective-improving constraint 𝑂orig ≤ UB − 1 in (3b).

4. Proof Logging for the OLL Algorithm for MaxSAT 117

If we add these two constraints and cancel like terms, we get∑
𝑏′∈lits(𝑂ref)

coeff (𝑂ref , 𝑏
′) · 𝑏′ ≥ 1 −UB + LB +

∑
𝑏′∈lits(𝑂ref)

coeff (𝑂ref , 𝑏
′) . (6)

Since we have UB = LB when the optimal solution has been found, and since∑
𝑏′∈lits(𝑂ref) coeff (𝑂ref , 𝑏

′) · 𝑏′ cannot possibly exceed

∑
𝑏′∈lits(𝑂ref) coeff (𝑂ref , 𝑏

′), the

constraint (6) can be simplified to contradiction 0 ≥ 1.

Intrinsic At-Most-One Constraints. Certifying intrinsic at-most-one constraints

for a set 𝒮 ⊆ lits(𝑂ref) of literals requires deriving (i) the at-most-one constraint

stating that at most one 𝑏 ∈ 𝒮 is assigned to 0 by any solution and (ii) constraints

defining the variable ℓ𝒮 . Such sets 𝒮 are detected by unit propagation that

implicitly derives implications 𝑏 𝑖 ⇒ 𝑏 𝑗 in the form of binary clauses 𝑏𝑖 + 𝑏 𝑗 ≥ 1

for every pair of variables in 𝒮. In the proof log, all these binary clauses can be

obtained by RUP steps, after which the at-most-one constraint

∑
𝑏∈𝒮 𝑏 ≤ 1 (which

is

∑
𝑏∈𝒮 𝑏 ≥ |𝒮| − 1 in normalized form) is derived by a standard cutting planes

derivation (see, e.g., [CCT87]).

The reified constraints ℓ𝒮 ⇐
∑
𝑏∈𝒮 𝑏 ≥ |𝑆 | and ℓ𝒮 ⇒

∑
𝑏∈𝒮 𝑏 ≥ |𝑆 | defining

the variable ℓ𝒮 (which are ℓ𝒮 +
∑
𝑏∈𝒮 𝑏 ≥ 1 and ℓ𝒮 +

∑
𝑏∈𝒮 𝑏 ≥ |𝒮|, respectively, in

normalized form) are derived by redundance-based strengthening. Note that the

latter constraint does not exist in the MaxSAT solver, but we need it in the proof in

order to derive the objective reformulation for the at-most-one constraint.

Hardening. Formally, hardening corresponds to deriving 𝑏 ≥ 1 in the proof

for some literal 𝑏 ∈ lits(𝑂ref) for which UB < LB + coeff (𝑂ref , 𝑏) holds. Such an

inequality 𝑏 ≥ 1 is implied by RUP if we first derive the constraint (6), since

assigning 𝑏 = 1 results in (6) being contradicting.

Upper Bound Estimation. A final technical proof logging detail is that some

implementations of the OLL algorithm for MaxSAT—including the Python-based

version of CGSS—do not use the actual cost of the solution found by the SAT solver

as the upper bound UB when hardening. In order to avoid the overhead in Python

of extracting the solution from the SAT solver, an upper bound estimate UBest is

computed instead based on the initial assignment passed to the SAT solver in

the call. Since any valid estimate is at least the cost of the solution found (i.e.,

UBest ≥ UB), hardening steps based on UBest can be justified by first deriving

𝑂orig ≤ UBest − 1, which follows from the latest objective-improving constraint (3a).

However, in order to handle solutions correctly in the proof, the proof logging

routines need to extract the solution found by the solver and compute the actual

cost, which means that a Python-based solver will not be able to avoid this overhead

when running with proof logging.

118 Certified Core-Guided MaxSAT Solving

Table 1: Example proof produced by a certified OLL solver.

id Pseudo-Boolean constraint Justification
(1) 𝑏1 + 𝑥 ≥ 1 input

(2) 𝑏2 + 𝑥 ≥ 1 input

(3) 𝑏3 + 𝑏4 ≥ 1 input

(4) 5𝑏1 + 5𝑏2 + 𝑏3 + 𝑏4 ≥ 6 log solution 𝛼1

(5) 𝑏1 + 𝑏2 ≥ 1 RUP

(6) 𝑏1 + 𝑏2 + 𝑦𝐾1 ,2 ≥ 1 reification

(7) 2𝑦𝐾1 ,2
+ 𝑏1 + 𝑏2 ≥ 2 reification

(8) 5𝑏1 + 5𝑏2 + 5𝑦𝐾1 ,2
≥ 10 (((5) + (7))/2) · 5

(9) 𝑏3 + 𝑏4 + 5𝑦𝐾1 ,2
≥ 6 (4) + (8)

(10) 𝑦𝐾1 ,2
≥ 1 RUP

(11) 𝑏3 + 𝑏4 ≥ 1 RUP

(12) 𝑏3 + 𝑏4 + 𝑦𝐾2 ,2 ≥ 1 reification

(13) 2𝑦𝐾2 ,2
+ 𝑏3 + 𝑏4 ≥ 2 reification

(14) 𝑏3 + 𝑏4 + 𝑦𝐾2 ,2
≥ 2 ((11) + (13))/2

(15) 5𝑏1 + 5𝑏2 + 𝑏3 + 𝑏4 ≥ 7 log solution 𝛼2

(16) 5𝑏1 + 5𝑏2 + 𝑏3 + 𝑏4 + 5𝑦𝐾1 ,2
+ 𝑦𝐾2 ,2

≥ 12 (8) + (14)
(17) 5𝑦𝐾1 ,2

+ 𝑦𝐾2 ,2
≥ 7 (15) + (16), ⊥

Worked-Out Example. We end this section with a complete, worked-out example

of OLL solving and proof logging for the toy MaxSAT instance (𝐹, 𝑂)with formula

𝐹 = {(𝑏1 ∨ 𝑥), (¬𝑥 ∨ 𝑏2), (𝑏3 ∨ 𝑏4)} and objective 𝑂 = 5𝑏1 + 5𝑏2 + 𝑏3 + 𝑏4.

After initialization, the internal SAT solver of the OLL algorithm is loaded with

the clauses of 𝐹 and the proof consists of constraints (1)–(3) in Table 1. The OLL

search begins by invoking the SAT solver on the clauses in 𝐹 in order to check

the existence of any solutions. Assume the SAT solver returns the solution 𝛼1

assigning 𝑏1 = 𝑏3 = 𝑏4 = 1 and 𝑏2 = 𝑥 = 0. This solution has objective value

𝑂(𝛼1) = 𝑂orig(𝛼1) = 7 so the algorithm updates UB = 7 and logs the objective-

improving constraint (4) in Table 1 equivalent to 𝑂orig ≤ 6.

Assume the stratification bound wstrat is initialised to 2. Then the solver is

invoked with 𝑏1 = 𝑏2 = 0 and returns the core 𝐾1 � 𝑏1 + 𝑏2 ≥ 1, which is added to

the proof as constraint (5). As already mentioned, core clauses are guaranteed to

be RUP with respect to the set of clauses in the SAT solver database, which are

also added to the proof.

For simplicity, we ignore WCE and structure sharing in this example, meaning

that the solver next reformulates the objective based on 𝐾1 by introducing clauses

enforcing 𝑦𝐾1 ,2 ⇐ (𝑏1 + 𝑏2 ≥ 2) for the new counting variable 𝑦𝐾1 ,2. This is

done by (i) introducing the pseudo-Boolean constraints (6) and (7) in Table 1

by reification, and (ii) deriving the clauses corresponding to these constraints.

While the MaxSAT solver only uses the implication (6), the proof also requires

constraint (7) corresponding to 𝑦𝐾1 ,2 ⇒ (𝑏1 + 𝑏2 ≥ 2). Conveniently, in this toy

5. Experimental Evaluation 119

example 𝑦𝐾1 ,2 ⇐ (𝑏1 + 𝑏2 ≥ 2) is already the clause 𝑏1 + 𝑏2 + 𝑦𝐾1 ,2 ≥ 1, so step (ii)

is not needed. For the general case, we derive totalizer clauses as explained in

Section 4. Conceptually, we now replace 5𝑏1 + 5𝑏2 by 5𝑦𝐾1 ,2 + 5 to obtain the

reformulated objective 𝑂ref = 𝑏3 + 𝑏3 + 5𝑦𝐾1 ,2 + 5 with lower bound LB = 5. The

core 𝐾1 says that at least one of 𝑏1 and 𝑏2 must be true, thus incurring a cost of 5,

and 𝑦𝐾1 ,2 is added to the objective to indicate if both of them incur cost.

Since it now holds that coeff (𝑂ref , 𝑦𝐾1 ,2) + LB = 5 + 5 ≥ 7 = UB, the literal 𝑦𝐾1 ,2

is hardened to 0. In order to certify this hardening step, i.e., derive 𝑦𝐾1 ,2
≥ 1, the

proof logger first derives the objective reformulation constraint 5𝑏1+5𝑏2+𝑏3+𝑏4 ≥
𝑏3 + 𝑏4 + 5𝑦𝐾1 ,2 + 5 enforced by line (8) in Table 1. The objective-improving and

objective reformulation constraints are then added together to get constraint (9),

after which 𝑦𝐾1 ,2
≥ 1 is obtained by a RUP step.

The next SAT solver call with 𝑏3 = 𝑏4 = 0 returns as core the input clause

𝑏3 + 𝑏4 ≥ 1, and reformulation (lines (11)–(13)) yields 𝑂ref = 5𝑦𝐾1 ,2 + 𝑦𝐾2 ,2 + 6 with

LB = 6. Now suppose the SAT solver finds the solution 𝛼2 with 𝑏2 = 𝑏3 = 𝑥 = 1

and all other variables set to 0, resulting in the objective-improving constraint (15).

Since 𝑂orig(𝛼2) = 6 = LB, the solver terminates and reports 𝛼2 to be optimal. To

certify that this is correct, another objective reformulation constraint (16) is derived,

after which the contradictory constraint (17) is obtained by adding (15) and (16).

This proves that solutions with cost less than 6 do not exist.

5 Experimental Evaluation
To evaluate the proof logging techniques developed in this paper, we have imple-

mented them in the state-of-the-art MaxSAT solver CGSS [CGSa, IBJ21], which uses

the OLL algorithm and structure-sharing totalizers. We employed VeriPB [Ver],

extended to parse MaxSAT instances in the standard WCNF format, to verify the

certificates of correctness emitted by the certifying solver.

Our experiments were conducted on machines with an 11th Gen Intel(R)

Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory. Each benchmark ran

exclusively on a single machine with a memory limit of 14 GB and a time limit of

3 600 seconds for solving with CGSS and 36 000 seconds for checking the certificates

with VeriPB. As benchmarks we used all 594 weighted and 607 unweighted

instances from the complete track of the MaxSAT Evaluation 2022 [Max22], where

an an instance (𝐹, 𝑂) is unweighted if all coefficents coeff (𝑂, ℓ) are equal. The data

from our experiments can be found in [BBN
+
23].

Overhead of Proof Logging. To evaluate the overhead in solver running time, we

compared the standard CGSS solver [CGSb] without proof logging (but with the

bug fixes discussed below) to CGSS with proof logging as described in this paper.

With proof logging 803 instances are solved within the resource limits, which is 3

instances less than without proof logging (see Figure 1). Adding proof logging

slowed down CGSS by about 8.8% in the median over all solved instances. For

95% of the instances CGSS with proof logging was at most 36.2% slower. Thus,

120 Certified Core-Guided MaxSAT Solving

100 101 102 103 104

100

101

102

103

104

timeout

memout

tim
eo

u
t

m
em

o
u
t

CGSS without proof logging (s)

C
G
S
S
w
it
h
p
ro
o
f
lo
gg
in
g
(s
)

unweighted
weighted

Figure 1: Running time of CGSS with and

without proof logging.

100 101 102 103 104 105

100

101

102

103

104

105

timeout

memout

CGSS running time with proof logging (s)

V
e
r
iP

B
ru
n
n
in
g
ti
m
e
(s
)

unweighted
weighted

Figure 2: CGSS running time compared to

time required for proof checking.

the proof logging overhead seems perfectly manageable and should present no

serious obstacles to using proof logging in core-guided MaxSAT solvers.

Overhead of Proof Checking. To assess the efficiency of proof checking, we

compared the running time of CGSS with proof logging to the time taken by

VeriPB for checking the generated proofs. The instances that were not solved

by CGSS within the resource limits were filtered out, since the running time for

checking an incomplete proof is inconclusive.

VeriPB successfully checked the proofs for 747 out of the 803 instances solved

by CGSS (see Figure 2); 42 instances failed due to the memory limit and 14 instances

failed due to the time limit. Checking the proof took about 3 times the solving time

in the median for successfully checked instances. About 87% of the successfully

checked instances were checked within 10 times the solving time.

Proof checking time compared to solver running time varies widely, but our

experiments indicate that the performance of VeriPB is sufficient in most cases,

and verification time scales linearly with the size of the proof for a majority of

the instances. However, there is room to improve VeriPB, where focus so far

has been on proof logging strength rather than performance. For the instances

where checking is 100 times slower than solving, the main bottleneck is the proof

generated by the SAT solver, which could be addressed by standard techniques for

checking DRAT proofs, and checking logged solutions (when objective improving

constraints (3a) are added) could also be implemented more efficiently.

Bugs Discovered by Proof Logging. Our work on implementing proof logging

in CGSS led to the discovery of two bugs, which were also present in the solver RC2

on which CGSS is based, but have now been fixed in CGSS in commit 5526d04 and

in RC2 in commit d0447c3. The bugs are due to a slightly different implementation

of OLL compared to the description in Section 3.

5. Experimental Evaluation 121

Table 2: Illustration of discovered bug (where 𝑦𝑖 ,𝑘 should be read as 𝑦𝐾𝑖 ,𝑘).

#iter Literals considered (wstrat = 2) Core 𝐾#iter extracted

1 {𝑏𝑖 , 𝑒𝑖 | 𝑖 = 1 . . . 5} 𝐾1 =
∑

5

𝑖=1
𝑏𝑖 ≥ 1

2 {𝑒𝑖 | 𝑖 = 1 . . . 5} ∪ {𝑦1,2} 𝐾2 = 𝑦1,2 + 𝑒2 + 𝑒4 ≥ 1

3 {𝑒𝑖 | 𝑖 = 1 . . . 3, 5} ∪ {𝑦1,2 , 𝑦1,3} ∪ {𝑦2,2} 𝐾3 = 𝑦1,3 + 𝑒1 + 𝑒2 + 𝑒5 ≥ 1

4 {𝑒𝑖 | 𝑖 = 1 . . . 3} ∪ {𝑦1,2 , 𝑦1,4} ∪ {𝑦2,2 , 𝑦3,2} 𝐾4 = 𝑦1,2 + 𝑒1 + 𝑒2 ≥ 1

5 {𝑒𝑖 | 𝑖 = 1 . . . 3} ∪ {𝑦1,4} ∪ {𝑦2,2 , 𝑦3,2 , 𝑦4,2} 𝐾5 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑦1,4 + 𝑦2,2 ≥ 1

6 {𝑒3} ∪ {𝑦1,5} ∪ {𝑦2,3} ∪ {𝑦3,2 , 𝑦4,2 , 𝑦5,2} Result is SAT

#iter 𝑂ref (after reformulation of 𝐾#iter)

0 10

(∑
5

𝑖=1
𝑏𝑖
)
+ 11𝑒1 + 14𝑒2 + 11𝑒3 + 3𝑒4 + 2𝑒5 + 𝑜1 + 𝑜2

1 11𝑒1 + 14𝑒2 + 11𝑒3 + 3𝑒4 + 2𝑒5 + 10𝑦1,2 + 𝑜1 + 𝑜2 + 10

2 11𝑒1 + 11𝑒2 + 11𝑒3 + 2𝑒5 + 7𝑦1,2 + 3𝑦1,3 + 3𝑦2,2 + 𝑜1 + 𝑜2 + 13

3 9𝑒1 + 9𝑒2 + 11𝑒3 + 7𝑦1,2 + 𝑦1,3 + 2𝑦1,4 + 3𝑦2,2 + 2𝑦3,2 + 𝑜1 + 𝑜2 + 15

4 2𝑒1 + 2𝑒2 + 11𝑒3 + 8y1,3 + 2𝑦1,4 + 3𝑦2,2 + 2𝑦3,2 + 7𝑦4,2 + 𝑜1 + 𝑜2 + 22

5 9𝑒3 + 8y1,3 + 2𝑦1,5 + 𝑦2,2 + 2𝑦2,3 + 2𝑦3,2 + 7𝑦4,2 + 2𝑦5,2 + 𝑜1 + 𝑜2 + 24

First, when a counting variable 𝑦𝐾old ,𝑖 for a core 𝐾old appears for the first time in

a later core 𝐾new, the next counting variable 𝑦𝐾old ,𝑖+1 is added to the reformulated

objective with coefficient w

(
𝐾new , 𝑂new

)
rather than w

(
𝐾old , 𝑂old

)
. The coefficient

of 𝑦𝐾old ,𝑖+1 is then further increased when 𝑦𝐾old ,𝑖 is found in future cores. Second,

rather than computing the upper bound UB from an actual solution, CGSS uses

a weaker estimate UBest obtained by summing the current lower bound and the

coefficients of all literals 𝑏 where coeff (𝑂ref , 𝑏) < wstrat (meaning that these literals

were not set to 0 in the SAT solver call, and so could potentially be true in the

solution).

The bugs we detected could lead to the solver producing an overly optimistic

estimate UBest < UB. The first way this can happen is when the contributions of

counting variables 𝑦𝐾,𝑘 in the reformulated objective are underestimated due to

too small coefficients. The second bug is when the coefficient of 𝑦𝐾old ,𝑖+1 is first

lowered below wstrat and then raised above this threshold again when 𝑦𝐾old ,𝑖 is

found in a core. Then CGSS fails to assume 𝑦𝐾old ,𝑖+1 = 0 in future solver calls. These

bugs can result in erroneous hardening as detailed in the next example.

Example 1. Given a MaxSAT instance (𝐹, 𝑂)with 𝐹 =
{(∨

5

𝑖=1
𝑏𝑖
)
, (𝑜1∨𝑜2)

}
∪{𝑏𝑖∨𝑒𝑖 |

𝑖 = 1, . . . , 5} and 𝑂 =
(∑

5

𝑖=1
10 · 𝑏𝑖

)
+ 11 · 𝑒1 + 14 · 𝑒2 + 11 · 𝑒3 + 3 · 𝑒4 + 2 · 𝑒5 + 𝑜1 + 𝑜2,

assume the stratification bound is wstrat = 2. Table 2 displays a possible CGSS

run for this instance, except that for simplicity we assume one core extraction

per iteration and no use of any other heuristics. The upper half of the table lists

the variables set to 0 in solver calls, the extracted core, and the lower bound

derived from it. The lower half of the table provides the reformulated objective.

Even though the coefficient of 𝑦𝐾1 ,3 is increased to 8 after the fourth core, this

variable is not set to 0 in subsequent iterations, which allows the solver to finish

122 Certified Core-Guided MaxSAT Solving

the stratification level after extracting 6 cores with a solution that sets to true

the variables 𝑏1 , 𝑏2 , 𝑏3 , 𝑏5 , 𝑒4 , 𝑜1 , 𝑜2 , 𝑦𝐾2 ,2 and 𝑦𝐾1 ,𝑖 for 𝑖 = 1, . . . , 4, and all other

variables to false. The cost of this solution is 45.

Now CGSS would incorrectly estimate UBest = LB+ 4 = 28, since 𝑦𝐾1 ,3 and 𝑦𝐾2 ,2

(abbreviated as 𝑦1,3 and 𝑦2,2 in the table) both have coefficient 1 in the current

reformulated objective. This is lower than the cost 45 of the solution found (and

even than the optimum 36), and erroneously allows hardening—which considers

𝑦𝐾1 ,3 with the correct coefficient 8—to fix 𝑦𝐾1 ,3 = 0, even though 𝑏1 , 𝑏2 and 𝑏3 (and

hence also 𝑦𝐾1 ,3) are true in every minimal-cost solution.

In our computational experiments there were cases of faulty hardening, but all

incorrectly fixed values happened to agree with some optimal solution and so we

never observed incorrect results. Proof logging detected the problem, however,

since the derivations of the buggy hardening steps failed during proof checking.

Interestingly, what proof logging did not turn up was any examples of mistaken

claims 𝑂orig ≤ UBest − 1 when the cost of a found solution was estimated. The issue

with mistaken estimates due to faulty stratification was instead discovered while

analyzing and fixing the hardening bug. The moral of this is that even if all results

are certified as correct, this does not certify that the code is free from bugs that

have not yet manifested themselves. However, proof logging still guarantees that

even if the solver would have undiscovered bugs, we can always trust computed

results for which the accompanying proofs pass verification.

6 Concluding Remarks
In this work, we develop pseudo-Boolean proof logging techniques for core-guided

MaxSAT solving and implement them in the solver CGSS [IBJ21] with support

for the full range of sophisticated reasoning techniques it uses. To the best of our

knowledge, this is the first time a state-of-the-art MaxSAT solver has been enhanced

to output machine-verifiable proofs of correctness. We have made a thorough

evaluation on benchmarks from the MaxSAT Evaluation 2022 using the VeriPB

proof checker [GN21, BGMN22], and find that proof logging overhead is perfectly

manageable and that proof verification time, while leaving room for improvement,

is definitely practically feasible. Our work also showcases the benefit of proof

logging as a debugging tool—erroneous proofs produced by CGSS revealed two

subtle bugs in the solver that previous extensive testing had failed to uncover.

Regarding proof verification time, further investigation is needed into the rare

cases where verification is much slower (say, more than a factor 10) than solving.

There are reasons to believe, though, that this is not a problem of MaxSAT proof

logging per se, but rather is explained by features not yet added to VeriPB, which

is a tool currently undergoing very active development. So far, the proof checker

has been optimized for other types of reasoning than the clausal reverse unit

propagation (RUP) steps that dominate SAT proofs. Also, VeriPB lacks the ability

to trim proofs during checking as in [HHW13a]. Finally, introducing a binary proof

References 123

format in addition to plain-text proofs would be another way to boost performance

of proof checking. But these are matters of engineering rather than research, and

can be taken care of once the proof logging technology as such has been developed

and has proven its worth.

The focus of this work is on core-guided MaxSAT solving, but we would like to

extend our techniques to solvers using linear SAT-UNSAT (LSU) solving (such as Pa-

cose [PRB18]) and implicit hitting set (IHS) search (such as MaxHS [DB13a, DB13b]).

Although there are certainly nontrivial technical challenges that will need to be

overcome, we are optimistic that our work paves the way towards a unified proof

logging system for the full range of modern MaxSAT solving approaches. Going

beyond MaxSAT, it would also be interesting to extend VeriPB proof logging to

pseudo-Boolean solvers using core-guided search [DGD
+
21] or IHS [SBJ21, SBJ22],

and perhaps even to similar techniques in constraint programming [GBDS20] and

answer set programming [AKMS12].

Acknowledgements

This work was partly carried out while some of the authors were visiting the

Simons Institute for the Theory of Computing at UC Berkeley for the extended

reunion of the program “Satisfiability: Theory, Practice, and Beyond” during the

spring of 2023. We also benefited greatly from the Dagstuhl Seminar 22411 “Theory

and Practice of SAT and Combinatorial Solving.” Additionally, we acknowledge

several inspirational discussions on certifying solvers and proof logging with,

among others, Ambros Gleixner, Stephan Gocht, and Ciaran McCreesh. The

computational experiments were enabled by resources provided by LUNARC at

Lund University.

Jeremias Berg was fully supported by the Academy of Finland under grant

342145. Bart Bogaerts and Dieter Vandesande were supported by Fonds Weten-

schappelĳk Onderzoek – Vlaanderen (project G070521N) and by the EU ICT-48

2020 project TAILOR (GA 952215). Jakob Nordström was supported by the

Swedish Research Council grant 2016-00782 and the Independent Research Fund

Denmark grant 9040-00389B. Andy Oertel was supported by the Wallenberg AI,

Autonomous Systems and Software Program (WASP) funded by the Knut and

Alice Wallenberg Foundation.

References

[ABGL12] Carlos Ansótegui, María Luisa Bonet, Joel Gabàs, and Jordi Levy.

Improving SAT-based weighted MaxSAT solvers. In Proceedings of

the 18th International Conference on Principles and Practice of Constraint

Programming (CP ’12), volume 7514 of Lecture Notes in Computer

Science, pages 86–101. Springer, October 2012.

124 Certified Core-Guided MaxSAT Solving

[ABM
+
11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah,

and Pascal Schweitzer. An introduction to certifying algorithms. it

- Information Technology Methoden und innovative Anwendungen der

Informatik und Informationstechnik, 53(6):287–293, December 2011.

[ADR15] Mario Alviano, Carmine Dodaro, and Francesco Ricca. A MaxSAT

algorithm using cardinality constraints of bounded size. In Proceed-

ings of the 24th International Joint Conference on Artificial Intelligence

(ĲCAI ’15), pages 2677–2683. AAAI Press, 2015.

[AG17] Carlos Ansótegui and Joel Gabàs. WPM3: An (in)complete algorithm

for weighted partial MaxSAT. Artificial Intelligence, 250:37–57, 2017.

[AGJ
+
18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and

Peter Nightingale. Metamorphic testing of constraint solvers. In

Proceedings of the 24th International Conference on Principles and Practice

of Constraint Programming (CP ’18), volume 11008 of Lecture Notes in

Computer Science, pages 727–736. Springer, August 2018.

[AKMS12] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten

Schaub. Unsatisfiability-based optimization in clasp. In Technical

Communications of the 28th International Conference on Logic Program-

ming (ICLP ’12), volume 17 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 211–221, September 2012.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer pro-

gramming: Analyzing 12 years of progress. In Michael Jünger and

Gerhard Reinelt, editors, Facets of Combinatorial Optimization, pages

449–481. Springer, 2013.

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for

linear pseudo-Boolean optimization. Technical Report MPI-I-95-2-

003, Max-Planck-Institut für Informatik, January 1995.

[BB03] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of

Boolean cardinality constraints. In Proceedings of the 9th International

Conference on Principles and Practice of Constraint Programming (CP ’03),

volume 2833 of Lecture Notes in Computer Science, pages 108–122.

Springer, September 2003.

[BBN
+
23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Di-

eter Vandesande. Experimental repository for “Certified core-guided

MaxSAT solving”. https://doi.org/10.5281/zenodo.7709687,

May 2023.

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nord-

ström. Certified symmetry and dominance breaking for combina-

torial optimisation. In Proceedings of the 36th AAAI Conference on

Artificial Intelligence (AAAI ’22), pages 3698–3707, February 2022.

https://doi.org/10.5281/zenodo.7709687

References 125

[BHvMW21] Armin Biere, Marĳn J. H. Heule, Hans van Maaren, and Toby Walsh,

editors. Handbook of Satisfiability, volume 336 of Frontiers in Artificial

Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[Bie06] Armin Biere. Tracecheck. http://fmv.jku.at/tracecheck/, 2006.

[BJ17] Jeremias Berg and Matti Järvisalo. Weight-aware core extraction in

SAT-based MaxSAT solving. In Proceedings of the 23rd International

Conference on Principles and Practice of Constraint Programming (CP ’17),

volume 10416 of Lecture Notes in Computer Science, pages 652–670.

Springer, August 2017.

[BJM21] Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum

satisfiabiliy. In Armin Biere, Marĳn J. H. Heule, Hans van Maaren,

and Toby Walsh, editors, Handbook of Satisfiability, volume 336 of

Frontiers in Artificial Intelligence and Applications, pages 929–991. IOS

Press, 2nd edition, February 2021.

[BLM07] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for

Max-SAT. Artificial Intelligence, 171(8-9):606–618, 2007.

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving

with provably correct results: Beyond satisfiability, and towards

constraint programming. Tutorial at the 28th International Conference

on Principles and Practice of Constraint Programming. Slides available at

http://www.jakobnordstrom.se/presentations/, August 2022.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT

solving. In Biere et al. [BHvMW21], chapter 7, pages 233–350.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational

mixed integer programming—A look back from the other side of the

tipping point. Annals of Operations Research, 149(1):37–41, February

2007.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back

techniques to solve real-world SAT instances. In Proceedings of the

14th National Conference on Artificial Intelligence (AAAI ’97), pages

203–208, July 1997.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the

complexity of cutting-plane proofs. Discrete Applied Mathematics,

18(1):25–38, November 1987.

[CGSa] Certifying version of the CGSS core-guided MaxSAT solver

with structure sharing. https://gitlab.com/MIAOresearch/
software/certified-cgss.

http://fmv.jku.at/tracecheck/
http://www.jakobnordstrom.se/presentations/
https://gitlab.com/MIAOresearch/software/certified-cgss
https://gitlab.com/MIAOresearch/software/certified-cgss

126 Certified Core-Guided MaxSAT Solving

[CGSb] CGSS, a core guided Max-SAT-algorithm using structure sharing

technique for enhanced cardinality constraints, built on RC2 and

PySAT. https://bitbucket.org/coreo-group/cgss/.

[CHH
+
17] Luís Cruz-Filipe, Marĳn J. H. Heule, Warren A. Hunt Jr., Matt Kauf-

mann, and Peter Schneider-Kamp. Efficient certified RAT verification.

In Proceedings of the 26th International Conference on Automated Deduc-

tion (CADE-26), volume 10395 of Lecture Notes in Computer Science,

pages 220–236. Springer, August 2017.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The

complexity of satisfiability of small depth circuits. In Revised Selected

Papers from the 4th International Workshop on Parameterized and Exact

Computation (IWPEC ’09), volume 5917 of Lecture Notes in Computer

Science, pages 75–85. Springer, September 2009.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A

hybrid branch-and-bound approach for exact rational mixed-integer

programming. Mathematical Programming Computation, 5(3):305–344,

September 2013.

[CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp.

Efficient certified resolution proof checking. In Proceedings of the 23rd

International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in

Computer Science, pages 118–135. Springer, April 2017.

[DB13a] Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP

solvers in MAXSAT. In Proceedings of the 16th International Conference

on Theory and Applications of Satisfiability Testing (SAT ’13), volume

7962 of Lecture Notes in Computer Science, pages 166–181. Springer,

July 2013.

[DB13b] Jessica Davies and Fahiem Bacchus. Postponing optimization to

speed up MAXSAT solving. In Proceedings of the 19th International

Conference on Principles and Practice of Constraint Programming (CP ’13),

volume 8124 of Lecture Notes in Computer Science, pages 247–262.

Springer, 2013.

[DGD
+
21] Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström,

and Peter Stuckey. Cutting to the core of pseudo-Boolean optimiza-

tion: Combining core-guided search with cutting planes reasoning.

In Proceedings of the 35th AAAI Conference on Artificial Intelligence

(AAAI ’21), pages 3750–3758, February 2021.

[EG21] Leon Eifler and Ambros Gleixner. A computational status update

for exact rational mixed integer programming. In Proceedings of the

22nd International Conference on Integer Programming and Combinatorial

https://bitbucket.org/coreo-group/cgss/

References 127

Optimization (IPCO ’21), volume 12707 of Lecture Notes in Computer

Science, pages 163–177. Springer, May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.

Justifying all differences using pseudo-Boolean reasoning. In Pro-

ceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),

pages 1486–1494, February 2020.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean

constraints into SAT. Journal on Satisfiability, Boolean Modeling and

Computation, 2(1-4):1–26, March 2006.

[FM06] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT

problem. In Proceedings of the 9th International Conference on Theory

and Applications of Satisfiability Testing (SAT ’06), volume 4121 of

Lecture Notes in Computer Science, pages 252–265. Springer, August

2006.

[FMSV20] Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals.

MaxSAT resolution and subcube sums. In Proceedings of the 23rd

International Conference on Theory and Applications of Satisfiability

Testing (SAT ’20), volume 12178 of Lecture Notes in Computer Science,

pages 295–311. Springer, July 2020.

[GBDS20] Graeme Gange, Jeremias Berg, Emir Demirović, and Peter J. Stuckey.

Core-guided and core-boosted search for constraint programming.

In Proceedings of the 17th International Conference on the Integration of

Constraint Programming, Artificial Intelligence, and Operations Research

(CPAIOR ’20), volume 12296 of Lecture Notes in Computer Science,

pages 205–221. Springer, September 2020.

[GMM
+
20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström,

Patrick Prosser, and James Trimble. Certifying solvers for clique and

maximum common (connected) subgraph problems. In Proceedings of

the 26th International Conference on Principles and Practice of Constraint

Programming (CP ’20), volume 12333 of Lecture Notes in Computer

Science, pages 338–357. Springer, September 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph

isomorphism meets cutting planes: Solving with certified solutions.

In Proceedings of the 29th International Joint Conference on Artificial

Intelligence (ĲCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An au-

ditable constraint programming solver. In Proceedings of the 28th

International Conference on Principles and Practice of Constraint Pro-

gramming (CP ’22), volume 235 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 25:1–25:18, August 2022.

128 Certified Core-Guided MaxSAT Solving

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel.

Certified CNF translations for pseudo-Boolean solving. In Proceed-

ings of the 25th International Conference on Theory and Applications of

Satisfiability Testing (SAT ’22), volume 236 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of

unsatisfiability for CNF formulas. In Proceedings of the Conference

on Design, Automation and Test in Europe (DATE ’03), pages 886–891,

March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning

efficiently using pseudo-Boolean proofs. In Proceedings of the 35th

AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777,

February 2021.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declar-

ative testing of constraints. In Proceedings of the 25th International

Conference on Principles and Practice of Constraint Programming (CP ’19),

volume 11802 of Lecture Notes in Computer Science, pages 565–582.

Springer, October 2019.

[HHW13a] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trim-

ming while checking clausal proofs. In Proceedings of the 13th In-

ternational Conference on Formal Methods in Computer-Aided Design

(FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying

refutations with extended resolution. In Proceedings of the 24th

International Conference on Automated Deduction (CADE-24), volume

7898 of Lecture Notes in Computer Science, pages 345–359. Springer,

June 2013.

[IBJ21] Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Refined core

relaxation for core-guided MaxSAT solving. In 27th International

Conference on Principles and Practice of Constraint Programming (CP ’21),

volume 210 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 28:1–28:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2021.

[IBJ22] Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Clause redun-

dancy and preprocessing in maximum satisfiability. In Proceedings

of the 11th International Joint Conference on Automated Reasoning (Ĳ-

CAR ’22), volume 13385 of Lecture Notes in Computer Science, pages

75–94. Springer, August 2022.

[IMM19] Alexey Ignatiev, António Morgado, and João P. Marques-Silva. RC2:

an efficient MaxSAT solver. Journal on Satisfiability, Boolean Modeling

and Computation, 11(1):53–64, September 2019.

References 129

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of

𝑘-SAT. Journal of Computer and System Sciences, 62(2):367–375, March

2001. Preliminary version in CCC ’99.

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomor-

phism and subgraph isomorphism problems faster through clique

neighbourhood constraints. In Proceedings of the 30th International

Joint Conference on Artificial Intelligence (ĲCAI ’21), pages 1396–1402,

August 2021.

[KP18] Michal Karpinski and Marek Piotrów. Competitive sorter-based

encoding of PB-constraints into SAT. In Proceedings of Pragmatics of

SAT, volume 59 of EPiC Series in Computing, pages 65–78. EasyChair,

2018.

[KP19] Michal Karpinski and Marek Piotrów. Encoding cardinality con-

straints using multiway merge selection networks. Constraints, 24(3-

4):234–251, 2019.

[LBJ20] Marcus Leivo, Jeremias Berg, and Matti Järvisalo. Preprocessing

in incomplete maxsat solving. In Proceedings of the 24th European

Conference on Artificial Intelligence (ECAI ’20), volume 325 of Frontiers

in Artificial Intelligence and Applications, pages 347–354. IOS Press,

2020.

[LM21] Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints.

In Handbook of Satisfiability, volume 336 of Frontiers in Artificial

Intelligence and Applications, pages 903–927. IOS Press, 2021.

[LNOR11] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric

Rodríguez-Carbonell. A framework for certified Boolean branch-

and-bound optimization. Journal of Automated Reasoning, 46(1):81–102,

2011.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2.

Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64,

July 2010.

[LXC
+
22] Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet,

and Kun He. Boosting branch-and-bound MaxSAT solvers with

clause learning. AI Communications, 35(2):131–151, 2022.

[MAGL11] João Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce.

Boolean lexicographic optimization: algorithms & applications.

Annals of Mathematics and Artificial Intelligence, 62(3-4):317–343, 2011.

[Max22] MaxSAT evaluation 2022. https://maxsat-evaluations.github.
io/2022, August 2022.

https://maxsat-evaluations.github.io/2022
https://maxsat-evaluations.github.io/2022

130 Certified Core-Guided MaxSAT Solving

[MDM14] António Morgado, Carmine Dodaro, and João P. Marques-Silva. Core-

guided MaxSAT with soft cardinality constraints. In Proceedings of

the 20th International Conference on Principles and Practice of Constraint

Programming (CP ’14), volume 8656 of Lecture Notes in Computer

Science, pages 564–573. Springer, September 2014.

[MIB
+
19] António Morgado, Alexey Ignatiev, María Luisa Bonet, João P.

Marques-Silva, and Samuel R. Buss. DRMaxSAT with MaxHS:

First contact. In Proceedings of the 22nd International Conference on

Theory and Applications of Satisfiability Testing (SAT ’19), volume 11628

of Lecture Notes in Computer Science, pages 239–249. Springer, July

2019.

[MJML14] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce.

Incremental cardinality constraints for MaxSAT. In Proceedings of

the 20th International Conference on Principles and Practice of Constraint

Programming (CP ’14), volume 8656 of Lecture Notes in Computer

Science, pages 531–548. Springer, September 2014.

[MM11] António Morgado and João Marques-Silva. On validating Boolean

optimizers. In Proceedings of the 23rd IEEE International Conference on

Tools with Artificial Intelligence, (ICTAI ’11), pages 924–926, 2011.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pas-

cal Schweitzer. Certifying algorithms. Computer Science Review,

5(2):119–161, May 2011.

[MMZ
+
01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao

Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT solver.

In Proceedings of the 38th Design Automation Conference (DAC ’01),

pages 530–535, June 2001.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algo-

rithm for propositional satisfiability. IEEE Transactions on Computers,

48(5):506–521, May 1999. Preliminary version in ICCAD ’96.

[NB14] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability

using core-guided maxsat resolution. In Proceedings of the 28th AAAI

Conference on Artificial Intelligence (AAAI ’14), pages 2717–2723. AAAI

Press, 2014.

[PCH20] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Towards

bridging the gap between SAT and Max-SAT refutations. In Proceed-

ings of the 32nd IEEE International Conference on Tools with Artificial

Intelligence (ICTAI ’20), pages 137–144, November 2020.

[PCH21] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. A proof

builder for Max-SAT. In Proceedings of the 24th International Conference

References 131

on Theory and Applications of Satisfiability Testing (SAT ’21), volume

12831 of Lecture Notes in Computer Science, pages 488–498. Springer,

July 2021.

[PCH22] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Proofs

and certificates for Max-SAT. Journal of Artificial Intelligence Research,

75:1373–1400, December 2022.

[PRB18] Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic polynomial

watchdog encoding for solving weighted MaxSAT. In Proceedings of

the 21st International Conference on Theory and Applications of Satisfi-

ability Testing (SAT ’18), volume 10929 of Lecture Notes in Computer

Science, pages 37–53. Springer, July 2018.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Hand-

book of Constraint Programming, volume 2 of Foundations of Artificial

Intelligence. Elsevier, 2006.

[SBJ21] Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-Boolean

optimization by implicit hitting sets. In Proceedings of the 27th Interna-

tional Conference on Principles and Practice of Constraint Programming

(CP ’21), volume 210 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 51:1–51:20, October 2021.

[SBJ22] Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Improvements

to the implicit hitting set approach to pseudo-Boolean optimiza-

tion. In Proceedings of the 25th International Conference on Theory and

Applications of Satisfiability Testing (SAT ’22), volume 236 of Leib-

niz International Proceedings in Informatics (LIPIcs), pages 13:1–13:18,

August 2022.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb:

A certified MaxSAT solver. In Proceedings of the 16th International

Conference on Logic Programming and Non-monotonic Reasoning (LP-

NMR ’22), volume 13416 of Lecture Notes in Computer Science, pages

429–442. Springer, September 2022.

[Ver] VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/
MIAOresearch/software/VeriPB.

https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB

132 Certified Core-Guided MaxSAT Solving

Pa
pe

r
II

I

Certifying Without Loss of
Generality Reasoning in

Solution-Improving Maximum
Satisfiability

Abstract
Proof logging has long been the established method to certify correctness of

Boolean satisfiability (SAT) solvers, but has only recently been introduced for

SAT-based optimization (MaxSAT). The focus of this paper is solution-improving

search (SIS), in which a SAT solver is iteratively queried for increasingly better

solutions until an optimal one is found. A challenging aspect of modern SIS solvers

is that they make use of complex “without loss of generality” arguments that are

quite involved to understand even at a human meta-level, let alone to express in a

simple, machine-verifiable proof.

In this work, we develop pseudo-Boolean proof logging methods for solution-

improving MaxSAT solving, and use them to produce a certifying version of the

state-of-the-art solver Pacose with VeriPB proofs. Our experimental evaluation

demonstrates that this approach works in practice. We hope that this is yet another

step towards general adoption of proof logging in MaxSAT solving.

1 Introduction
Thanks to tremendous progress over the last decades on algorithms for combinato-

rial search and optimization, today NP-hard problems are routinely solved in many

practical applications. Unfortunately, as these algorithms get more and more sophis-

ticated, it also gets more and more challenging to avoid errors sneaking in during

Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesand.

“Certifying Without Loss of Generality Reasoning in Solution-Improving Maximum Satisfiability”. In

Proceedings of the 30th International Conference on Principles and Practice of Constraint Programming (CP ’24),

volume 307 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:28, September 2024.

134 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

algorithm design and implementation. It is well-known that modern combinatorial

solving algorithms in different paradigms can sometimes produce “solutions” that

violate hard constraints, claim that suboptimal solutions are optimal, or declare that

feasible problems lack solutions [BBN
+
23, BB09, BLB10, CKSW13, GSD19, JHB12].

Although there are many ways to address this problem, including software

testing techniques such as fuzzing [BB09, PB23], and design of formally verified

software [Fle20], the most promising approach appears to be the use of certifying

algorithms [ABM
+
11, MMNS11] with so-called proof logging. What this means is

the algorithm should not only produce an answer, but also a proof that this answer

is correct. Such proofs should follow simple rules, as specified by a formal proof

system, so that they can easily be verified by an independent proof checker. In

addition to guaranteeing correctness, proof logging brings many other advantages:

it enables advanced testing (since one can detect correct answers found for invalid

reasons, and also test instances for which the answer is not known), detailed

debugging (since invalid proof steps pinpoint where errors happened), auditability

(since proofs can be stored and verified independently of which algorithm was

used), and performance analysis (since proofs can be mined for insights on which

reasoning steps were crucial for reaching the final conclusion).

Proof logging has been particularly successful in the domain of Boolean

satisfiability (SAT) solving [BHvMW21], where a large variety of proof systems

has seen the light of day [BCH21, Bie06, GN03, WHH14]. Using proof logging

has long been mandatory in the main track of the SAT competitions, and it is

hard to overestimate the impact this has had on improving overall correctness

and reliability of SAT solvers. This has stimulated the spread of proof logging

into other combinatorial solving paradigms, including SAT modulo theories

(SMT) [SFBF21, BRK
+
22], automated planning [EH20, ERH17, ERH18, Rög17],

and mixed integer linear programming [EG23, DEGH23].

Proof Logging for MaxSAT Solving In view of the above discussion, it is

interesting to compare the developments in other combinatorial optimization

paradigms to the state of affairs in maximum satisfiability (MaxSAT), the op-

timization version of the SAT problem. Without loss of generality, MaxSAT

can be described as the problem of maximizing a linear objective 𝑂 subject to

satisfying a Boolean formula 𝐹 in conjunctive normal form (CNF). Although

MaxSAT is arguably the one optimization paradigm closest to SAT, and al-

though several proof systems for formalizing MaxSAT reasoning have been

proposed [BLM07, LNOR11, MM11, PCH20, PCH21, PCH22], for a long time

there has been no practically feasible proof logging method for state-of-the-art

MaxSAT solvers. This changed only recently when pseudo-Boolean proof logging

using VeriPB [GN21, BGMN23] was proposed for MaxSAT [Van23, VDB22], a

proposal that was followed by the successful design and implementation of VeriPB

proof logging for modern core-guided MaxSAT solvers [BBN
+
23].

In this paper, we revisit proof logging work for solution-improving search

(SIS) [Van23, VDB22], also referred to as model-improving search or linear SAT-UNSAT

1. Introduction 135

(LSU) search, and consider state-of-the-art solving techniques. In the SIS approach—

which is much simpler to explain than, e.g., core-guided [FM06] or implicit hitting

set [DB13] search—a SAT solver is repeatedly called on the formula 𝐹, each time

with an added solution-improving constraint asking for increasingly better solutions

with respect to the objective 𝑂, and the problem turns infeasible when the last

solution found was optimal. In the work by Vandesande et al. [Van23, VDB22],

the main technical challenge was to certify correctness of the CNF encodings of

these solution-improving constraints, which could then essentially be concatenated

with the proof logging generated by the SAT solver (modulo some non-trivial

engineering).

At first sight, it seems that implementing pseudo-Boolean proof logging in a

state-of-the-art MaxSAT solver using solution-improving search would mostly be

a matter of carefully transferring already developed techniques [Van23, VDB22],

perhaps combining them with proof logging ideas developed for other CNF

encodings [GMNO22]. After all, the distinguishing feature of a top-of-the-line SIS

solver is the choice of CNF translation for reasoning about the objective function,

such as, in the case of Pacose, the polynomial watchdog (DPW) encoding [BBR09].

Once proof logging for such a CNF encoding is in place, it seems reasonable to

expect that the rest should be plain sailing.

It is all the more surprising, then, that it turns out nothing could be further

from the truth. To minimize the time the MaxSAT solver spends on generating PW

encodings, an essential step is to introduce completely unconstrained variables

that can be used to perform different comparisons with a single CNF encoding; this

is referred to as the dynamic polynomial watchdog encoding (DPW) [PRB18]. Loosely

speaking, if we know that the best possible objective value lies in the range [lo, hi],
then instead of generating repeated encodings 𝑂 ≥ 𝑉 to probe different possible

objective values 𝑉 in this range, one can introduce free variables 𝑡𝑖 encoding a tare

sum 𝑇 taking values between 0 and hi− lo and try to maximize the value 𝑇 = 𝑇∗ for

which one single DPW-encoded constraint𝑂−𝑇 ≥ lo holds. Once the maximum𝑇∗

has been found, it is clear that 𝑂 = lo + 𝑇∗ is the best possible objective value,

since without loss of generality 𝑇 could be set to any value. But how can such a

meta-argument be expressed in simple propositional logic reasoning?

In what follows, we provide a brief, if still high-level, discussion of some

of the challenges that arise when trying to design simple proofs to certify such

fairly complex “without loss of generality” arguments, and then outline how such

challenges can be overcome.

Solution-Improving “Without Loss of Generality” Reasoning As already

discussed above, the key aspect in which different solution-improving MaxSAT

solvers differ is how they encode the solution-improving constraints. In order to

compute the value of a linear expression 𝐿 over 0–1 variables of interest, Pacose

uses the polynomial watchdog encoding to describe a Boolean circuit BC with

output variables 𝑧𝑘 such that 𝑧𝑘 = 0 implies 𝐿 ≥ 1+ 𝑘 · 2𝑃 (for some fixed integer 𝑃).

If we chose 𝐿 to be the objective function 𝑂 that we are maximizing, this would

136 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

allow to find the interval

[
1 + 𝑘∗ · 2𝑃 , (𝑘∗ + 1) · 2𝑃

]
in which the optimal value lies

by calling the SAT solver with the prechosen partial assignment 𝑧𝑘 = 0 (referred to

as an assumption) for increasing values of 𝑘 until the solver returns that there is

no satisfying assignment. To determine the exact location of the optimum in this

interval, additional, completely unconstrained, variables 𝑡𝑖 , called tare variables,

are used to encode an integer 𝑇 =
∑𝑃−1

𝑖=0
2
𝑖𝑡𝑖 in the range

[
0, 2𝑃 − 1

]
. The actual

circuit in the encoding uses the linear form 𝐿 = 𝑂 − 𝑇, so that 𝑧𝑘 = 0 means

𝑂 − 𝑇 ≥ 1 + 𝑘 · 2𝑃 . By making SAT solver calls with suitable assumptions on

the unconstrained 𝑡𝑖-variables, the optimal value of the objective function can be

computed.

Given the CNF encoding of a circuit BC
(
𝑂 − 𝑇 ≥ 1 + 𝑘 · 2𝑃

)
evaluating the

inequality 𝑂 − 𝑇 ≥ 1 + 𝑘 · 2𝑃 as outlined above, the solution-improving search

proceeds in two phases:

1. The coarse convergence phase identifies the largest 𝑘 for which 𝑧𝑘 = 0 is possible.

2. The fine convergence phase then maximizes the tare variable sum 𝑇.

Let us discuss this process in slightly more detail, and explain why it presents

challenges from a proof logging point of view.

If during the coarse convergence phase a SAT solver call with assumption 𝑧𝑘 = 0

returns a satisfying assignment 𝛼 achieving objective value at least 1 + 𝑘 · 2𝑃 , the

solver stores the information 𝑧𝑘 = 0 (in the form of a unit clause 𝑧𝑘), which enforces

that any future solutions found have to be at least this good. The SAT solver is then

called again with 𝑧𝑘′ = 0 for some 𝑘′ > 𝑘 to probe whether a solution exists with

value at least 1 + 𝑘′ · 2𝑃 . Here it is relevant to note that fixing 𝑧𝑘 = 0 could remove

assignments corresponding to optimal solutions. For instance, if the optimal value

is 𝑉 = 𝑉∗ + 1 + 𝑘 · 2𝑃 , this value could be achieved by an assignment 𝛼′ setting

𝑇 = 𝑇∗ > 𝑉∗+1. For such an 𝛼′we would have𝑂−𝑇 = −𝑇∗+𝑉∗+1+ 𝑘 ·2𝑃 ≤ 𝑘 ·2𝑃 ,

which would violate 𝑧𝑘 = 0. However, since the tare variables are unconstrained,

in this case there would also exist another assignment 𝛼′′ achieving objective value

𝑉∗ + 𝑘 · 2𝑃 for which 𝑇 = 0, and so it is safe to require that solutions improving

on 𝛼 should satisfy 𝑧𝑘 = 0.

In the fine convergence phase the 𝑧𝑘-variables are all fixed, and assumptions

on the tare variables are made in the SAT solver calls to determine the exact value

of the optimal solution. This again relies on reasoning without loss of generality,

claiming that one can always choose 𝑇 ≥ 𝑠 for any value 0 ≤ 𝑠 < 2
𝑃
. But now

we are treading on dangerous ground: clearly, we cannot assume both 𝑇 = 0 and

𝑇 ≥ 𝑠 > 0 simultaneously! How can we convince ourselves, and more importantly,

how can we convince a proof checker, that our derivations are consistent? At a

meta-level, we can argue that since the tare variables are completely unconstrained

in the original encoding, we should be able to fix them to any value we like at any

given point in time. But how do we produce a simple, machine-verifiable proof

that this is sound? And are we even sure this is sound?

1. Introduction 137

Discussion of Our Contribution In this work, we show how pseudo-Boolean

proof logging with VeriPB [GN21, BGMN23] can certify correctness of the complex

CNF encodings used in state-of-the-art solution-improving MaxSAT solvers, as well

as of the subtle without loss of generality reasoning applied on these encodings.

To give a sense of how this can be done, we need to give a high-level description

how VeriPB proofs work (referring the reader to later sections for the missing

technical details).

A VeriPB proof maintains a set of core constraints 𝒞, initialized to the formula 𝐹,

together with a set of derived constraints 𝒟 inferred by the solver. The proof

semantics ensures that 𝒞 and 𝐹 have the same optimal value for 𝑂 and that any

solution to 𝒞 can be extended to𝒟. A new constraint 𝐶 can be derived “without

loss of generality” by the redundance-based strengthening rule, which requires the

explicit specification of a substitution 𝜔 (mapping variables to truth values or

literals) together with explicit proofs

𝒞 ∪ 𝒟 ∪ {¬𝐶} ⊢ (𝒞 ∪ 𝒟 ∪ {𝐶})↾𝜔 ∪ {𝑂↾𝜔 ≥ 𝑂} (1)

that all consequences on the right (with the substitution 𝜔 applied to the constraints)

follow from previously derived constraints 𝒞 ∪ 𝒟 together with the negation ¬𝐶
of the constraint to be inferred. This guarantees that if some assignment 𝛼 satisfies

everything so far but violates 𝐶, the “patched” assignment 𝛼 ◦ 𝜔 satisfies also 𝐶
and does not worsen the objective.

To make our informal discussion simple and concrete, suppose that we have

a CNF encoding of a circuit BC(𝑂 − 𝑇 ≥ lo) evaluating 𝑂 − 𝑇 ≥ lo, and that the

solver has derived no constraints but only has the input formula 𝐹. If we want to fix

𝑇 = 𝑇∗ using the redundance rule (1), we would have to find a substitution 𝜔 such

that 𝐹 ∪ {BC(𝑂 −𝑇 ≥ lo)} ∪ {𝑇 ≠ 𝑇∗} implies

(
𝐹 ∪ {BC(𝑂 −𝑇 ≥ lo)} ∪ {𝑇 = 𝑇∗}

)
↾𝜔.

But it seems like this would force us to prove that if we take any assignment

satisfying the Boolean circuit and modify the value of some of its inputs (the

tares), the circuit would remain satisfied, and this is just not true. So although the

redundance-based strengthening rule is very strong, it is not clear how it can be

used to argue that the tare variables are unconstrained.

We get around this problem by first deriving a copy shadow circuit BC′ of

the original circuit, but substituting fixed values 𝑡∗
𝑖

for the tare variables, so that

BC′(𝑂 − 𝑇∗ ≥ lo) evaluates 𝑂 − 𝑇∗ ≥ lo. We then let 𝜔 be the substitution setting

𝑡𝑖 = 𝑡∗
𝑖

for all 𝑖 and mapping all other variables 𝑥 in BC to the corresponding

shadow variables 𝑥′ in BC′, so that, effectively, the shadow circuit computes the

substitution needed. This turns our application of the redundance rule (1) into

𝐹 ∪ {BC(𝑂 − 𝑇 ≥ lo)} ∪ {BC′(𝑂 − 𝑇∗ ≥ lo)} ∪ {𝑇 ≠ 𝑇∗} (2a)

⊢
(
𝐹 ∪ {BC(𝑂 − 𝑇 ≥ lo)} ∪ {BC′(𝑂 − 𝑇∗ ≥ lo)} ∪ {𝑇 = 𝑇∗}

)
↾𝜔 ∪ {𝑂↾𝜔 ≥ 𝑂}

(2b)

= 𝐹 ∪ {BC′(𝑂 − 𝑇∗ ≥ lo)} ∪ {BC′(𝑂 − 𝑇∗ ≥ lo)} ∪ {𝑇∗ = 𝑇∗} ∪ {𝑂 ≥ 𝑂} (2c)

(where the final line (2c) is simply the result of applying the substitution 𝜔 to (2b)).

If we study (2c) carefully, we see that all we need to prove about the circuit now

138 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

is that the two copies of the shadow circuit in the consequences are implied by

the same shadow circuit in the premises, and so (2c) follows trivially from the

premises (2a).

This idea of using shadow circuits is crucial for certifying the correctness of

assigning tare variables without loss of generality. However, we need to get rid of

the completely unrealistic assumption that the solver would not have learned any

constraints in 𝒟. This is a problem in that the above argument fails when such

learned constraints 𝐷 ∈ 𝒟 contain variables in the BC-circuit, since then there is

no way to prove 𝐷↾𝜔 as required in (1).

Here a second idea discovered in recent VeriPB development turns out to be

very helpful. Very briefly, it can be shown that if in the proof we enforce the

requirement that all new constraints 𝐷 derived by strengthening are immediately

moved to the core set 𝒞, referred to as strengthening-to-core, then the redundance

rule (1) can be simplified to

𝒞 ∪ 𝒟 ∪ {¬𝐶} ⊢ (𝒞 ∪ {𝐶})↾𝜔 ∪ {𝑂↾𝜔 ≥ 𝑂}, (3)

omitting the proof obligations for the derived set 𝒟. This means that we can

ignore the problems arising from derived constraints when using shadow circuit

reasoning.

We stress that this is only a brief and informal discussion that sweeps many

technical challenges under the rug. Perhaps one of the most annoying such

challenges is that the tare variables are sometimes fixed one at a time, and then a

new shadow circuit is required for every new fixing. It would be desirable to find

better ways of dealing with this problem.

We have implemented our methods in the state-of-the-art solution-improving

MaxSAT solver Pacose [PRB18] to make it output VeriPB proofs, and have per-

formed an extensive evaluation of how such proof logging works in practice. While

there is certainly room for performance improvements in both proof generation

and proof checking, the significance of our contribution is that we present practical

methods to certify correctness for a solving paradigm that has previously been

beyond the reach of proof logging. We hope that our work can serve as an impetus

towards general adoption of proof logging for MaxSAT, and can stimulate further

research on how to make these proof logging techniques more efficient.

As a final remark, we note that an interesting aspect of recent progress in proof

logging is that it brings together all three software quality assurance methods

discussed in the opening paragraphs above. While proof logging does seem like

the most viable approach to certify correctness in combinatorial solving, extensive

use of fuzzing techniques has been instrumental in our work to debug both proof

logging routines and the VeriPB proof checker. This fuzzing, in turn, relies on the

use of proof logging and on feedback from the proof checker. Finally, although we

do not address this aspect in the current paper, formally verified proof checking

backends as in [GMM
+
24, IOT

+
24] are crucially needed to ensure that the verdict

of proof checkers for increasingly powerful proof logging systems can be trusted.

2. Preliminaries 139

Outline of This Paper After reviewing some preliminaries in Section 2, we

discuss the dynamic polynomial watchdog (DPW) encoding in Section 3. In

Section 4 we describe how to design proof logging for solution-improving solvers

using the DPW encoding, including a discussion of possible variations of our

method (and of why simply using SAT proof logging for the final unsatisfiability

call does not work). We report results from an empirical evaluation in Section 5

and end with some conclusions and a discussion of future research directions in

Section 6.

2 Preliminaries
In this section, we review some pseudo-Boolean basics and then discuss MaxSAT

in general and solution-improving search in particular, referring the reader to

[BN21, LM21, BJM21] for more details.

Pseudo-Boolean Constraints and Proofs We write 𝑥 to denote a {0, 1}-
valued Boolean variable, and write 𝑥 as a shorthand for 1−𝑥, using ℓ to denote such

positive and negative literals, respectively. A (linear) pseudo-Boolean (PB) constraint 𝐶
is a 0–1 integer linear inequality

∑
𝑖 𝑤𝑖ℓ𝑖 ≥ 𝐴. Without loss of generality, we will

often assume our constraints to be normalized, meaning that all literal are over

distinct variables and the coefficients 𝑤𝑖 and the degree 𝐴 are non-negative. A PB

formula is a conjunction of PB constraints.

A (disjunctive) clause is a PB constraint

∑
𝑖 ℓ𝑖 ≥ 1 with all coefficients and

degree equal to 1. We sometimes refer to constraints ℓ ≥ 1 with a single literal as

unit clauses ℓ . We say that a formula is in conjunctive normal form (CNF) if it is a

conjunction of clauses. A (linear) pseudo-Boolean term is a weighted sum

∑
𝑖 𝑤𝑖ℓ𝑖

of literals with integer coefficients. A (partial) assignment 𝛼 is a (partial) function

from variables to {0, 1}; it is extended to literals by respecting the meaning of

negation. We write 𝐶↾𝛼 for the constraint obtained from 𝐶 by substituting all

assigned variables 𝑥 by 𝛼(𝑥) (and simplifying). A constraint 𝐶 is satisfied under 𝛼
if

∑
𝛼(ℓ𝑖)=1

𝑤𝑖 ≥ 𝐴, and a formula 𝐹 is satisfied if all its constraints are. We say that

𝐹 implies 𝐶, denoted 𝐹 |= 𝐶, if all assignments that satisfy 𝐹 also satisfy 𝐶.

A pseudo-Boolean optimization (PBO) instance consists of a formula 𝐹 and a linear

term 𝑂 =
∑
𝑖 𝑤𝑖ℓ𝑖 (called the objective). An assignment 𝛼 to the variables in 𝐹

and 𝑂 that satisfies 𝐹 is a solution to the instance, which is optimal if it maximizes

the value 𝑂↾𝛼 =
∑
𝑖 𝑤𝑖𝛼(ℓ𝑖).1 For a PBO instance (𝐹, 𝑂) the VeriPB proof system

maintains a proof configuration of core and derived constraints (𝒞 ,𝒟), initialized

to 𝐹 and ∅, respectively. The VeriPB proofs we consider are in the so-called

strengthening-to-core mode, which maintains the invariant that all constraints in the

1Note that most of the PBO literature is formulated in terms of minimization, and this is also

the perspective of VeriPB, but reasoning in terms of maximization is in line with the papers on

solution-improving MaxSAT relevant for this work. We therefore adopt this perspective here, although

the actual VeriPB proofs will argue in terms of minimizing the negation of the objective as described

here.

140 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

derived set 𝒟 are implied by the core set 𝒞. Constraints can be moved from 𝒟
to 𝒞 but not vice versa. New constraints can be derived from 𝒞 ∪ 𝒟 and added

to𝒟 using the cutting planes proof system [CCT87] as follows:

Literal Axioms. For any literal ℓ𝑖 , ℓ𝑖 ≥ 0 is an axiom.

Linear Combination. Given two previously derived PB constraints 𝐶1 and 𝐶2,

any positive integer linear combination of these constraints can be inferred.

Division. Given the normalized PB constraint

∑
𝑖 𝑤𝑖ℓ𝑖 ≥ 𝐴 and a positive integer 𝑐,

the constraint

∑
𝑖 ⌈𝑤𝑖/𝑐⌉ℓ𝑖 ≥ ⌈𝐴/𝑐⌉ can be inferred.

Some additional VeriPB proof rules extending cutting planes are as listed below—

we refer to [BGMN23, GN21, HOGN24] for more details. For optimization prob-

lems we have rules for improvements of or rewriting of the objective function:

Objective Improvement. Given a total assignment 𝛼 that satisfies 𝒞 ∪𝒟, one can

add the constraint 𝑂 ≥ 1 + 𝑂↾𝛼 to 𝒞, which forces the search for strictly

better solutions.

Objective Reformulation. The current objective 𝑂 can be replaced by a new

objective 𝑂new given explicit proofs from the core set 𝒞 (using the VeriPB

proof rules above) of the constraints 𝑂 − 𝑂new ≥ 0 and 𝑂new − 𝑂 ≥ 0 (i.e., a

proof that 𝑂 = 𝑂new holds).

Importantly, there are also rules for deriving non-implied constraints as long as

the optimal value of the objective is preserved. VeriPB has a generalization of the

RAT rule [JHB12] that makes use of substitutions 𝜔, mapping variables to truth

values or literals (where we extend the meaning of 𝐶↾𝜔 to denote 𝐶 with each 𝑥
replaced by 𝜔(𝑥)):
Redundance-Based Strengthening. The constraint 𝐶 can be inferred and added

to 𝒞 by explicitly specifying a substitution 𝜔 and proofs 𝒞 ∪ 𝒟 ∪ {¬𝐶} ⊢
(𝒞 ∪ {𝐶})↾𝜔 ∪ {𝑂↾𝜔 ≥ 𝑂}. This assumes strengthening-to-core mode—

otherwise derivations for all constraints in𝒟↾𝜔 are also needed (but then 𝐶
can be placed in𝒟 instead of 𝒞).

Intuitively, this rule shows that 𝜔 remaps any solution of 𝒞 that does not satisfy 𝐶
to a solution of 𝒞 that satisfies also 𝐶 without worsening the objective value. A

typical use case of redundance-based strengthening is reification, which is the

derivation of two pseudo-Boolean constraints that encode ℓ ⇔ 𝐷 for some PB

constraint 𝐷 and for some fresh literal ℓ .
Finally, VeriPB has rules for deleting constraint in a way that guarantees that

no spurious better-than-optimal solutions are introduced:

Deletion A constraint 𝐷 ∈ 𝒟 in the derived set can be deleted at any time. If

strengthening-to-core mode is used, then deleting a constraint 𝐶 ∈ 𝒞 in the

core set requires an explicit proof that 𝐶 is implied by 𝒞 \ {𝐶}. Otherwise, it

is sufficient to show the weaker property that 𝐶 can be derived from 𝒞 \ {𝐶}
by redundance-based strengthening.

3. The Dynamic Polynomial Watchdog Encoding for SIS 141

MaxSAT, Incremental SAT Solving, and Solution-Improving Search An

instance of (weighted partial) Maximum Satisfiability (MaxSAT) consists of a CNF

formula 𝐹 and a pseudo-Boolean objective 𝑂 =
∑
𝑖 𝑤𝑖ℓ𝑖 to be maximized under

satisfying assignments to 𝐹, where we can assume without loss of generality that all

literals in 𝑂 are over distinct variables and that the constants are positive. Viewing

MaxSAT in terms of an objective function and a CNF formula is equivalent to

the more classical definition in terms of hard and soft clauses, in the sense that

maximizing the objective corresponds to maximizing the total weight of satisfied

soft clauses (see, e.g., [LBJ20] for more details).

The solution-improving search (SIS) algorithm we focus on in this work makes

extensive use of incremental SAT solving with assumptions [ES03]. Invoking a SAT

solver on a CNF formula 𝐹 with a set of assumptions𝒜, i.e., a partial assignment,

returns either 1. SAT and an extension of𝒜 that satisfies 𝐹 or 2. UNSAT if no such

assignment exists.

Given a MaxSAT instance (𝐹, 𝑂), solution-improving search (SIS) computes

an optimal solution by issuing a sequence of queries to a SAT solver asking for

solutions of improving quality until an optimal one is found. More precisely,

during search SIS maintains the best known solution 𝛼∗. In each iteration, the

algorithm queries a SAT solver on the working formula 𝐹 ∧ AsCNF(𝑂 > 𝑂↾𝛼∗),
where AsCNF(𝑂 > 𝑂↾𝛼∗) is a CNF formula that is satisfied by an assignment 𝛼
if and only if it is a better solution than 𝛼∗, i.e., if 𝑂↾𝛼 > 𝑂↾𝛼∗ . If the SAT solver

returns SAT, a better solution has been obtained and the working formula updated

accordingly. Otherwise, if the SAT solver reports UNSAT, the best known solution

𝛼∗ is determined to be optimal and the search is terminated.

The existing practical instantiations of SIS differ mainly in how the encoding of

the formula AsCNF(𝑂 > 𝑂↾𝛼∗) is realized. Numerous CNF encodings of pseudo-

Boolean constraints have been proposed for this task [ES06, JMM15, KP19, MPS14,

Sin05]. For many instantiations of SIS the main challenge for proof logging is to

certify the clauses added when encoding the objective constraint [VDB22, Van23],

but as we will explain in the rest of this paper the so-called Dynamic Polynomial

Watchdog encoding requires much more subtle arguments.

3 The Dynamic Polynomial Watchdog Encoding for
SIS

The polynomial watchdog (PW) encoding [BBR09] is currently one of the best

approaches for encoding pseudo-Boolean constraints in CNF, in terms of being

compact while still propagating well. Using it for solution-improving search

requires some non-trivial alternations, however, such as the addition of a dynamic

constant. In this section we review this dynamic polynomial watchdog (DPW)

encoding to the extent required for MaxSAT solution-improving search (SIS),

referring the reader to [PRB18] for more details.

142 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

3.1 Initialization
Given a linear pseudo-Boolean term 𝐿 =

∑
𝑖 𝑤𝑖ℓ𝑖 , we define 𝑤max to be the largest

constant appearing in 𝐿. Additionally, we let 𝑃 :=
⌊
log

2
(𝑤max)

⌋
be one smaller

than the number of bits in the binary representation of 𝑤max and𝑊 :=
∑
𝑖 𝑤𝑖 be the

maximum value for 𝐿. The polynomial watchdog encoding for 𝐿 is a CNF formula

PW(𝐿)with 𝑐 :=
⌈
𝑊
2
𝑃

⌉
output variables 𝑧𝑘 for 𝑘 ∈ [0, 𝑐−1] enforcing the implications

𝑧𝑘 ⇒ 𝐿 ≥ 1+ 𝑘 ·2𝑃 . In words, a satisfying assignment 𝛼 of PW(𝐿) that sets 𝛼(𝑧𝑘) = 0

will also satisfy

∑
𝑖 𝑤𝑖𝛼(ℓ𝑖) ≥ 1 + 𝑘 · 2𝑃 . We describe the formula PW(𝐿) in more

detail in Section 4.1.

Example 1. Consider a MaxSAT instance (𝐹, 𝑂) and a working formula 𝐹𝑤 =

𝐹 ∧ PW(𝑂). Assume we first invoke a SAT solver on 𝐹𝑤 under the assumption

𝑧𝑘−1 = 0 and then a second time under the assumption 𝑧𝑘 = 0, and that the solver

reports SAT for the first call and UNSAT for the second. At this point, we know

that an optimal solution 𝛼opt
has value 𝑂↾𝛼opt in the range

[
1 + (𝑘 − 1) · 2𝑃 , 𝑘 · 2𝑃

]
.

The PW encoding was proposed as a way of enforcing a fixed bound 𝐵 on the

term 𝐿 by considering a (static) constant 𝑇 = 𝐵 − (1 + 𝑘 · 2𝑃), where 𝑘 is the largest

integer for which 𝐵 ≥ 1+ 𝑘 · 2𝑃 , and encoding PW(𝐿−𝑇) [BBR09]. Then a solution

that sets the 𝑘th
output 𝑧𝑘 of PW(𝐿−𝑇) to 0 will also satisfy

∑
𝑖 𝑤𝑖𝛼(ℓ𝑖)−𝑇 ≥ 1+𝑘 ·2𝑃 ,

which is equivalent to

∑
𝑖 𝑤𝑖𝛼(ℓ𝑖) ≥ 𝐵. The dynamic polynomial watchdog (DPW)

encoding [PRB18] is an extension of the PW encoding that allows dynamically

changing the value of 𝑇, and therefore also of 𝐵, so that the optimal value can be

determined precisely with a single CNF encoding.

Consider a MaxSAT instance (𝐹, 𝑂) and let 𝑃 =
⌊
log

2
(𝑤max)

⌋
as described

above. Instantiations of SIS with DPW introduce a “dynamic constant” in the

form of a tare term 𝑇 :=
∑𝑃−1

𝑖=0
2
𝑖 · 𝑡𝑖 , for fresh variables 𝑡𝑖 not appearing anywhere

else in the instance. The SAT solver is instantiated with the working formula

𝐹 ∧ PW(𝑂 − 𝑇). Now we can use the output variables 𝑧𝑘 to determine the optimal

value within an additive constant 2
𝑃
, and then assign the tare 𝑇 to values in[

0, 2𝑃 − 1

]
to determine the precise value in that range. These are the coarse

convergence and fine convergence phases mentioned in Section 1, which we describe

in more detail next.

3.2 Coarse Convergence Phase
During the initial coarse convergence phase, only assumptions over the output

variables 𝑧𝑘 are made. Whenever a solution 𝛼 is found, a call to the SAT solver is

made with the assumption 𝑧𝑘 = 0 where 𝑘 is the largest natural number such that

𝑂↾𝛼 ≥ 1 + (𝑘 − 1) · 2𝑃 . The coarse convergence phase ends when the solver reports

UNSAT. The following observation summarizes the relevant conclusions of coarse

convergence.

Observation 1. Assume 𝐹 is satisfiable and the SAT solver returns UNSAT under an

assumption 𝑧𝑘∗ = 0 in the coarse convergence phase. Then 1. there is a solution 𝛼∗ to

3. The Dynamic Polynomial Watchdog Encoding for SIS 143

𝐹 ∧PW(𝑂 −𝑇) that assigns the tare variables so that (𝑂 − 𝑇)↾𝛼∗ ≥ 1+ (𝑘∗ − 1) · 2𝑃 holds,

and 2. no solution 𝛽 to 𝐹 assigning also the tare variables can satisfy (𝑂 − 𝑇)↾𝛽 ≥ 1+ 𝑘∗ ·2𝑃 .

In words, coarse convergence provides bounds on the maximum value of 𝑂 −𝑇
obtainable by any solution of 𝐹. Importantly, as the tare term 𝑇 is unconstrained

by the formula 𝐹, its value can without loss of generality be assumed to be 0 at this

stage, resulting in bounds on the objective value of optimal solutions as well. From

now on, the algorithm commits to only searching for solutions that have 𝑂 − 𝑇 in

the specified interval, adding the unit clauses 𝑧𝑘∗−1 and 𝑧𝑘∗ to the working formula

before proceeding to the fine convergence phase. In practice, whenever the SAT

solver returns SAT after being called with assumption 𝑧𝑘 , the unit clause 𝑧𝑘 is

added immediately, allowing the SAT solver to simplify its clause database.

3.3 Fine Convergence Phase
During the fine convergence phase, assumptions for the tare variables are used to

pinpoint the precise optimal value. Let 𝑘∗ be the value for which the assumption

𝑧𝑘∗ = 0 returned UNSAT in coarse convergence, and 𝑜∗ = 𝑂↾𝛼∗ the objective value

of the currently best known solution 𝛼∗. Then we define 𝑠 := 𝑜∗ − (𝑘∗ − 1) · 2𝑃 to be

the smallest value of the tare that would force an improved solution. The next call

to the SAT solver assumes 𝑡𝑖 = 1 for all tare variables for which the 𝑖th bit in the

binary representation of 𝑠 is 1. These assumptions enforce 𝑇 ≥ 𝑠, so any solution 𝛼
to the working formula (which now includes the unit clause 𝑧𝑘∗−1 ≥ 1) that extends

the assumptions will satisfy 𝑂↾𝛼 ≥ 𝑜∗ + 1.

The fine convergence phase continues in this manner until the SAT solver

reports UNSAT, at which point an optimal solution has been found. As the

value of 𝑠 is monotonically increasing, we add unit clauses 𝑡𝑖 to the working

formula whenever we have deduced that the 𝑖th bit 𝑡𝑖 in the tare 𝑇 can safely be

set to 1 in any solution (and hence in any future SAT call), which is the case when

𝑠 − 1 ≥ 1 +∑𝑃−1

𝑗=𝑖 2
𝑖 · 𝑡 𝑗 holds. The fact that we have 𝑠 − 1 rather than 𝑠 in this last

inequality is related to stratification, which we discuss next.

3.4 Stratification
Stratification is a technique for partitioning the indices of an objective 𝑂 =

∑𝑚
𝑖=1
𝑤𝑖ℓ𝑖

into two sets {𝐻, 𝐿} in a way that allows computing the maximum values first of

𝑂𝐻 =
∑
𝑖∈𝐻 𝑤𝑖ℓ𝑖 and then of 𝑂𝐿 =

∑
𝑖∈𝐿 𝑤𝑖ℓ𝑖 , and finally combining them to get the

maximum value of 𝑂.

Specifically, stratification is applied when gcd{𝑤𝑖 | 𝑖 ∈ 𝐻} ≥
∑
𝑖∈𝐿 𝑤𝑖 , i.e., when

the greatest common divisor of the coefficients in 𝑂𝐻 is at least the sum of all

coefficients in 𝑂𝐿. SIS with the DPW encoding and stratification will first run

coarse and fine convergence only on 𝑂𝐻 as described above. At the end of the fine

convergence, the SAT solver returns UNSAT after being invoked with assumptions

that enforce 𝑇𝐻 ≥ 𝑠 for the tare term 𝑇𝐻 added to the DPW encoding of 𝑂𝐻 and

some constant 𝑠. At this stage, the value of 𝑇𝐻 will be fixed to 𝑠−1 with unit clauses,

144 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

effectively fixing 𝑂𝐻 to its maximum value. This fixing of 𝑂𝐻 is consistent with the

unit clauses learned in the previous section. After this 𝑂𝐿 is optimized via coarse

and fine convergence under the fixed value of 𝑂𝐻 . The solution obtained at the

end of the final fine convergence phase will be optimal with respect to the original

instance. For more details on stratification, we refer the reader to [ALM09, PRB21].

Example 2. Consider the objective 𝑂 = 10𝑥1 + 5𝑥2 + 5𝑥3 + 3𝑥4 + 2𝑥5 and the

partition 𝐻 = {1, 2, 3} and 𝐿 = {4, 5}. Since gcd{10, 5, 5} = 5 ≥ 3 + 2, changes

of the objective restricted to {𝑥1 , 𝑥2 , 𝑥3} will dominate any contributions from

3𝑥4+2𝑥5. If a solution 𝛼 with𝑂𝐻↾𝛼 = 15 is found, we can without loss of generality

assume 𝑂𝐻 ≥ 15, since for any solution 𝛽 with 𝑂𝐻↾𝛽 < 15 we have 𝑂↾𝛽 ≤ 𝑂↾𝛼.

Notice that maximizing first 𝑂𝐻 and then 𝑂𝐿 can remove some optimal solutions

from the search space, but never all of them.

4 Certifying Solution-Improving MaxSAT with the
DPW Encoding

We are now ready to describe how to do proof logging for solution-improving

MaxSAT with the dynamic polynomial watchdog encoding. In addition to

certifying the correctness of CNF encodings, as done in previous work on proof

logging SIS for MaxSAT [VDB22, Van23], we need to certify the without loss of

generality reasoning discussed in Section 3. This turns out to require quite intricate

proof logging methods.

We start with a brief discussion how to certify the DPW encoding. We then turn

to proof logging for the without loss of generality reasoning during the coarse and

fine convergence phases. Afterwards, we deal with proof logging for stratification.

We defer a discussion of minor additional heuristics used in state-of-the-art solvers

to Appendix B. We note that for all clauses learned by the SAT solver we can use

standard VeriPB proof logging, and since all such learned clauses are logically

implied by the working formula it is safe to add them to the derived set𝒟. This

means that we can ignore all constraints added to the database by the SAT solver

when we perform redundance-based strengthening steps.

4.1 Proof Logging for Clauses of the DPW Encoding
Figure 1 depicts the structure of the DPW encoding of the term 2𝑥1+3𝑥2+5𝑥3+7𝑥4.

For a term 𝐿 in which the largest coefficient has 𝑃 bits, the encoding introduces

𝑃 totalizers [BB03] (which are circuits that sort their inputs), and 𝑃−1 mergers. The

𝑖th totalizer takes as input all variables in 𝐿 for which the corresponding coefficient

has its 𝑖th bit equal to 1.

Proof logging for the DPW encoding boils down to taking care of the totalizer

encodings as described in [VDB22]. At a high level, the proof for PW(𝑂−𝑇) derives

a number of constraints encoding implications 𝑦 ⇒ 𝐶𝑦 and 𝑦 ⇐ 𝐶𝑦 , where 𝑦 are

variables in the auxiliary variable set 𝑌 and 𝐶𝑦 are suitably chosen PB constraints

4. Certifying Solution-Improving MaxSAT with the DPW Encoding 145

T0 x2 x3 x4
T1 x1 x2 x4 x4x3

z0

20 21 22

21 22

2x1 =
3x2 =
5x3 =
7x4 =

20x2

20x3

20x4

+

+

21x1

21x2

21x4

22x3

22x4

+
+

Totalizer Totalizer Totalizer

Merger Merger
z1
z2
z3
z4

Figure 1: Illustration of the polynomial watchdog encoding.

over the variables in 𝑂 − 𝑇. A concrete example is the output variable 𝑧𝑘 for

which the constraint 𝐶𝑧𝑘 is chosen as 𝑂 − 𝑇 ≤ 𝑘 · 2𝑃 . From these pseudo-Boolean

definitions all clauses in the CNF encoding added to the solver database can be

derived with explicit VeriPB derivations. A technical point that is crucial for the

proof logging is that in this way we only need to add the PB definitions of new

variables to the core set 𝒞. The clauses actually used for the SAT solver calls are

implied from these definitions, and can therefore be placed in the derived set𝒟.

4.2 Proofs Without Loss of Generality Using Shadow Circuits

The MaxSAT solving algorithm uses without loss of generality (wlog) reason-

ing when 1. introducing fresh variables for encoding PW(𝑂 − 𝑇); 2. adding unit

clauses 𝑧𝑘 during coarse convergence; 3. learning unit clause over the tare vari-

ables 𝑡𝑖 during fine convergence; and 4. concluding that the optimal value has been

found.

To see why unit clauses 𝑧𝑘 ≥ 1 require wlog reasoning, suppose in the coarse

convergence phase that the SAT solver returns a solution 𝛼 when invoked with the

assumption 𝑧𝑘 = 0, indicating that (𝑂 − 𝑇)↾𝛼 ≥ 1 + 𝑘 · 2𝑃 . The constraint 𝑧𝑘 ≥ 1

is not entailed by the solution-improving constraint 𝑂 ≥ 𝑂↾𝛼, since some other

(possibly optimal) solution 𝛽 might have 𝑂↾𝛽 ≥ 𝑂↾𝛼 but assign the tare variables

so that (𝑂 − 𝑇)↾𝛽 < 1 + 𝑘 · 2𝑃 ≤ (𝑂 − 𝑇)↾𝛼 holds. However, since the tare variables

are not constrained by the original formula 𝐹, any solution to 𝐹 could be extended

to any fixed value for the tare 𝑇. Hence, in particular, we can assume without loss

of generality that 𝑇 = 0, which in turn implies that 𝑧𝑘 ≥ 1.

The fine convergence phase makes use of the fact that the DPW encoding does

not constrain 𝑇, which takes values in the range

[
0, 2𝑃 − 1

]
. The unit clauses

𝑡𝑖 ≥ 1 learned are not entailed, but can be deduced since the tare variables are

unconstrained in the DPW encoding. This requires a VeriPB proof that wlog

𝑇 ≥ 𝑠 − 1. When the SAT solver reports UNSAT during fine convergence, it does

so under the assumption that a specific set of tare variables take value 1. If this

146 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

yields UNSAT, then we can conclude that the current solution is optimal (since we

can wlog assume 𝑇 to be equal to the value that led to UNSAT).

It is worth noticing that the without loss of generality arguments above are quite

intricate even at a human meta-level. The coarse convergence phase repeatedly

claims to be able to assume 𝑇 = 0, after which the fine convergence phase picks

an increasing sequence 0 < 𝑠1 < 𝑠2 < . . . and assumes 𝑇 ≥ 𝑠𝑖 − 1 wlog. Finally, a

specific value 𝑇 = 𝑠𝑖∗ is used to argue about optimality. The meta-level argument

for why this works is that no conclusions are drawn from the assumptions made

during coarse and fine convergence that invalidate subsequent assumptions. The

challenge is how to convince a mechanical proof checker of this.

Consider first proof logging for the coarse convergence phase, and suppose the

solver returns SAT when invoked with assumption 𝑧𝑘 . The only rule that would

allow us to derive 𝑧𝑘 ≥ 1 without loss of generality (from the argument that we

can set 𝑇 = 0 wlog) is redundance-based strengthening, which requires specification

of a witness substitution 𝜔 that can be used to “patch” any assignment 𝛼 in

which 𝑧𝑘 ≥ 1 is violated. More formally, our witness should guarantee that

𝒞 ∪ 𝒟 ∪ {¬(𝑧𝑘 ≥ 1)} |=
(
𝒞 ∪ {𝑧𝑘 ≥ 1}

)
↾𝜔 ∪ {𝑂 ≤ 𝑂↾𝜔}. A natural approach

would be to choose a witness 𝜔 that maps 1. 𝑧𝑘 to 0, 2. all original variables to

themselves, and 3. 𝑇 to 0. Such a witness would make (𝑧𝑘 ≥ 1)↾𝜔 trivially true and

would incur no proof obligations for the formula 𝐹 or the objective 𝑂. However,

setting 𝑇 = 0 will not work for the constraints 𝐶 ∈ 𝒞 defining variables in the DPW

encoding. If we fix 𝑇 = 0, then we also need to update all auxiliary variables 𝑌 in

the circuit evaluating PW(𝑂 − 𝑇). But how this should be done depends on which

assignment 𝛼 we need to patch, and the redundance rule has no mechanism for

defining “conditional witnesses” 𝜔 = 𝜔(𝛼).
To determine how the witness should assign the auxiliary variables in PW(𝑂−𝑇),

we devise a new proof logging technique that we call shadow circuits. Corresponding

to each auxiliary variable 𝑦 defined as the reification of a PB constraint 𝐶𝑦 in the

original circuit, a shadow circuit for a fixed value 𝑣 has a fresh variable 𝑦𝑇=𝑣 defined

by 𝑦𝑇=𝑣 ⇔ 𝐶𝑦↾𝑇 ↦→𝑣 . In words, the defining constraints of 𝑦𝑇=𝑣 and 𝑦 are the same

except that we fix the tare variables 𝑡𝑖 so that 𝑇 = 𝑣. The definitions of such shadow

circuits are stored in the core set 𝒞 since they are derived using the redundance

rule. Note that the shadow circuit only “copies” the pseudo-Boolean definitions of

the variables and not their clausal encodings.

Shadow circuits provide us with a mechanism to compute witnesses for the

redundance rule that allow us to assume the value of 𝑇 and certify the without loss

of generality reasoning. During coarse convergence, each addition of a constraint

𝑧 𝑖 ≥ 1 is logged with a witness that maps all tare variables 𝑡𝑖 to 0 and other

auxiliary variables 𝑦 in PW(𝑂 −𝑇) to their counterparts 𝑦𝑇=0
in the shadow circuit

for 𝑇 = 0. During fine convergence, the constraints 𝑇 ≥ 𝑠 − 1 are derived using

shadow circuits for 𝑠 − 1, which allows adding unit constraints over individual

tare variables to the proof. Finally, for proving optimality a shadow circuit for the

final value 𝑠∗ for which the SAT solver returned UNSAT will be used to derive

contradiction.

4. Certifying Solution-Improving MaxSAT with the DPW Encoding 147

The next proposition gives a more formal summary of the wlog proof logging

performed during the coarse convergence phase. The proof for this proposition,

together with precise descriptions of the other wlog proof logging steps, are given

in Appendix A.

Proposition 2. Suppose the VeriPB proof log contains derivations of reification constraints

𝑧𝑘 ⇔ 𝑂 − 𝑇 ≥ 1 + 𝑘 · 2𝑃 and a shadow circuit for 𝑇 = 0 as well as the constraint

𝑂 ≥ 1 + 𝑘 · 2𝑃 . Then the constraint 𝑧𝑘 ≥ 1 can be derived using redundance-based

strengthening with witness 𝜔 = {𝑡𝑖 ↦→ 0 | 0 ≤ 𝑖 ≤ 𝑃 − 1} ∪
{
𝑦 ↦→ 𝑦𝑇=0 | 𝑦 ∈ 𝑌

}
.

The constraint 𝑂 ≥ 1+ 𝑘 · 2𝑃 in Proposition 2 can be obtained by weakening the

solution-improving constraint 𝑂 ≥ 𝑂↾𝛼 + 1 for the previously found solution 𝛼. If

stratification is used, deriving 𝑂𝐻 ≥ 1 + 𝑘 · 2𝑃 requires more work (see Section 3.4

for details).

Our technique with shadow circuits and repeated without loss of generality

arguments selecting (different) values for the same variables in 𝑇 heavily relies on

that VeriPB proofs in the strengthening-to-core mode maintain the guarantee that all

constraints in the derived set𝒟 are entailed by the core set 𝒞. In particular, what

this means is that whenever we want to apply redundance-based strengthening,

fixing tare variables and using the corresponding shadow circuit, we do not need to

worry about reproving any clauses learned by the SAT solver under the witness 𝜔.

It turns out that for all non-trivial proof obligations, the solution-improving

constraint 𝑂 ≥ 𝑂↾𝛼 for the latest solution 𝛼 obtained is helpful. This also makes

it easier to see why the entire pipeline is consistent. During coarse convergence,

we never derive 𝑇 = 0, but instead derive 𝑧𝑘 = 0 for certain values of 𝑘 using the

fact that we could set 𝑇 = 0 wlog. This constraint 𝑧𝑘 = 0 will be used by the solver

for deriving several consequences. Later, when we make the wlog argument that

𝑇 ≥ 𝑠 − 1 for some value 𝑠, this incurs the obligation to reprove that 𝑧𝑘 = 0 holds!

That is, the proof checker realizes that 𝑧𝑘 = 0 was also derived wlog, and we need

to prove that this is still consistent with the current wlog assumption to justify that

we can “change our mind” about the value of 𝑇.

The use of strengthening-to-core requires some extra care when dealing with

constraint deletions. SAT solvers use heuristics to aggressively erase clauses that

are believed to no longer be useful, and this is crucial for performance. Also,

clauses in the input are removed whenever some literal in the clause is deduced to

be true. In strengthening-to-core mode, we can still do unrestricted deletions of

constraints in the derived set 𝒟, but a core constraint 𝐶 ∈ 𝒞 can only be erased

if the implication 𝒞 \ {𝐶} |= 𝐶 can be shown to hold. For this reason we did not

implement deletion from the core set in our proof logging routines.

4.3 Stratification
For proof logging of stratification steps as in Section 3.4, we need to be able to

convert known facts about the whole objective 𝑂 to statements about the split

objectives 𝑂𝐻 and 𝑂𝐿. To certify a unit constraint added during coarse convergence

148 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

or to derive the constraints 𝑇 ≥ 𝑠 − 1 during fine convergence when maximizing

𝑂𝐻 , we need to derive 𝑂𝐻 ≥ 𝑂𝐻↾𝛼 from 𝑂 ≥ 𝑂↾𝛼 + 1. We do this by weakening

away all terms in 𝑂𝐿—meaning that for every term 𝑤𝑖ℓ𝑖 in 𝑂𝐿 we add 𝑤𝑖ℓ 𝑖 ≥ 0 to

cancel the term—to get 𝑂𝐻 ≥ 𝑂↾𝛼 + 1− 𝑔, where 𝑔 is the greatest common divisor

of the coefficients in 𝑂𝐻 . This clearly also entails 𝑂𝐻 ≥ 𝑂𝐻↾𝛼 − 𝑔 + 1. Dividing

by 𝑔 and rounding up yields
1

𝑔𝑂𝐻 ≥
𝑂𝐻↾𝛼
𝑔 − 1 + 1, and multiplying this again by 𝑔

yields 𝑂𝐻 ≥ 𝑂𝐻↾𝛼.

By applying this reasoning, we can derive the constraint 𝑂𝐻 ≥ 𝑜∗𝐻 right after

finding the optimal value 𝑜∗
𝐻

for 𝑂𝐻 . Moreover, after introducing a shadow circuit

for 𝑇 = 𝑠, we can derive (local) optimality in the form of the constraint 𝑂𝐻 ≤ 𝑜∗𝐻 .

Hence, we can reformulate the objective by replacing 𝑂𝐻 with the constant 𝑜∗
𝐻

,

from which we can now derive the constraint 𝑂𝐿 + 𝑜∗𝐻 ≥ 𝑂↾𝛼 +1. Observe that

this constraint coincides with the solution-improving constraint for 𝑂𝐿. Once the

constraints 𝑂𝐿 ≥ 𝑜∗𝐿 and 𝑂𝐿 ≤ 𝑜∗𝐿 have been derived in a similar way, the objective

will be rewritten to a constant, for which proving optimality boils down to logging

a solution that has objective value 𝑜∗ = 𝑜∗
𝐻
+ 𝑜∗

𝐿
.

4.4 Limiting the Use of Shadow Circuits
Our proof logging method makes repeated use of shadow circuits, which are

copies of the original circuit, and repeatedly deriving all constraints defining such

circuits could potentially incur serious overhead for proof generation in the solver.

Let us discuss ways of limiting or completely eliminating the use of shadow circuits

and the downside of such approaches.

First, the shadow circuits are introduced each time the solver deduces a unit

clause over an output variable 𝑧𝑘 or tare variable 𝑡𝑖 . Instead of learning these unit

clauses, we could do all subsequent solver calls with those literals as assumptions.

At the very end of the fine convergence phase, we could then introduce a single

shadow circuit to prove optimality (or, in case of stratification, two shadow circuits:

one to prove optimality and one to fix the value of the tare variables). The

disadvantage is that when variables used as assumptions, the solver cannot use

them to simplify its clause database; so while this would have a positive effect on

the time required to do the actual proof logging, it could have negative effects

on solving time. Appendix C.2 reports on an experimental evaluation of this

approach.

Second, there is a way to completely eliminate shadow circuits. By the end of

the execution, the solver knows which value 𝑇 = 𝑠 resulted in the final UNSAT call

in the fine convergence. What we could do at this point is insert at the beginning

of the proof constraints saying that 𝑇 = 𝑠 holds (which at this point can easily be

derived by redundance-based strengthening). The rest of the proof will then be

checked for a fixed value of𝑇 that happens to be the value needed at the end. There

are two important reasons why we prefer the shadow circuit approach. The first

reason is that it is not clear if and how this would work together with stratification,

where after a stratification level we want to fix 𝑇 = 𝑠 − 1. The second reason is

4. Certifying Solution-Improving MaxSAT with the DPW Encoding 149

that fixing 𝑇 in advance adds substantial new information that the solver did not

have available when constructing the proof. This means that we would not be

verifying that the reasoning the solver actually performed was correct, but only

that its reasoning checks out given advance information about the optimal solution.

While this could still be used to certify the correctness of the final answer, it would

not provide any guarantees about the process leading there. It has been shown

repeatedly that proof logging can catch subtle bugs in solvers that only report

correct results but for the wrong reasons [EG23, GMM
+
20, KM21, BBN

+
23], but

in order for this to be possible the correctness of solver-generated proofs should

only depend on what the solver actually knows when the proof is being produced.

4.5 Discussion of an Even Simpler Approach and Why It Does
Not Work

The proof logging techniques in this paper certify every single reasoning step

in the solver. An alternative, and seemingly much simpler, way to get proofs of

correctness for any MaxSAT solver would be to (i) compute an optimal solution

by running the MaxSAT solver without proof logging, (ii) check that this solution

is feasible, (iii) encode a solution-improving constraint into CNF, and (iv) call a

SAT solver to generate a proof of unsatisfiability (and hence of optimality of the

solution) with standard SAT proof logging. However, there are several serious

issues with this approach that we would like to point out.

First, proofs of correctness are needed for the CNF encodings used in step (iii),

and such proofs cannot be done with SAT proof logging since it cannot reason

about values of objective functions. Second, it is not possible to just repeat the

“final UNSAT call” of the MaxSAT solver in step (iv). Even if the same SAT solver is

used, in the original UNSAT call this solver had access to all constraints learned in

previous calls, and there is no guarantee that the solver will learn these constraints

again, or other equally good constraints, when it is now run in a different way

and with a different input. It is therefore impossible to know for sure whether

the final SAT solver invocation with the solution-improving constraint would be

faster or, more likely, slower, than the original solving process, and by how much.

This defeats the whole idea of generating proofs with a small and predictable

overhead, since there would be no way of knowing in advance whether “proof

logging” for a previously claimed result would succeed or not. Moreover, when

a solution-improving MaxSAT solver makes use of stratification (as discussed

in Section 3.4), then optimality is not derived by a single UNSAT call but by

a combination of UNSAT calls at different levels. It is hard to see how such a

combination of calls could be replicated with the simple approach described above.

Third, an increasingly popular usage scenario for MaxSAT solvers is so-called

anytime solving, where the solver can be terminated at any point and then returns

the best upper and lower bounds on the objective computed so far. Proofs

constructed as described in this paper (as well as in other MaxSAT papers using

VeriPB proof logging) will at all times contain formal proofs of everything the

150 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

solver knows about upper and lower bounds on the objective. Whenever the solver

is terminated, it can therefore just end the generated proof at that point by printing

a concluding line stating what upper and lower bounds have been proven. This

functionality would be lost in the alternative approach.

Finally, even if this approach could be made to work efficiently—which, as

explained above, is not really the case, for several reasons—we would have the

same problem as in Section 4.4 that we would only certify the final result and not

the solver reasoning process.

5 Experimental Evaluation
To evaluate our proof logging approach in practice, we implemented it in the

state-of-the-art solution-improving MaxSAT solver Pacose [PRB18]. The source

code for all software tools used, as well as all experimental data, are available

in [BBN
+
24]. During development, we extensively checked the correctness of

our implementation with a fuzzer [PB23] and minimized failed instances with a

delta debugger. This process accelerated the development, as we did not need to

create instances for special cases, and helped us fix unexpected and sporadic bugs.

The proofs emitted by Pacose were verified by the pseudo-Boolean proof checker

VeriPB [Ver], and our fuzzing also helped to debug the proof checker.

The experiments were performed on identical machines with an 11th Gen

Intel(R) Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory. Each

benchmark ran exclusively on a machine and the memory limit was set to 14 GB.

The time limits were set to 3 600 seconds for solving a MaxSAT instance with Pacose

and to 36 000 seconds for checking the proof with VeriPB. As our benchmark

set we used the 558 weighted and 572 unweighted MaxSAT instances from the

MaxSAT Evaluation 2023 [Max23].

Our implementation supports all techniques Pacose employed in the MaxSAT

Evaluation 2023. This means that in addition to the dynamic polynomial watch-

dog encoding we also implemented proof logging for the binary adder encod-

ing [War98] following the approach in [GMNO22, Van23] as well as support for

stratification as described in Section 3.4 and for the preprocessing techniques

in TrimMaxSAT [PRB21]. Appendix B discusses TrimMaxSAT in detail and Ap-

pendix C contains detailed experimental results for the default setup in which

Pacose employs heuristics to choose between different encodings. In this section,

we focus on the main novelty of this paper, namely proof logging for SIS with the

DPW encoding.

To show the viability of enabling proof logging while solving, we analyse the

overhead of generating proofs. In Figure 2 we compare the running time of Pacose

with and without proof logging. With proof logging enabled 674 instances were

solved within the resource limits, which is 11 fewer instances than without proof

logging. Out of the 11 instances that were not solved with proof logging enabled,

9 instances failed due to the memory limit and 2 instances due to the time limit.

For the solved instances, Pacose with proof logging was on average 1.93× slower

5. Experimental Evaluation 151

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

timelimit

memout

tim
elim

it

m
em

o
u
t

Pacose without proof logging (s)

P
a
c
o
se

w
it
h
p
ro
o
f
lo
g
gi
n
g
(s
)

unweighted
weighted

Figure 2: Proof logging overhead for Pa-

cose using the DPW encoding.

10−2 10−1 100 101 102 103 104 105
10−2

10−1

100

101

102

103

104

105

timelimit

memout

Pacose with proof logging (s)

V
e
r
iP

B
p
ro
of

ch
ec
k
in
g
(s
)

unweighted
weighted

Figure 3: Pacose vs. VeriPB running time

using DPW encoding.

than without proof logging. About 90% of the solved instances were solved at most

5.26× more slowly with proof logging enabled. This overhead for solving is to

some extent caused by our shadow circuits approach. While we demonstrate that

shadow circuits can be used to justify the without loss of generality reasoning in

Pacose, it remains to investigate whether there is a better approach. It is important

to note, though, that the average overhead of 1.93× is heavily biased by small

instances: the cumulative solving time of all 674 instances, with proof logging is

only 1.32× the cumulative solving time without proof logging. This suggests that

proof logging overhead decreases for harder instances.

For proof logging to be maximally useful in practice, it is also desirable

that it should be possible to check generated proofs within a time limit that

is some small constant factor of the solving time for the instance. To evaluate

the efficiency of proof checking, we compared the running time of Pacose with

proof logging enabled with the running time of VeriPB, with results plotted in

Figure 3. Out of the 674 instances solved by Pacose with proof logging, 592 were

successfully checked by VeriPB, but 53 instances failed due to the memory limit

and 29 instances due to the time limit. On average, checking the proof with VeriPB

was 22.5× slower than solving and generating the proof with Pacose. 90% of

the proofs were checked within 100× the running time of Pacose. These results

for checking are in line with what has been reported in other works on proof

logging for MaxSAT [BBN
+
23, Van23]. While there is certainly room for further

improvements, this shows that proof logging and checking is viable. It should also

be emphasized that the only sources of problems for VeriPB were the time and

memory limits—other than that all proofs were successfully checked.

152 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

6 Conclusion
In this paper, we demonstrate how to design proof logging for solution-improving

MaxSAT solving using the dynamic polynomial watchdog encoding. This turns

out to be surprisingly challenging, mainly due to the heavy use of reasoning

without loss of generality. To understand the correctness of this reasoning

at a human level is one thing, but convincing a proof checker by producing

machine-verifiable proofs is quite another. What we show is that by combining

the redundance-based strengthening rule and the strengthening-to-core mode

in VeriPB, together with a technique we call shadow circuits for having more

expressive witnessing capabilities, we are able to devise efficient pseudo-Boolean

proof logging techniques.

We have implemented our approach in the state-of-the-art MaxSAT solver

Pacose. Our experimental evaluation shows that while enabling proof logging is

feasible, it does incur a non-negligible overhead in solving time. Moreover, the

time needed to check the generated proofs is several times larger than the time

needed to generate them, suggesting that more efficient algorithms and more

optimized engineering are needed in VeriPB. This is not so surprising, since the

focus of VeriPB development so far has been on providing support for certifying

algorithms in combinatorial optimization paradigms previously beyond the reach

of proof logging, rather than on optimizing the proof checker code base.

The addition of Pacose to the collection of certifying MaxSAT solvers using

VeriPB proofs provides further support to the hypothesis that pseudo-Boolean

proof logging hits a sweet spot for MaxSAT solving, being rich enough to support

a wide variety of solving algorithms and complex reasoning tricks, but still being

simple enough to support even formally verified proof checking as in [BMM
+
23,

GMM
+
24, IOT

+
24].

We believe that in the longer term VeriPB can have a strong positive impact on

the reliability and robustness of MaxSAT solvers. In the other direction, MaxSAT

solving is likely to provide excellent benchmarks and performance challenges to

further improve pseudo-Boolean proof logging and checking. Our suggestion for

speeding up these developments is to introduce a certifying track in the yearly

MaxSAT Evaluation [Max].

Acknowledgements
We want to thank Florian Pollitt and Mathias Fleury for their assistance with the

CaDiCaL proof tracer and for fuzzing VeriPB within CaDiCaL. Their contributions

were very helpful to further improve the robustness of the VeriPB toolchain. We

also wish to acknowledge useful discussions with participants of the Dagstuhl

workshop 23261 SAT Encodings and Beyond. The computational experiments were

enabled by resources provided by LUNARC at Lund University.

This work has been financially supported by the Research Council of Finland

under grants 342145, the Swedish Research Council grant 2016-00782, the Indepen-

A. Formalization of the Proof Logging of SIS with the DPW 153

dent Research Fund Denmark grant 9040-00389B, the Wallenberg AI, Autonomous

Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg

Foundation, and the Fonds Wetenschappelĳk Onderzoek – Vlaanderen (project

G070521N).

Appendix A Formalization of the Proof Logging of SIS
with the DPW

In this appendix, we provide formal details on the claims made in the main body

of the paper. In the proofs, we follow the same notation. The formalization of the

reasoning in the coarse convergence is discussed in Section 4.2, here we discuss

the other phases.

A.1 Coarse Convergence
Our first proposition formalizes the wlog performed during the coarse convergence

phase.

Proposition 3 (Proposition 2, restated). Assume the definition of 𝑧𝑘 has been derived

and a complete shadow circuit for 𝑇 = 0 has been introduced. Furthermore assume the

constraint

𝑂 ≥ 1 + 𝑘 · 2𝑃 (4)

has been derived. The constraint 𝑧𝑘 ≥ 1 can be derived using redundance-based strength-

ening with witness

𝜔 = 𝑇 ↦→ 0, 𝑌 ↦→ 𝑌𝑇=0.

The notation for the witness in this proposition is a shorthand for the mapping

that sends each variable 𝑡𝑖 to 0 and every introduced circuit variable 𝑦 to the

corresponding shadow circuit variable 𝑦𝑇=0
.

Proof. To verify this is indeed possible, we need to show that from

𝒞 ∪ 𝒟 ∪ {𝑧𝑘 ≥ 1}

we can derive the following constraints:

• 𝑧𝑘↾𝜔≥ 1; in other words we need to show that 𝑧
𝑇=0

𝑘 ≥ 1 holds. Recall that

𝑧𝑇=0

𝑘
is defined by the reification

𝑧
𝑇=0

𝑘 ⇔ 𝑂 − 0 ≥ 1 + 𝑘 · 2𝑃 .

Adding up one direction of this definition to (4), immediately yields that

𝑧
𝑇=0

𝑘 ≥ 1, as desired.

154 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

• 𝐶↾𝜔 for each 𝐶 ∈ 𝒞.

– If 𝐶 is a clause in the original input, 𝐶↾𝜔= 𝐶 and this is trivial.

– If 𝐶 is a previously derived solution-improving constraint, also 𝐶↾𝜔= 𝐶
(since 𝜔 does not touch any variable in 𝑂.

– If 𝐶 is a previously derived constraint of the form 𝑧𝑘′ ≥ 1 with 𝑘′ < 𝑘,
this can either be derived analogously to 𝑧𝑘↾𝜔≥ 1 or directly from the

fact that the definitions of 𝑧𝑘 and 𝑧′
𝑘

immediately imply that 𝑧𝑘 = 0

implies that 𝑧𝑘′ = 0 .

• 𝑂↾𝜔≥ 𝑂; this is obvious since the variables in 𝑂 are unaltered by 𝜔. □

Remark 1. Proposition 3 assumes the existence of a constraint (4). It can be seen

that this constraint is actually a (potentially weakened version of a) non-strict

solution improving constraint 𝑂 ≥ 𝑂↾𝛼 where 𝛼 is a previously found solution.

During the coarse convergence phase, this constraint can be obtained by weakening

the solution-improving constraint.

At the end of the coarse convergence phase, also the unit clause 𝑧𝑘∗ ≥ 1 is

derived. This requires no additional proof logging: this clause is obtained by

running the SAT solver with the assumption that 𝑧𝑘∗ = 0 and failing. Whenever

this is the case; we know that 𝑧𝑘∗ ≥ 1 is internally derived by standard conflict

analysis; hence this constraint is added to𝒟 without any additional effort.

A.2 Fine Convergence
As with the coarse convergence, the constraints derived during fine convergence

that require a justification in the proof are the unit clauses added to the solver.

Proving this relies again on redundance-based strengthening and a shadow circuit.

Proposition 4. Assume 𝑧𝑘∗−1 ≥ 1 has been derived. Let 𝑠 be any number and assume

a complete shadow circuit for 𝑇 = 𝑠 − 1 has been introduced. Furthermore assume the

constraint

𝑂 ≥ 𝑠 + (𝑘∗ − 1) · 2𝑃 (5)

has been derived. The constraint 𝑇 ≥ 𝑠 − 1 can be derived using redundance-based

strengthening with witness

𝜔 = 𝑇 ↦→ 𝑠, 𝑌 ↦→ 𝑌𝑇=𝑠−1.

Proof. As in the proof of Proposition 2, this yields several proof obligations. The

only non-trivial ones are

• Previously derived constraints of this form 𝑇 ≥ 𝑠′ − 1, but they are trivially

satisfied under 𝜔 since 𝑠 ≥ 𝑠′.

A. Formalization of the Proof Logging of SIS with the DPW 155

• The unit clause 𝑧𝑘∗−1 ≥ 1↾𝜔. In other words we need to show that 𝑧
𝑇=𝑠−1

𝑘∗−1

holds. Recall that 𝑧𝑇=𝑠−1

𝑘∗−1
is defined by the reification

𝑧
𝑇=𝑠−1

𝑘∗−1
⇔ 𝑂 − (𝑠 − 1) ≥ 1 + (𝑘∗ − 1) · 2𝑃

which simplifies to

𝑧
𝑇=𝑠−1

𝑘∗−1
⇔ 𝑂 − 𝑠 ≥ (𝑘∗ − 1) · 2𝑃 .

Now (5) tells us precisely that the right-hand side of this equivalence is

satisfied, hence a straightforward cutting planes derivation indeed allows us

to conclude that 𝑧
𝑇=𝑠
𝑘∗−1
≥ 1. □

Remark 2. Just like Proposition 2, also Proposition 4 does not make use of the

model-improving constraint, but rather makes the assumption on 𝑂 it uses explicit

in (5). As before, this turns out to be useful when applying Proposition 4 in the

context of stratification.

Proposition 4 will be applied when a solution 𝛼 is found taking

𝑠 := 𝑂↾𝛼 −(𝑘∗ − 1) · 2𝑃 .

In this case, the solution-improving tells us that

𝑂 ≥ 𝑂↾𝛼 +1 = 𝑠 + (𝑘∗ − 1) · 2𝑃 + 1,

and (5) is indeed satisfied. Unit clauses are derived if for a certain 𝑗, 𝑠 ≥ 2
𝑃 − 2

𝑗 + 1.

In this case, the derived constraint 𝑇 ≥ 𝑠 − 1 guarantees that 𝑇 ≥ 2
𝑃 − 2

𝑗
, i.e., that

all dominant bits of 𝑇 up to 𝑗 must be equal to one. This follows using reverse unit

propagation or a straightforward cutting planes derivation.

A.3 Conclusion of Optimality
When the very last call to the SAT solver is unsatisfiable, we need to derive a

contradiction in the proof, to complete the proof that the previously best found

solution is optimal. We proceed as follows. First, we introduce a fresh variable, let

us call it 𝑝 using the reification

𝑝 ⇔ 𝑂 ≥ 𝑜∗ + 1. (6)

Our goal will be to show that 𝑝 is false, which then allows us to conclude that the

objective can no longer be improved, meaning we have indeed proven optimality.

Recall that at this point, we have 𝑠 defined as 𝑠 := 𝑜∗ − (𝑘∗ − 1) · 2𝑃 . The crucial step

in our proof is showing that without loss of generality 𝑇 can be set equal to 𝑠. We

proceed as follows.

156 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

Proposition 5. Assume 𝑧𝑘∗−1 ≥ 1 and the definition of 𝑝 have been derived. Furthermore

suppose that a shadow circuit for 𝑇 = 𝑠 has been introduced. Using redundance-based

strengthening with witness

𝜔 = 𝑇 ↦→ 𝑠, 𝑌 ↦→ 𝑌𝑇=𝑠

we can derive the PB constraints representing

𝑝 ⇒ 𝑇 = 𝑠, (7)

i.e., in normalised form, the constraints

𝑠 · 𝑝 + 𝑇 ≥ 𝑠, and (8)

(2𝑃 − 𝑠 − 2) · 𝑝 +
𝑃−1∑
𝑗=0

2
𝑗 · 𝑇 𝑗 ≥ (2𝑃 − 1) − 𝑠 − 1. (9)

Proof. The proof for the two constraints is similar. The only proof goal where they

differ is showing that the constraint to-be-derived is satisfied under 𝜔, but this is

trivial since the witness sets 𝑇 equal to 𝑠 by construction.

For all the other proof goals, we can make use the negation of the constraint

to be derived (the negation of (8) or of (9)). From this negation, we can directly

derive 𝑝 ≥ 1. Adding this up to (one direction of (6) yields 𝑂 ≥ 𝑜∗ + 1, i.e., that

𝑂 ≥ 𝑠 + (𝑘∗ − 1) · 2𝑃 + 1. (10)

In other words, the conditions of 4 are satisfied. All the other proof obligations are

the same as the ones in the proof of that proposition and hence, making use of

(10), the proof proceeds identically to the proof of Proposition 4. □

In words, Proposition 5 tells us is that if the objective is strictly improving

on the previously found best value, then we can set 𝑇 equal to 𝑠 without loss of

generality. The SAT solver, however, has in its last call that yielded UNSAT already

derived a clause telling us that at least one of the bits of 𝑇 does not correspond

to 𝑠. So we can now straightforwardly derive that 𝑝 ≥ 1 and hence that 𝑂 ≤ 𝑜∗,
which is what we needed for concluding optimality.

Appendix B Proof Logging of Additional Techniques
Implemented in Pacose

We detail some of the additional search techniques implemented in and how we

proof log them. As a minor point, we note for completeness that in addition to

the gcd-based criterion described in Section 3.4, Pacose attempts to find more

partitions of the objective during stratification via exhaustive search, as illustrated

by the following example:

B. Proof Logging of Additional Techniques Implemented in Pacose 157

Example 3. Consider the objective 𝑂 := 14𝑥1 + 9𝑥2 + 5𝑥3 + 2𝑥4 + 1𝑥5 + 1𝑥6 and

the partition 𝐻 = {1, 2, 3} and 𝐿 = {4, 5, 6}. According to the gcd-based criterion

from Section 3.4, this partition is not viable due to the gcd not aligning with any

single divisor that groups the weights cohesively. However, this partition still

validly separates the weights of 𝑥1 to 𝑥6 through an alternative method: Define

𝐿𝐶 as the set containing all possible summed combinations of weights from 𝐿:

𝐿𝐶 := 5, 9, 14, 5 + 9, 5 + 14, 9 + 14, 5 + 9 + 14. To validate this partitioning, ensure

that the total weight 𝑊𝐿 from 𝐿 is at most the difference between any two sums

in 𝐿𝐶 . This ensures that 𝐿 forms a consistent grouping, as there is no weight

combination of 𝐿 invalidating a prior result of solving 𝐻.

A more in-depth explanation together with a proof can be found in [PRB21].

While certifying the exhaustive search remains interesting future work, we note

that it did not result in additional partitions on any of the benchmarks in our

evaluation, nor on the weighted instances of the 2019 and 2020 MaxSAT Evaluation.

We would like to mention that a naive approach to certify the exhaustive search

would be to derive the desired constraint𝑂𝐻 ≥ 𝑂𝐻↾𝛼 from the weakened constraint

𝑂𝐻 ≥ 𝑂↾𝛼 −𝑊𝐿 + 1 using redundance-based strengthening with an empty witness.

As 𝑂𝐻↾𝛼 is the sum of a subset of the coefficients in 𝑂𝐻 and the distance between

any two sums is at least 𝑊𝐿, the negation 𝑂𝐻 < 𝑂𝐻↾𝛼 of the desired constraint

can only be satisfied if the sum of true literals in 𝑂𝐻 is at most 𝑂𝐻↾𝛼 −𝑊𝐿. As

𝑂↾𝛼≥ 𝑂𝐻↾𝛼, the weakened constraint can only be satisfied if the sum of true literals

in 𝑂𝐻 is at least 𝑂𝐻↾𝛼 −𝑊𝐿 + 1. Hence, there exists no assignment to the variables

in 𝑂𝐻 for which both constraints are satisfied. To show this we can iterate through

every possible assignment 𝛼 of the variables in 𝑂𝐻 and derive the clause excluding

this assignment by reverse unit propagation. This step works, as reverse unit

propagation for this clause assigns all variables in 𝑂𝐻 , which will falsify either the

negated constraint or the weakened constraint by the arguments above. Resolving

all the clauses will result in a contradiction that proves that 𝑂𝐻 ≥ 𝑂𝐻↾𝛼 is implied.

B.1 TrimMaxSAT

TrimMaxSAT [PRB21] is a preprocessing technique applied before the main SIS

algorithm in order to decrease the number of literals in the objective that need to be

encoded by the DPW and to get a good initial value of the objective. TrimMaxSAT

heuristically splits the variables in the objective into partitions and queries the

SAT solver for a solution that assigns at least one of the literals in each partition

to 1. If such an assignment is found, the objective variables set to 1 are removed

from consideration and the number of partitions are decreased. If the partition

size is 1 and the SAT solver reports UNSAT, all remaining literals are fixed to 0 for

the rest of the search. In other words TrimMaxSAT aims to find objective literals

whose negation is implied by the constraints in the formula and fix their value,

thus conceptually decreasing the size of the objective under consideration and–as

a consequence–also the size of the DPW encoding built over it.

158 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

In more detail, assume ℒ contains the set of objective variables that have not

been set to 1 in any solutions found so far during TrimMaxSAT. During an iteration

of TrimMaxSAT,ℒ is partitioned into𝑚 subsetsℒ 𝑖 for 𝑖 = 1, . . . , 𝑚. A new variable

𝑟 is introduced and the clauses 𝑟 ⇒ (∑ℓ∈ℒ 𝑖 ℓ ≥ 1) for every 𝑖 = 1, . . . , 𝑚 are added

to the SAT solver and the proof via redundance-based strengthening to the core

set. The SAT solver is then queried under the assumption that 𝑟 is true. If the

result is SAT, the literals in ℒ assigned to 1 in the obtained solution are removed

from the set under consideration and the unit clause 𝑟 ≥ 1 is added to the solver

such that the SAT solver can remove the clauses of the form 𝑟 ⇒ (∑ℓ∈ℒ 𝑖 ℓ ≥ 1).
This unit clause can be derived by redundance-based strengthening with witness

𝜔 = 𝑟 ↦→ 0. If, on the other hand, the result is UNSAT, the unit clause 𝑟 ≥ 1 is

added to the SAT solver and the SAT solver can simplify its clause database. This

clause is derived by standard cutting planes reasoning in the conflict analysis by

the SAT solver and is therefore added to the derived set in the proof. If in this case

𝑚 = 1, we can also conclude that all literals ℓ ∈ ℒ are implied to be false. Hence,

the solver learns the unit clauses ℓ ≥ 1. In order to derive ℓ ≥ 1 for each ℓ ∈ ℒ 𝑖 ,
we first introduce the second part of the reification 𝑟 ⇐ (∑ℓ∈ℒ 𝑖 ℓ ≥ 1) using the

redundance rule with witness 𝑟 ↦→ 1 and then use cutting planes reasoning to

derive that since 𝑟 is false, all literals in ℒ 𝑖 must be false. Interestingly, thanks to

the use of strengthening-to-core, the unit clause 𝑟 ≥ 1 derived earlier does not

interfere with the derivation of the second direction of the reification.

B.2 Hardening

Hardening refers to the addition of the unit clause 𝑙𝑖 for an objective literal 𝑙𝑖
if the currently best known solution 𝑜∗ is larger than the sum of all weights in

𝑂 excluding 𝑤𝑖 . In the proof, the unit clause 𝑙𝑖 can be derived easily from the

solution-improving constraint and the objective reformulation rule can be used to

replace 𝑙𝑖 by the constant 𝑤𝑖 in the objective.

Appendix C Additional Experimental Evaluation

In this appendix, we present some additional experimental analysis with data and

plots to give some further insights into proof logging for Pacose. In Section C.1, we

present results for the binary adder encoding that is also used in Pacose and how

detail how well proof logging performs for Pacose when it heuristically selects

the encoding. We present data for an additional approach that uses assumptions

instead of unit clauses for fixing variables in the coarse convergence in Section C.2.

To better understand the proof logging overhead in Pacose, we have a deeper look

at some additional data for the proof logging process in Section C.3.

C. Additional Experimental Evaluation 159

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

timelimit

memout

tim
elim

it

m
em

o
u
t

Pacose without proof logging (s)

P
a
c
o
se

w
it
h
p
ro
o
f
lo
g
gi
n
g
(s
)

unweighted
weighted

Figure 4: Proof logging overhead for Pa-

cose using the binary adder encoding.

10−2 10−1 100 101 102 103 104 105
10−2

10−1

100

101

102

103

104

105

timelimit

memout

Pacose with proof logging (s)

V
e
r
iP

B
p
ro
of

ch
ec
k
in
g
(s
)

unweighted
weighted

Figure 5: Pacose vs. VeriPB running time

using binary adder encoding.

C.1 Binary Adder Encoding and Encoding Selection Heuristic

Pacose also uses the binary adder encoding [War98] instead of the DPW encoding.

A comparison between these two encodings is beyond the scope of this paper, but

as we implemented proof logging for both encodings, we can also have a look

at the data for the binary adder encoding. A comparison of solving with and

without proof logging for this encoding can be found in Figure 4. With proof

logging for the binary adder encoding 722 instances could be solved within the

resource limits, which are 6 fewer instances than without proof logging. This also

demonstrates that the heuristic for selecting the encoding works, as the number of

solved instances for the heuristic is bigger than for any of the two encodings on

their own. In the mean, Pacose with proof logging is 1.63× slower than without

proof logging. This overhead is smaller than for the DPW encoding, which lead to

the conclusion that more work is required to certify the DPW encoding compared

to the binary adder encoding.

Out of the 722 instances that were solved with the binary adder encoding,

658 instances were successfully checked by VeriPB within the resource limits. In

Figure 5, the running time of Pacose is compared to that of VeriPB. In the mean,

VeriPB is 21.1× slower than Pacose for solving the instance with proof logging,

which is similar to the DPW encoding. This could mean that the bottleneck for

checking the proofs is the implementation of the checker.

Using the default settings, Pacose heuristically selects between the DPW and

binary adder encoding. A plot comparing Pacose with and without proof logging

in the default settings in Figure 6 and a plot comparing Pacose with proof logging

with VeriPB for checking the proof in Figure 7. With this heuristic activated, 698

instances are solved within the resource limits with proof logging enabled and 707

instances without. Pacose with proof logging is 1.83× slower in the mean than

160 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

timelimit

memout

tim
elim

it

m
em

o
u
t

Pacose without proof logging (s)

P
a
c
o
se

w
it
h
p
ro
o
f
lo
g
gi
n
g
(s
)

unweighted
weighted

Figure 6: Proof logging overhead for Pa-

cose using heuristic encoding selection.

10−2 10−1 100 101 102 103 104 105
10−2

10−1

100

101

102

103

104

105

timelimit

memout

Pacose with proof logging (s)

V
e
r
iP

B
p
ro
of

ch
ec
k
in
g
(s
)

unweighted
weighted

Figure 7: Pacose vs. VeriPB running time

using heuristic encoding selection.

Pacose without proof logging. Checking the proof with VeriPB is 21.8× slower

than running Pacose with proof logging in the mean.

C.2 Coarse Convergence with Assumptions Instead of Unit
Clauses

An alternative approach for representing the information that output variables

of the DPW encoding are fixed to a value in the coarse convergence is to use

additional assumptions for the SAT solver instead of unit clauses. As we need a

shadow circuit to derive each unit clause, we could reduce the number of shadow

circuits by using assumptions. The idea is that we add the variable fixing to the

assumptions for all future calls to the SAT solver. This approach is supported in

Pacose, and we ran additional experiments using this approach.

The following data always use assumptions instead of unit clauses for fixing

variables. In Figure 8, Pacose with proof logging is compared to Pacose without

proof logging. Using assumptions Pacose with proof logging could solve 666

instances, which is 10 fewer instances than without proof logging. Pacose with

proof logging is 1.81× slower than without proof logging in the mean. This is very

similar to Pacose with the DPW encoding where the variables are fixed by unit

clauses and introducing shadow circuits. In the mean, the proof checking is 22.2×
slower than solving the instance with proof logging.

It can be concluded that this alternative approach of fixing variables by adding

assumptions is about as good as doing the fixing by unit clauses. Hence, it could be

that introducing additional shadow circuits for deriving the unit clauses does not

slow down the solving a lot, or it is a coincidence that the performance gains are

countered by the additional work required for keeping track of the assumptions.

C. Additional Experimental Evaluation 161

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

timelimit

memout

tim
elim

it

m
em

o
u
t

Pacose without proof logging (s)

P
a
c
o
se

w
it
h
p
ro
o
f
lo
g
gi
n
g
(s
)

unweighted
weighted

Figure 8: Proof logging overhead for Pa-

cose using DPW encoding and assump-

tions.

10−2 10−1 100 101 102 103 104 105
10−2

10−1

100

101

102

103

104

105

timelimit

memout

Pacose with proof logging (s)

V
e
r
iP

B
p
ro
o
f
ch
ec
k
in
g
(s
)

unweighted
weighted

Figure 9: Pacose vs. VeriPB running time

using DPW encoding and assumptions.

C.3 Proof Logging Overhead Analysis

To get a better understanding of the 1.93× slowdown of Pacose with proof logging

compared to without proof logging, we investigate different causes for the extra

running time with proof logging. The idea for doing so is to get insights into how

to improve the running time of the solvers.

The expectation is that the proof size scales linearly with the running time of

the solver. It would be interesting to look into the instances where this is not the

case and if there is a correlation with the solving overhead. We can illustrate this by

plotting the solving time against the proof size and colour the marks depending on

the overhead as it is done in Figure 10 for the DPW encoding and in Figure 11 for

the binary adder encoding. We added a diagonal line representing linear scaling of

proof size with running time for better orientation, which is not related to the data

at all. It can be seen that for the instances that have a proof size that is significantly

bigger than expected, the overhead also seems to increase similarly. To confirm

this observation, we compute the correlation of the proof logging overhead and

the proof size divided by the solving time. For the DPW encoding we have a

correlation of 0.92 and for the binary adder encoding we have a correlation of 0.88,

which shows that the two parameters are highly correlated. This mean that the

slowdown is due to proof being larger than expected for some instances.

We can conclude with some ideas to improve the performance of proof logging

in Pacose. First, the performance can be improved by engineering better data

structures to handle the proof logging to increase the speed for writing the proof.

This idea only works if we have not reached the maximum persistent disk write

speed, which is not the case for our experiments. Second, the proof could be done

in a smarter way to reduce the size of the proof, where slow parts of the proof

logging could be identified by profiling. Considering that we also have a 1.63×

162 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

10−2 10−1 100 101 102 103 104
103

104

105

106

107

108

109

1010

1011

Pacose without proof logging (s)

S
iz
e
of

ge
n
er
at
ed

p
ro
of

(b
y
te
)

1 3.16 10 31.62 100

Proof logging overhead (factor)

Figure 10: Solving time vs. proof size vs.

solving overhead for proof logging for the

DPW encoding.

10−2 10−1 100 101 102 103 104
103

104

105

106

107

108

109

1010

1011

Pacose without proof logging (s)

S
iz
e
of

ge
n
er
at
ed

p
ro
of

(b
y
te
)

1 3.16 10 31.62 100

Proof logging overhead (factor)

Figure 11: Solving time vs. proof size vs.

solving overhead for proof logging for the

binary adder encoding.

slowdown for the binary adder encoding, the slowdown is not purely caused by

the shadow circuits, as they are not used for this encoding.

References
[ABM

+
11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah,

and Pascal Schweitzer. An introduction to certifying algorithms. it

- Information Technology Methoden und innovative Anwendungen der

Informatik und Informationstechnik, 53(6):287–293, December 2011.

[ALM09] Josep Argelich, Inês Lynce, and João P. Marques-Silva. On solving

Boolean multilevel optimization problems. In Proceedings of the 21st

International Joint Conference on Artificial Intelligence (ĲCAI ’09), pages

393–398, July 2009.

[BB03] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of

Boolean cardinality constraints. In Proceedings of the 9th International

Conference on Principles and Practice of Constraint Programming (CP ’03),

volume 2833 of Lecture Notes in Computer Science, pages 108–122.

Springer, September 2003.

[BB09] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging

SMT solvers. In Proceedings of the 7th International Workshop on

Satisfiability Modulo Theories (SMT ’09), pages 1–5, August 2009.

References 163

[BBN
+
23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and

Dieter Vandesande. Certified core-guided MaxSAT solving. In

Proceedings of the 29th International Conference on Automated Deduction

(CADE-29), volume 14132 of Lecture Notes in Computer Science, pages

1–22. Springer, July 2023.

[BBN
+
24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias

Paxian, and Dieter Vandesande. Experimental Repository for “Certi-

fying Without Loss of Generality Reasoning in Solution-Improving

Maximum Satisfiability”, June 2024.

[BBR09] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encod-

ings of pseudo-Boolean constraints into CNF. In Proceedings of the

12th International Conference on Theory and Applications of Satisfiability

Testing (SAT ’09), volume 5584 of Lecture Notes in Computer Science,

pages 181–194. Springer, June 2009.

[BCH21] Seulkee Baek, Mario Carneiro, and Marĳn J. H. Heule. A flexible proof

format for SAT solver-elaborator communication. In Proceedings of the

27th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS ’21), volume 12651 of Lecture Notes in

Computer Science, pages 59–75. Springer, March-April 2021.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nord-

ström. Certified dominance and symmetry breaking for com-

binatorial optimisation. Journal of Artificial Intelligence Research,

77:1539–1589, August 2023. Preliminary version in AAAI ’22.

[BHvMW21] Armin Biere, Marĳn J. H. Heule, Hans van Maaren, and Toby Walsh,

editors. Handbook of Satisfiability, volume 336 of Frontiers in Artificial

Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[Bie06] Armin Biere. Tracecheck. http://fmv.jku.at/tracecheck/, 2006.

[BJM21] Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum

satisfiabiliy. In Biere et al. [BHvMW21], chapter 24, pages 929–991.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated

testing and debugging of SAT and QBF solvers. In Proceedings of the

13th International Conference on Theory and Applications of Satisfiability

Testing (SAT ’10), volume 6175 of Lecture Notes in Computer Science,

pages 44–57. Springer, July 2010.

[BLM07] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-

SAT. Artificial Intelligence, 171(8-9):606–618, June 2007. Extended

version of paper in SAT ’06.

http://fmv.jku.at/tracecheck/

164 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

[BMM
+
23] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nord-

ström, Andy Oertel, and Yong Kiam Tan. Documentation of VeriPB

and CakePB for the SAT competition 2023. Available at https://
satcompetition.github.io/2023/checkers.html, March 2023.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT

solving. In Biere et al. [BHvMW21], chapter 7, pages 233–350.

[BRK
+
22] Haniel Barbosa, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt,

Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Arjun

Viswanathan, Scott Viteri, Yoni Zohar, Cesare Tinelli, and Clark

Barrett. Flexible proof production in an industrial-strength SMT

solver. In Proceedings of the 11th International Joint Conference on

Automated Reasoning (ĲCAR ’22), volume 13385 of Lecture Notes in

Computer Science, pages 15–35. Springer, August 2022.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the

complexity of cutting-plane proofs. Discrete Applied Mathematics,

18(1):25–38, November 1987.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A

hybrid branch-and-bound approach for exact rational mixed-integer

programming. Mathematical Programming Computation, 5(3):305–344,

September 2013.

[DB13] Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP

solvers in MAXSAT. In Proceedings of the 16th International Conference

on Theory and Applications of Satisfiability Testing (SAT ’13), volume

7962 of Lecture Notes in Computer Science, pages 166–181. Springer,

July 2013.

[DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christo-

pher Hojny. A proof system for certifying symmetry and optimality

reasoning in integer programming. Technical Report 2311.03877,

arXiv.org, November 2023.

[EG23] Leon Eifler and Ambros Gleixner. A computational status update for

exact rational mixed integer programming. Mathematical Program-

ming, 197(2):793–812, February 2023.

[EH20] Salomé Eriksson and Malte Helmert. Certified unsolvability for SAT

planning with property directed reachability. In Proceedings of the

30th International Conference on Automated Planning and Scheduling,

pages 90–100, October 2020.

[ERH17] Salomé Eriksson, Gabriele Röger, and Malte Helmert. Unsolvability

certificates for classical planning. In Proceedings of the 27th International

Conference on Automated Planning and Scheduling (ICAPS ’17), pages

88–97, June 2017.

https://satcompetition.github.io/2023/checkers.html
https://satcompetition.github.io/2023/checkers.html

References 165

[ERH18] Salomé Eriksson, Gabriele Röger, and Malte Helmert. A proof system

for unsolvable planning tasks. In Proceedings of the 28th International

Conference on Automated Planning and Scheduling (ICAPS ’18), pages

65–73, June 2018.

[ES03] Niklas Eén and Niklas Sörensson. Temporal induction by incremental

SAT solving. In Proceedings of the 1st International Workshop on Bounded

Model Checking (BMC ’03), volume 89 of Electronic Notes in Theoretical

Computer Science, pages 543–560, July 2003.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean

constraints into SAT. Journal on Satisfiability, Boolean Modeling and

Computation, 2(1-4):1–26, March 2006.

[Fle20] Mathias Fleury. Formalization of Logical Calculi in Is-

abelle/HOL. PhD thesis, Universität des Saarlandes, 2020.

Available at https://publikationen.sulb.uni-saarland.de/
handle/20.500.11880/28722.

[FM06] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT

problem. In Proceedings of the 9th International Conference on Theory

and Applications of Satisfiability Testing (SAT ’06), volume 4121 of

Lecture Notes in Computer Science, pages 252–265. Springer, August

2006.

[GMM
+
20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström,

Patrick Prosser, and James Trimble. Certifying solvers for clique and

maximum common (connected) subgraph problems. In Proceedings of

the 26th International Conference on Principles and Practice of Constraint

Programming (CP ’20), volume 12333 of Lecture Notes in Computer

Science, pages 338–357. Springer, September 2020.

[GMM
+
24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nord-

ström, Andy Oertel, and Yong Kiam Tan. End-to-end verification

for subgraph solving. In Proceedings of the 368h AAAI Conference on

Artificial Intelligence (AAAI ’24), pages 8038–8047, February 2024.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel.

Certified CNF translations for pseudo-Boolean solving. In Proceed-

ings of the 25th International Conference on Theory and Applications of

Satisfiability Testing (SAT ’22), volume 236 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of

unsatisfiability for CNF formulas. In Proceedings of the Conference

on Design, Automation and Test in Europe (DATE ’03), pages 886–891,

March 2003.

https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28722
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28722

166 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning

efficiently using pseudo-Boolean proofs. In Proceedings of the 35th

AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777,

February 2021.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declar-

ative testing of constraints. In Proceedings of the 25th International

Conference on Principles and Practice of Constraint Programming (CP ’19),

volume 11802 of Lecture Notes in Computer Science, pages 565–582.

Springer, October 2019.

[HOGN24] Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nord-

ström. Certifying MIP-based presolve reductions for 0–1 integer

linear programs. In Proceedings of the 21st International Conference on

the Integration of Constraint Programming, Artificial Intelligence, and

Operations Research (CPAIOR ’24), volume 14742 of Lecture Notes in

Computer Science, pages 310–328. Springer, May 2024.

[IOT
+
24] Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg,

Matti Järvisalo, Magnus O. Myreen, and Jakob Nordström. Certified

MaxSAT preprocessing. In Proceedings of the 12th International Joint

Conference on Automated Reasoning (ĲCAR ’24), volume 14739 of

Lecture Notes in Computer Science, pages 396–418. Springer, July 2024.

[JHB12] Matti Järvisalo, Marĳn J. H. Heule, and Armin Biere. Inprocessing

rules. In Proceedings of the 6th International Joint Conference on Auto-

mated Reasoning (ĲCAR ’12), volume 7364 of Lecture Notes in Computer

Science, pages 355–370. Springer, June 2012.

[JMM15] Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. General-

ized totalizer encoding for pseudo-Boolean constraints. In Proceedings

of the 21st International Conference on Principles and Practice of Con-

straint Programming (CP ’15), volume 9255 of Lecture Notes in Computer

Science, pages 200–209. Springer, August-September 2015.

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomor-

phism and subgraph isomorphism problems faster through clique

neighbourhood constraints. In Proceedings of the 30th International

Joint Conference on Artificial Intelligence (ĲCAI ’21), pages 1396–1402,

August 2021.

[KP19] Michal Karpinski and Marek Piotrów. Encoding cardinality con-

straints using multiway merge selection networks. Constraints,

24(3–4):234–251, October 2019.

[LBJ20] Marcus Leivo, Jeremias Berg, and Matti Järvisalo. Preprocessing

in incomplete MaxSAT solving. In Proceedings of the 24th European

Conference on Artificial Intelligence (ECAI ’20), volume 325 of Frontiers

References 167

in Artificial Intelligence and Applications, pages 347–354, August-

September 2020.

[LM21] Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In

Biere et al. [BHvMW21], chapter 23, pages 903–927.

[LNOR11] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric

Rodríguez-Carbonell. A framework for certified Boolean branch-

and-bound optimization. Journal of Automated Reasoning, 46(1):81–102,

January 2011.

[Max] MaxSAT evaluations: Evaluating the state of the art in maximum

satisfiability solver technology. https://maxsat-evaluations.
github.io/.

[Max23] MaxSAT evaluation 2023. https://maxsat-evaluations.github.
io/2023, July 2023.

[MM11] António Morgado and João P. Marques-Silva. On validating Boolean

optimizers. In Proceedings of the 23rd IEEE International Conference on

Tools with Artificial Intelligence (ICTAI ’12), pages 924–926, November

2011.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pas-

cal Schweitzer. Certifying algorithms. Computer Science Review,

5(2):119–161, May 2011.

[MPS14] Norbert Manthey, Tobias Philipp, and Peter Steinke. A more com-

pact translation of pseudo-Boolean constraints into CNF such that

generalized arc consistency is maintained. In Proceedings of the 37th

Annual German Conference on Artificial Intelligence (KI ’14), volume

8736 of Lecture Notes in Computer Science, pages 123–134. Springer,

September 2014.

[PB23] Tobias Paxian and Armin Biere. Uncovering and classifying bugs in

MaxSAT solvers through fuzzing and delta debugging. In Proceedings

of the 14th International Workshop on Pragmatics of SAT, volume 3545 of

CEUR Workshop Proceedings, pages 59–71. CEUR-WS.org, July 2023.

[PCH20] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Towards

bridging the gap between SAT and Max-SAT refutations. In Proceed-

ings of the 32nd IEEE International Conference on Tools with Artificial

Intelligence (ICTAI ’20), pages 137–144, November 2020.

[PCH21] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. A proof

builder for Max-SAT. In Proceedings of the 24th International Conference

on Theory and Applications of Satisfiability Testing (SAT ’21), volume

12831 of Lecture Notes in Computer Science, pages 488–498. Springer,

July 2021.

https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/2023
https://maxsat-evaluations.github.io/2023

168 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

[PCH22] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Proofs

and certificates for Max-SAT. Journal of Artificial Intelligence Research,

75:1373–1400, December 2022.

[PRB18] Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic polynomial

watchdog encoding for solving weighted MaxSAT. In Proceedings of

the 21st International Conference on Theory and Applications of Satisfi-

ability Testing (SAT ’18), volume 10929 of Lecture Notes in Computer

Science, pages 37–53. Springer, July 2018.

[PRB21] Tobias Paxian, Pascal Raiola, and Bernd Becker. On preprocessing for

weighted MaxSAT. In Proceedings of the 22nd International Conference

on Verification, Model Checking, and Abstract Interpretation (VMCAI ’21),

volume 12597 of Lecture Notes in Computer Science, pages 556–577.

Springer, January 2021.

[Rög17] Gabriele Röger. Towards certified unsolvability in classical planning.

In Proceedings of the 26th International Joint Conference on Artificial

Intelligence (ĲCAI ’17), pages 5141–5145, August 2017.

[SFBF21] Hans-Jörg Schurr, Mathias Fleury, Haniel Barbosa, and Pascal

Fontaine. Alethe: Towards a generic SMT proof format (extended

abstract). In Proceedings of the 7th Workshop on Proof eXchange for

Theorem Proving (PxTP ’21, volume 336 of Electronic Proceedings in

Theoretical Computer Science, pages 49–54, July 2021.

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of Boolean cardi-

nality constraints. In Proceedings of the 11th International Conference

on Principles and Practice of Constraint Programming (CP ’05), volume

3709 of Lecture Notes in Computer Science, pages 827–831. Springer,

October 2005.

[Van23] Dieter Vandesande. Towards certified MaxSAT solving: Certified

MaxSAT solving with SAT oracles and encodings of pseudo-Boolean

constraints. Master’s thesis, Vrĳe Universiteit Brussel (VUB), 2023.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb:

A certified MaxSAT solver. In Proceedings of the 16th International

Conference on Logic Programming and Non-monotonic Reasoning (LP-

NMR ’22), volume 13416 of Lecture Notes in Computer Science, pages

429–442. Springer, September 2022.

[Ver] VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/
MIAOresearch/software/VeriPB.

[War98] Joost P. Warners. A linear-time transformation of linear inequal-

ities into conjunctive normal form. Information Processing Letters,

68(2):63–69, October 1998.

https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB

References 169

[WHH14] Nathan Wetzler, Marĳn J. H. Heule, and Warren A. Hunt Jr. DRAT-

trim: Efficient checking and trimming using expressive clausal

proofs. In Proceedings of the 17th International Conference on Theory and

Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture

Notes in Computer Science, pages 422–429. Springer, July 2014.

170 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

Pa
pe

r
IV

Certifying MIP-Based Presolve
Reductions for 0–1 Integer

Linear Programs

Abstract
It is well known that reformulating the original problem can be crucial for the

performance of mixed-integer programming (MIP) solvers. To ensure correctness,

all transformations must preserve the feasibility status and optimal value of the

problem, but there is currently no established methodology to express and verify

the equivalence of two mixed-integer programs. In this work, we take a first step

in this direction by showing how the correctness of MIP presolve reductions on

0–1 integer linear programs can be certified by using (and suitably extending)

the VeriPB tool for pseudo-Boolean proof logging. Our experimental evaluation

on both decision and optimization instances demonstrates the computational

viability of the approach and leads to suggestions for future revisions of the proof

format that will help to reduce the verbosity of the certificates and to accelerate

the certification and verification process further.

1 Introduction
Boolean satisfiability solving (SAT) and mixed-integer programming (MIP) are two

computational paradigms in which surprisingly mature and powerful solvers

have been developed over the last decades. Today such solvers are routinely

used to solve large-scale problems in practice despite the fact that these problems

are NP-hard. Both SAT and MIP solvers typically start by trying to simplify

the input problem before feeding it to the main solver algorithm, a process

known as presolving in MIP and preprocessing in SAT. This can involve, e.g., fixing

Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström. “Certifying MIP-Based

Presolve Reductions for 0–1 Integer Linear Programs”. In Proceedings of the 21st International Conference

on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR ’24),

volume 14742 of Lecture Notes in Computer Science, pages 310–328. Springer, May 2024.

172 Certifying MIP-Based Presolve Reductions for 0–1 ILP

variables to values, strengthening constraints, removing constraints, or adding

new constraints to break symmetries. Such techniques are very important for SAT

solver performance [BJK21], and for MIP solvers they often play a decisive role in

whether a problem instance can be solved or not, regardless of whether the solver

uses floating-point [ABG
+
19] or exact rational arithmetic [EG22].

The impressive performance gains for modern combinatorial solvers come

at the price of ever-increasing complexity, which makes these tools very hard to

debug. It is well documented that even state-of-the-art solvers in many paradigms,

not just SAT and MIP, suffer from errors such as mistakenly claiming infeasibility

or optimality, or even returning “solutions” that are infeasible [AGJ
+
18, CKSW13a,

GSD19, Klo14, Ste11]. During the last decade, the SAT community has dealt with

this problem in a remarkably successful way by requiring that solvers should use

proof logging, i.e., produce machine-verifiable certificates of correctness for their

computations that can be verified by a stand-alone proof checker. A number of

proof formats have been developed, such as DRAT [HHW13a, HHW13b, WHH14],

GRIT [CMS17], and LRAT [CHH
+
17], which are used to certify the whole solving

process including preprocessing.

Achieving something similar in a general MIP setting is much more challeng-

ing, amongst others because of the presence of continuous and general integer

variables, which may even have unbounded domains. For numerically exact

MIP solvers [CKSW13b, EG22, EG24] the proof format VIPR [CGS17] has been

introduced, but it currently only allows verification of feasibility-based reasoning,

which must preserve all feasible solutions. In particular, it does not support the ver-

ification of dual presolving techniques that may exclude feasible solutions as long

as one optimal solution remains. This means that while exact MIP solvers could

in principle generate a certificate for the main solving process, such a certificate

would only establish correctness under the assumption that all the presolving steps

were valid, as, e.g., in [EG22]. And, unfortunately, the proof logging techniques

for SAT preprocessing cannot be used to address this problem, since they can only

reason about clausal constraints.

Our contribution in this work is to take a first step towards verification of the

full MIP solving process by demonstrating how pseudo-Boolean proof logging

with VeriPB can be used to produce certificates of correctness for a wide range

of MIP presolving techniques for 0–1 integer linear programs (ILPs). VeriPB is

quite a versatile tool in that it has previously been employed for certification of,

e.g., advanced SAT solving techniques [BGMN23, GN21], SAT-based optimization

(MaxSAT) [BBN
+
23, VDB22], subgraph solving [GMM

+
20, GMN20], and constraint

programming [GMN22, MM23]. However, to the best of our knowledge this is

the first time the tool has been used to prove the correctness of reformulations

of optimization problems, and this presents new challenges. In particular, the

proof system turns out not to be well suited for problem reformulations with

frequent changes to the objective function, and therefore we introduce a new rule

for objective function updates.

Our computational experiments confirm that this approach to certifying pre-

solve reductions is computationally viable and the overhead for certification aligns

2. Pseudo-Boolean Proof Logging with VeriPB 173

with what is known from the literature for certifying problem transformations in

other contexts [GMNO22]. The analysis of the results reveals new insights into

performance bottlenecks, and these insights directly translate to possible revisions

of the proof logging format that would be valuable to address in order to decrease

the size of the generated proofs and speed up proof verification.

We would like to note that, while our current methods are only applicable to

0–1 ILPs, this covers already a large and important class of MIPs. In particular,

there are applications where the exact and verified solution of 0–1 ILPs is highly

relevant, see [Ach07, EGP22, SBD19] for some examples.

The rest of this paper is organized as follows. After presenting pseudo-Boolean

proof logging and VeriPB in Sec. 2, we demonstrate in Sec. 3 how to produce

VeriPB certificates for MIP presolving on 0–1 ILPs. In Sec. 4 we report results

of an experimental evaluation, and we conclude in Sec. 5 with a summary and

discussion of future work.

2 Pseudo-Boolean Proof Logging with VeriPB
We start by reviewing pseudo-Boolean reasoning in Sec. 2.1, and then explain our

extension to deal with objective function updates in Sec. 2.2. In order to make the

concept of proof logging more concrete, we conclude this section by providing, in

Tab. 1, a few examples of how the derivation rules explained below are encoded in

VeriPB syntax. For space reasons, this list does not include examples of subproofs

that may be necessary for some derivations that cannot be proven automatically by

VeriPB. Further details on practical aspects and implementation of pseudo-Boolean

proof logging can be found in the software repository of VeriPB [GO23].

2.1 Pseudo-Boolean Reasoning with the Cutting Planes Method
Our treatment of this material will by necessity be somewhat terse—we refer

the reader to [BN21] for more information about the cutting planes method and

to [BGMN23, GMNO22] for detailed information about the VeriPB proof system

and format.

We write 𝑥 to denote a {0, 1}-valued variable and 𝑥 as a shorthand for 1 − 𝑥, and

write ℓ to denote such positive and negative literals, respectively. By a pseudo-Boolean

(PB) constraint we mean a 0–1 linear inequality

∑
𝑗 𝑎 𝑗ℓ 𝑗 ≥ 𝑏, where when convenient

we can assume all literals ℓ 𝑗 to refer to distinct variables and all 𝑎 𝑗 and 𝑏 to be

non-negative (so-called normalized form). A pseudo-Boolean formula is just another

name for a 0–1 integer linear program. For optimization problems we also have an

objective function 𝑓 =
∑
𝑗 𝑐 𝑗𝑥 𝑗 that should be minimized (and 𝑓 can be negated to

represent a maximization problem).

The foundation of VeriPB is the cutting planes proof system [CCT87]. At the

start of the proof, the set of core constraints 𝒞 are initialized as the 0–1 linear

inequalities in the problem instance. Any constraints derived as described below

are placed in the set of derived constraints𝒟, from where they can later be moved

174 Certifying MIP-Based Presolve Reductions for 0–1 ILP

to 𝒞 (but not vice versa). Loosely speaking, VeriPB proofs maintain the invariant

that the optimal value of any solution to 𝒞 and to the original input problem is

the same. New constraints can be derived from 𝒞 ∪ 𝒟 by performing addition of

two constraints or multiplication of a constraint by a positive integer, and literal

axioms ℓ ≥ 0 can be used at any time. Additionally, for a constraint

∑
𝑗 𝑎 𝑗ℓ 𝑗 ≥ 𝑏

written in normalized form we can apply division by a positive integer 𝑑 followed

by rounding up to obtain

∑
𝑗 ⌈𝑎 𝑗/𝑑⌉ℓ 𝑗 ≥ ⌈𝑏/𝑑⌉, and saturation can be applied to

yield

∑
𝑗 min{𝑎 𝑗 , 𝑏} · ℓ 𝑗 ≥ 𝑏.

For a PB constraint 𝐶 �
∑
𝑗 𝑎 𝑗ℓ 𝑗 ≥ 𝑏 (where we use � to denote syntactic

equality), the negation of 𝐶 is ¬𝐶 � ∑
𝑗 𝑎 𝑗ℓ 𝑗 ≤ 𝑏 − 1. For a partial assignment 𝜌

mapping variables to {0, 1}, we write 𝐶↾𝜌 for the restricted constraint obtained

by replacing variables in 𝐶 assigned by 𝜌 by their values and simplifying the

result. We say that 𝐶 unit propagates ℓ under 𝜌 if 𝐶↾𝜌 cannot be satisfied unless ℓ is

assigned to 1. If unit propagation on all constraints in 𝒞 ∪𝒟 ∪ {¬𝐶} starting with

the empty assignment 𝜌 = ∅, and extending 𝜌 with new assignments as long as

new literals propagate, leads to contradiction in the form of a violated constraint,

then we say that 𝐶 follows by reverse unit propagation (RUP) from 𝒞 ∪ 𝒟. Such

(efficiently verifiable) RUP steps are allowed in VeriPB proofs when it is convenient

to avoid writing out an explicit derivation of 𝐶 from 𝒞 ∪ 𝒟. We will also write

𝐶↾𝜔 to denote the result of applying to 𝐶 a (partial) substitution 𝜔 which can remap

variables to other literals in addition to 0 and 1, and we extend this notation to sets

in the obvious way by taking unions.

In addition to the cutting planes rules, which can only derive semantically

implied constraints, VeriPB has a redundance-based strengthening rule that can derive

a non-implied constraint 𝐶 as long as this does not change the feasibility or optimal

value of the problem. Formally, 𝐶 can be derived from 𝒞 ∪ 𝒟 using this rule by

exhibiting in the proof a witness substitution 𝜔 together with subproofs

𝒞 ∪ 𝒟 ∪ {¬𝐶} ⊢ (𝒞 ∪ 𝒟 ∪ {𝐶})↾𝜔 ∪{ 𝑓 ≥ 𝑓↾𝜔} , (1)

of all constraints on the right-hand side from the premises on the left-hand side

using the derivation rules above. Intuitively, what (1) shows is that if 𝛼 is any

assignment that satisfies 𝒞 ∪ 𝒟 but violates 𝐶, then 𝛼 ◦ 𝜔 satisfies 𝒞 ∪ 𝒟 ∪ {𝐶}
and yields at least as good a value for the objective function 𝑓 .

During presolving, constraints in the input formula can be deleted or replaced

by other constraints, and the proof needs to establish that such modifications are

correct. While deletions from the derived set 𝒟 are always in order, removing

a constraint from the core set 𝒞 could potentially introduce spurious solutions.

Therefore, deleting a constraint 𝐶 from 𝒞 can only be done by the checked deletion

rule, which requires to show that 𝐶 could be rederived from 𝒞\{𝐶} by redundance-

based strengthening (see [BGMN23] for a more detailed explanation).

2.2 A New Rule for Objective Function Updates
When variables are fixed or identified during the presolving process, the objective

function 𝑓 can be modified to a function 𝑓 ′. This modified objective 𝑓 ′ can then

2. Pseudo-Boolean Proof Logging with VeriPB 175

Table 1: Examples of basic derivation rules in VeriPB syntax. Here, (id) refers to the

constraint ID assigned by VeriPB.

Rule Syntax Explanation

cutting planes in

reverse Polish

notation

pol x1 4 + add 𝑥1 ≥ 0 and (4)

pol 3 2 d divides (3) by 2

pol 1 2 * ~x1 + multiplies (1) by 2 and adds 𝑥1 ≥ 0

redundance-based

strengthening

red +1 x1 >= 1; x1 1 verifies 𝑥1 ≥ 1 with 𝜔 = {𝑥1 ↦→ 1}
red +1 x1 +1 x2 >= 1; x1 x2 x2 x1 verifies 𝑥1 + 𝑥2 ≥ 1 with

𝜔 = {𝑥1 ↦→ 𝑥2 , 𝑥2 ↦→ 𝑥1}

RUP rup +1 x1 +1 x2 >= 1; verifies 𝑥1 + 𝑥2 ≥ 1 with RUP

move to core core id 3 moves (3) to the core constraints

deletion from core delc 3 deletes (3) from the core constraints

objective function

update

obju new +1 x1 +1 x2 1; defines 𝑥1 + 𝑥2 + 1 as new objective

obju diff +1 ~x1; adds 𝑥1 to the objective

be used in other presolver reasoning. This scenario arises also in, e.g., MaxSAT

solving, and can be dealt with by deriving two PB constraints 𝑓 ≥ 𝑓 ′ and 𝑓 ′ ≥ 𝑓
in the proof, which encodes that the old and new objective are equal [BBN

+
23].

Whenever the solver argues in terms of 𝑓 ′, a telescoping-sum argument with 𝑓 ′ = 𝑓
can be used to justify the same conclusion in terms of the old objective.

However, if the presolver changes 𝑓 to 𝑓 ′ and then uses reasoning that needs

to be certified by redundance-based strengthening, then tricky problems can

arise. One of the required proof goals in (1) is that the witness 𝜔 cannot worsen

the objective. If 𝜔 does not mention variables in 𝑓 ′, then this is obvious to the

presolver—𝜔 has no effect on the objective—but if 𝜔 assigns variables in the original

objective 𝑓 , then one still needs to derive 𝑓 ≥ 𝑓↾𝜔 in the formal proof, which can

be challenging. While this can often be done by enlarging the witness 𝜔 to include

earlier variable fixings and identifications, the extra bookkeeping required for this

quickly becomes a major headache, and results in the proof deviating further and

further from the actual presolver reasoning that the proof logging is meant to

certify.

For this reason, a better solution is to introduce a new objective function update

rule that formally replaces 𝑓 by a new objective 𝑓 ′, so that all future reasoning

about the objective can focus on 𝑓 ′ and ignore 𝑓 . Such a rule needs to be designed

with care, so that the optimal value of the problem is preserved. Due to space

constraints we cannot provide a formal proof here, but recall that intuitively we

maintain the invariant for the core set 𝒞 that it has the same optimal value as the

original problem. In agreement with this, the formal requirement for updating

the objective from 𝑓 to 𝑓 ′ is to present in the proof log derivations of the two

constraints 𝑓 ≥ 𝑓 ′ and 𝑓 ′ ≥ 𝑓 from the core set 𝒞 only.

176 Certifying MIP-Based Presolve Reductions for 0–1 ILP

3 Certifying Presolve Reductions
We now describe how feasibility- and optimality-based presolving reductions

can be certified by using VeriPB proof logging enhanced with the new objective

function update rule described in Sec. 2.2 above. We distinguish between primal

and dual reductions, where primal reductions strengthen the problem formulation

by tightening the convex hull of the problem and preserve all feasible solutions, and

dual reductions may additionally remove feasible solutions using optimality-based

arguments. More precisely, weak dual reductions preserve all optimal solutions,

but may remove suboptimal solutions. Strong dual reductions may remove also

optimal solutions as long as at least one optimal solution is preserved in the

reduced problem. Our selection of methods is motivated by the recent MIP solver

implementation described in [PaP]. Before explaining the individual presolving

techniques and their certification, we introduce a few general techniques that are

needed for the certification of several presolving methods.

3.1 General Techniques

Substitution. In order to reduce the number of variables, constraints, and non-zero

coefficients in the constraints, many presolving techniques first try to identify an

equality 𝐸 � 𝑥𝑘 =
∑
𝑗≠𝑘 𝛼 𝑗𝑥 𝑗 + 𝛽 with 𝛼 𝑗 , 𝛽 ∈ Q. Subsequently, all occurrences of 𝑥𝑘

in the objective and constraints besides 𝐸 are substituted by the affine expression on

the right-hand side and 𝑥𝑘 is removed from the problem. The simplest case when

𝑥𝑘 is fixed to zero or one, i.e., when 𝛽 ∈ {0, 1} and all 𝛼 𝑗 = 0, is straightforward to

handle by deriving a new lower or upper bound on 𝑥𝑘 . During presolving, every

fixed variable is removed from the model. In the cases where some 𝛼 𝑗 ≠ 0, first

the equation is expressed as a pair of constraints 𝐸≥ ∧ 𝐸≤ and then the variable is

removed by aggregation as follows.

Aggregation. In order to substitute variables or reduce the number of non-zero

coefficients, certain presolving techniques add a scaled equality 𝑠 ·𝐸 � 𝑠 ·𝐸≥∧ 𝑠 ·𝐸≤,

𝑠 ∈ Q, to a given constraint 𝐷. We call this an aggregation. Since VeriPB certificates

expect inequalities with integer coefficients, 𝑠 is split into two integer scaling

factors 𝑠𝐸 , 𝑠𝐷 ∈ Zwith 𝑠 = 𝑠𝐸/𝑠𝐷 . In the certificate, the aggregation is expressed

as a newly derived constraint

𝐷new �

{
|𝑠𝐸 | · 𝐸≥ + |𝑠𝐷 | · 𝐷 if

𝑠𝐷
𝑠𝐸

> 0

|𝑠𝐸 | · 𝐸≤ + |𝑠𝐷 | · 𝐷 otherwise .

Note that the presolving algorithm may decide to keep working with the

constraint (1/𝑠𝐷)𝐷new internally. In this case, it must store the scaling factor 𝑠𝐷 in

order to correctly translate between its own state and the state in the certificate;

this happens in the implementation used in Sec. 4.

Checked Deletion. The derivation of a new constraint 𝐷new can render a previous

constraint 𝐷 redundant. A typical example is the case of substituting a variable

3. Certifying Presolve Reductions 177

above. In a (pre)solver, the previous constraint is overwritten, and in order to

keep the constraint database in the proof aligned with the solver, one may want to

delete the previous constraint from the proof. In order to check the deletion of 𝐷,

a subproof is required that proves its redundancy. In most cases, this subproof

contains the “inverted” derivation of𝐷new. As an example, consider an aggregation

𝐷new � 𝐷 + 𝐸≤ with an equality 𝐸 � 𝐸≤ ∧ 𝐸≥. In this case, the subproof for the

checked deletion is 𝐷new + 𝐸≥. Unless stated otherwise, the new constraints are

moved to the core and redundant constraints are always removed by inverting the

derivation of the constraint that replaces them.

3.2 Primal Reductions
Primal reductions can be certified purely by implicational reasoning.

Bound Strengthening. This preprocessor [FM05, Sav94] tries to tighten the variable

domains by iteratively applying well-known constraint propagation to all variables

in the linear constraints. Each reduced variable domain is communicated to the

affected constraints and may trigger further domain changes. This process is

continued until no further domain reductions happen or the problem becomes

infeasible due to empty domains. Specifically, for an inequality constraint∑
𝑗∈𝑁

𝑎 𝑗𝑥 𝑗 ≥ 𝑏 (2)

with 𝑎𝑘 ≠ 0, we first underestimate 𝑎𝑘𝑥𝑘 via

𝑎𝑘𝑥𝑘 ≥ 𝑏 −
∑
𝑗≠𝑘

𝑎 𝑗𝑥 𝑗 ≥ 𝑏 −
∑

𝑗≠𝑘,𝑎 𝑗>0

𝑎 𝑗 .

If 𝑎𝑘 > 0, this yields the lower bound

𝑥𝑘 ≥
⌈(
𝑏 −

∑
𝑗≠𝑘,𝑎 𝑗>0

𝑎 𝑗
)
/𝑎𝑘

⌉
, (3)

and if 𝑎𝑘 < 0 we can obtain an analogous upper bound on 𝑥𝑘 .
The bound change can be proven either by RUP, or more explicitly by stating

the additions and division needed to form (3) from (2) and the bound constraints.

We analyze the effect of both variants in Sec. 4.4.

Parallel Rows. Two constraints 𝐶 𝑗 and 𝐶𝑘 are parallel if a scalar 𝜆 ∈ R+ exists with

𝜆(𝑎 𝑗1 , . . . , 𝑎 𝑗𝑛 , 𝑏 𝑗) = (𝑎𝑘1 , . . . , 𝑎𝑘𝑛 , 𝑏𝑘). Hence, one of these constraints is redundant

and can be removed from the model [ABG
+
19, GCW

+
20]. The subproof for

deleting the redundant rows must contain the remaining parallel row and 𝜆 to

prove the redundancy. For a fractional 𝜆 the two constraint are scaled to ensure

integer coefficients in the certificate.

Probing. The general idea of probing [Ach07, Sav94] is to tentatively fix a variable

𝑥 𝑗 to 0 or 1 and then apply constraint propagation to the resulting model. Suppose

178 Certifying MIP-Based Presolve Reductions for 0–1 ILP

𝑥𝑘 is an arbitrary variable with 𝑘 ≠ 𝑖, then we can learn fixings or implications in

the following cases:

1. If 𝑥 𝑗 = 0 implies 𝑥𝑘 = 1 and 𝑥 𝑗 = 1 implies 𝑥𝑘 = 0 we can add the constraint

𝑥 𝑗 = 1− 𝑥𝑘 . Analogously, we can derive 𝑥𝑘 = 𝑥 𝑗 in the case that 𝑥 𝑗 = 0 implies

𝑥𝑘 = 0 and 𝑥 𝑗 = 1 implies 𝑥𝑘 = 1.

2. If 𝑥 𝑗 = 0 propagates to infeasibility we can fix 𝑥 𝑗 = 1. Analogously, if 𝑥 𝑗 = 1

propagates to infeasibility we can fix 𝑥 𝑗 = 0.

3. If 𝑥 𝑗 = 0 implies 𝑥𝑘 = 0 and 𝑥 𝑗 = 1 implies 𝑥𝑘 = 0 we can fix 𝑥𝑘 to 0.

Analogously, 𝑥𝑘 can be fixed to 1 if 𝑥 𝑗 = 0 implies 𝑥𝑘 = 1 and 𝑥 𝑗 = 1 implies

𝑥𝑘 = 1.

Cases 1 and 2 can be proven with RUP. To prove correctness of fixing 𝑥𝑘 = 1 in

Case 3 we first derive two new constraints 𝑥𝑘 + 𝑥 𝑗 ≥ 1 and 𝑥𝑘 − 𝑥 𝑗 ≥ 0 in the proof

log by RUP. Adding these two constraints leads to 𝑥𝑘 ≥ 1. To prove 𝑥𝑘 = 0 we

derive the constraints 𝑥𝑘 + 𝑥 𝑗 ≤ 0 and 𝑥𝑘 − 𝑥 𝑗 ≤ 0 leading to 𝑥𝑘 = 0.

Simple Probing. On equalities with a special structure, a more simplified version

of probing called simple probing [ABG
+
19, Sec. 3.6] can be applied. Suppose the

equation ∑
𝑗∈𝑁

𝑎 𝑗𝑥 𝑗 = 𝑏 with

∑
𝑗∈𝑁

𝑎 𝑗 = 2 · 𝑏 and |𝑎𝑘 | =
∑

𝑗∈𝑁,𝑎 𝑗>0

𝑎 𝑗 − 𝑏

holds for a variable 𝑥𝑘 with 𝑎𝑘 ≠ 0. Let 𝑁̂ = {𝑝 ∈ 𝑁 | 𝑎𝑝 ≠ 0}. Under these

conditions, 𝑥𝑘 = 1 implies 𝑥𝑝 = 0 and 𝑥𝑘 = 0 implies 𝑥𝑝 = 1 for all 𝑝 ∈ 𝑁̂ with

𝑎𝑝 > 0. Further, 𝑥𝑘 = 1 implies 𝑥𝑝 = 1 and 𝑥𝑘 = 0 implies 𝑥𝑝 = 0 for all 𝑝 ∈ 𝑁̂ with

𝑎𝑝 < 0. These implications can be expressed by the constraints

𝑥𝑘 = 1 − 𝑥𝑝 for all 𝑝 ∈ 𝑁̂ with 𝑎𝑝 > 0 , (4)

𝑥𝑘 = 𝑥𝑝 for all 𝑝 ∈ 𝑁̂ with 𝑎𝑝 < 0 . (5)

The constraints (4) and (5) can be proven with RUP and used to substitute variables

𝑥𝑝 for all 𝑝 ∈ 𝑁̂ from the problem.

Sparsifying the Matrix. The presolving technique sparsify [ABG
+
19, CM93] tries to

reduce the number of non-zero coefficients by adding (multiples of) equalities to

other constraints using aggregations. This can be certified as described in Sec. 3.1.

Coefficient Tightening. The goal of this MIP presolving technique, which goes back

to [Sav94], is to tighten the LP relaxation, i.e., the relaxation obtained when the

integrality requirements are replaced by 𝑥 𝑗 ∈ [0, 1]. To this end, the coefficients

of constraints are modified such that LP relaxation solutions are removed, but

all integer feasible solutions are preserved. Suppose we are given a constraint∑
𝑗∈𝑁 𝑎 𝑗𝑥 𝑗 ≥ 𝑏 with 𝑎𝑘 ≥ 𝜀 := 𝑎𝑘 − 𝑏 +

∑
𝑗≠𝑘,𝑎 𝑗<0

𝑎 𝑗 > 0, then the constraint can be

3. Certifying Presolve Reductions 179

strengthened to (𝑎𝑘 − 𝜀)𝑥𝑘 +
∑
𝑗≠𝑘 𝑎 𝑗𝑥 𝑗 ≥ 𝑏 . The case 𝑎𝑘 < 0 is handled analogously.

This technique is also known as saturation in the SAT community [CK05] and

VeriPB provides a dedicated saturation rule that can be used directly for proving

the correctness of coefficient tightening. The deletion of the original, weaker

constraint can be proven automatically.

GCD-based Simplification. This presolving technique from [Wen16] uses a divisibility

argument to first eliminate variables from a constraint and then tighten its right-

hand side. Given 𝐶 �
∑
𝑗∈𝑁 𝑎 𝑗𝑥 𝑗 ≥ 𝑏 with |𝑎1 | ≥ · · · ≥ |𝑎𝑛 | > 0. We define the

greatest common divisor 𝑔𝑘 = gcd(𝑎1 , . . . , 𝑎𝑘) as the largest value 𝑔 such that

𝑎 𝑗/𝑔 ∈ Z for all 𝑗 ∈ {1, . . . , 𝑘}. If for an index 𝑘 it holds that 𝑏 − 𝑔𝑘 ·
⌈
𝑏
𝑔𝑘

⌉
≥∑

𝑘< 𝑗≤𝑛,𝑎 𝑗>0
𝑎 𝑗 and 𝑏− 𝑔𝑘 ·

⌈
𝑏
𝑔𝑘

⌉
− 𝑔𝑘 ≤

∑
𝑘< 𝑗≤𝑛,𝑎 𝑗<0

𝑎 𝑗 , then all 𝑎𝑘+1 , . . . , 𝑎𝑛 can be set

to 0. This first step can be certified as weakening [LBMW20] and VeriPB provides an

out-of-the-box verification function for it. Finally, 𝑏 can be rounded to 𝑔𝑘 · ⌈𝑏/𝑔𝑘⌉.
This rounding step can be certified by dividing 𝐶 with 𝑔𝑘 and then multiply it

again with 𝑔𝑘 .

Substituting Implied Free Variables. A variable 𝑥 𝑗 is called implied free if its lower

bound and its upper bound can be derived from the constraints. For example, the

constraints 𝑥1 − 𝑥2 ≥ 0 and 𝑥2 ≥ 0 imply the lower bound 𝑥1 ≥ 0. If we have an

implied free variable 𝑥 𝑗 in an equality 𝐸 � 𝑎 𝑗𝑥 𝑗 +
∑
𝑘≠𝑗 𝑎𝑘𝑥𝑘 = 𝑏 with 𝑎 𝑗 > 0, then

we can remove 𝑥 𝑗 from the problem by substituting it with 𝑥 𝑗 =
(
𝑏 −∑𝑘≠𝑗 𝑎𝑘𝑥𝑘

)
/𝑎 𝑗 ,

see [ABG
+
19] for details.

To apply the substitution in the certificate we use aggregations to remove

𝑥 𝑗 from all constraints and the objective function update to remove 𝑥 𝑗 from the

objective. If coefficients 𝑐 𝑗/𝑎 𝑗 or 𝑎𝑘/𝑎 𝑗 are non-integer, then the resulting constraints

are scaled as described in Sec. 3.1. To prove the deletion of 𝐸, we derive two

constraints by adding 𝑥 𝑗 ≥ 0 and 1 ≥ 𝑥 𝑗 to 𝐸 each, which results in

𝑏 ≥
∑
𝑘≠𝑗

𝑎𝑘𝑥𝑘 ∧
∑
𝑘≠𝑗

𝑎𝑘𝑥𝑘 ≥ 𝑏 − 𝑎 𝑗 . (6)

Then the deletion of 𝐸≥ can be certified by a witness 𝜔 = {𝑥 𝑗 ↦→ 1}. The constraint

simplifies to (6) and is therefore fulfilled. Analogously, we use the witness

𝜔 = {𝑥 𝑗 ↦→ 0} to certify the deletion of 𝐸≤. Finally, to delete the constraints in (6)

we generate a subproof that shows that negation of the auxiliary constraints in (6)

leads to 𝑥 𝑗 ∉ {0, 1}. This is a contradiction to the implied variable bounds 0 ≤ 𝑥 𝑗 ≤ 1.

Since these bounds are still present through the implying constraints, we can add

these implying constraints to (6) in the subproof to arrive at a contradiction.

Singleton Variables. It is well-known that variables that appear only in one inequality

constraint or equality can be removed from the problem [ABG
+
19, Sec. 5.2]. This

can be certified by applying one of the following primal or dual strategies in this

order: First, try to apply duality-based fixing, see Sec. 3.3; second, an implied free

singleton variable can be substituted as explained above; otherwise, the singleton

180 Certifying MIP-Based Presolve Reductions for 0–1 ILP

variable can be treated as a slack variable: substitute the variable in the objective,

then relax the equality as in (6), and delete the original constraint.

3.3 Dual Reductions
Dual reductions remove solutions while preserving at least one optimal solu-

tion. Hence, to prove the correctness of dual reductions we need to involve the

redundance-based strengthening rule of VeriPB. For each derived constraint 𝐶 we

only explain how to prove 𝑓 ≥ 𝑓↾𝜔 (subject to the negation ¬𝐶); the proof goals

for 𝐶↾𝜔 can be derived in a very similar fashion.

Duality-based Fixing. This presolving step described in [ABG
+
19, Sec. 4.2] counts

the down- and up-lock of a variable. A down-lock on variable 𝑥 𝑗 is a negative

coefficient, an up-lock on variable 𝑥 𝑗 is a positive coefficient (for ≥ constraints). If

𝑥 𝑗 has no down-locks and 𝑐 𝑗 ≤ 0, it can be fixed to zero; if 𝑥 𝑗 has no up-locks and

𝑐 𝑗 ≥ 0, it can be fixed to one. These reductions can be certified with redundance-

based strengthening using the witness 𝜔 = {𝑥 𝑗 ↦→ 𝑣}, where 𝑣 is the fixing value.

The proof goal for 𝑓 ≥ 𝑓 ↾𝜔 is equivalent to 𝑐 𝑗𝑥 𝑗 ≥ 𝑐 𝑗𝑣, which is fulfilled by the

conditions of duality-based fixing.

Dominated Variables. A variable 𝑥 𝑗 is said to dominate another variable 𝑥𝑘 [ABG
+
19,

GKM
+
15], in notation 𝑥 𝑗 ≻ 𝑥𝑘 , if

𝑐 𝑗 ≤ 𝑐𝑘 ∧ 𝑎𝑖 𝑗 ≥ 𝑎𝑖𝑘 for all 𝑖 ∈ {1, . . . , 𝑚} , (7)

where 𝑎𝑖 𝑗 and 𝑎𝑖𝑘 are the coefficients of variable 𝑥 𝑗 and 𝑥𝑘 , respectively, in the

𝑖-th constraint. Variable 𝑥 𝑗 is then favored over 𝑥𝑘 since 𝑥 𝑗 contributes less

to the objective function, but more to the feasibility of the constraints. For

every domination 𝑥 𝑗 ≻ 𝑥𝑘 , a constraint 𝐶 � 𝑥 𝑗 ≥ 𝑥𝑘 can be introduced. This

constraint can be certified by redundance-based strengthening with the witness

𝜔 = {𝑥𝑘 ↦→ 𝑥 𝑗 , 𝑥 𝑗 ↦→ 𝑥𝑘}. The proof goal for 𝑓 ≥ 𝑓↾𝜔 is equivalent to

𝑐 𝑗𝑥 𝑗 + 𝑐𝑘𝑥𝑘 ≥ 𝑐 𝑗𝑥𝑘 + 𝑐𝑘𝑥 𝑗 . (8)

The negated constraint ¬𝐶 � 𝑥 𝑗 < 𝑥𝑘 leads to 𝑥𝑘 = 1 and 𝑥 𝑗 = 0. Substituting these

values in (8) leads to 𝑐𝑘 ≥ 𝑐 𝑗 , which follows directly from Condition (7).

Dominated Variables Advanced. For an implied free variable we can drop the variable

bounds and pretend the variable is unbounded. This allows for additional fixings

in the following cases of dominated variables:

(a) If the upper bound of 𝑥 𝑗 is implied and 𝑥 𝑗 ≻ 𝑥𝑘 , then 𝑥𝑘 = 0.

(b) If the lower bound of 𝑥𝑘 is implied and 𝑥 𝑗 ≻ 𝑥𝑘 , then 𝑥 𝑗 = 1.

(c) If the upper bound of 𝑥 𝑗 is implied and 𝑥 𝑗 ≻ −𝑥𝑘 , then 𝑥𝑘 = 1.

(d) If the lower bound of 𝑥 𝑗 is implied and −𝑥 𝑗 ≻ 𝑥𝑘 , then 𝑥 𝑗 = 0.

4. Computational Study 181

We use redundance-based strengthening with witness 𝜔 = {𝑥𝑘 ↦→ 0} to prove

the correctness of a as follows. If the upper bound of 𝑥 𝑗 is implied, this means

there exists a constraint with 𝑎𝑖 𝑗 < 0 such that 𝑥 𝑗 ≤
⌊
𝑏ℓ−

∑
ℓ≠𝑗 ,𝑎𝑖ℓ >0

𝑎𝑖ℓ

𝑎𝑖 𝑗

⌋
= 1 . Due

to Condition (7), it must hold that 0 > 𝑎𝑖 𝑗 ≥ 𝑎𝑖𝑘 , and the constraint 𝑥 𝑗 + 𝑥𝑘 ≤ 1

can be derived. Hence, negating and propagating 𝐶 � 𝑥𝑘 = 0 with RUP leads to

contradiction, which proves the validity of 𝐶. Case b can be handled analogously

using the witness 𝜔 = {𝑥𝑘 ↦→ 1}. To derive 𝐶 � 𝑥𝑘 = 1 in c we use redundance-

based strengthening with witness 𝜔 = {𝑥𝑘 ↦→ 1, 𝑥 𝑗 ↦→ 1}. Then, the proof goal for

𝑓 ≥ 𝑓↾𝜔 is 𝑐 𝑗 · 𝑥 𝑗 + 𝑐𝑘 · 𝑥𝑘 ≥ 𝑐 𝑗 + 𝑐𝑘 . After propagating ¬𝐶, this becomes equivalent

to 𝑐 𝑗 ≤ −𝑐𝑘 , which is true by Condition (7). Case d can be handled analogously

using the witness 𝜔 = {𝑥𝑘 ↦→ 0, 𝑥 𝑗 ↦→ 0}.

3.4 Example
We conclude this section with an example of a small certificate for the substitution

of an implied free variable in Fig. 1, also available with a more detailed description

at the software repository of PaPILO [Hoe23]. Consider the 0–1 ILP

min 𝑥1 + 𝑥2 s.t. 𝑥1 + 𝑥2 − 𝑥3 − 𝑥4 = 1 , (9)

−𝑥1 + 𝑥5 ≥ 0 , (10)

in which the lower bound of 𝑥1 is implied by (9) and the upper bound of 𝑥1 is

implied by (10). Hence, 𝑥1 is implied free and we can use (9) to substitute it.

In the left section of Fig. 1 we first derive the two auxiliary constraints

0 ≤ 𝑥2 − 𝑥3 − 𝑥4 ≤ 1 , (11)

which receives the constraint IDs 4 and 5 and are moved to the core. Note that

the equality in (9) is split into two inequalities with IDs 1 and 2. In the middle

section, we first remove 𝑥1 from (10) by aggregation with (9), perform checked

deletion, then remove 𝑥1 from the objective (automatically proven by VeriPB). Last,

in the right section, we delete the equality in (9) used for the substitution and the

auxiliary constraints in (11) and arrive at the reformulated problem min 𝑥3+ 𝑥4+1

s.t. 𝑥2 − 𝑥3 − 𝑥4 + 𝑥5 ≥ 1. From here, we could continue to derive 𝑥2 = 1 by

duality-based fixing, since 𝑥2 has zero up-locks and objective coefficient zero.

This displays the importance of the objective update, as without it 𝑥2 would still

contribute to the objective with a positive coefficient, and this would prohibit

duality-based fixing to 1.

4 Computational Study
In this section we quantify the cost of certifying presolve reductions in a state-of-

the-art implementation for MIP-based presolve (Sec. 4.2) and the cost of verifying

the resulting certificates (Sec. 4.3). In Sec. 4.4, we analyze the impact of certifying

constraint propagation by RUP or by an explicit cutting planes proof.

182 Certifying MIP-Based Presolve Reductions for 0–1 ILP

* generates ID 4:
pol 1 ~x1 + ;
core id 4
* generates ID 5:
pol 2 x1 + ;
core id 5

* generates ID 6:
pol 3 1 + ;
core id 6
delc 3 ; ; begin

pol 6 2 +
end
obju new +1 x3 +1 x4 1 ;

delc 2 ; x1 -> 0
delc 1 ; x1 -> 1
delc 5
delc 4 ; ; begin

pol 6 -1 +
end

Figure 1: A VeriPB certificate to substitute an implied free variable 𝑥1.

4.1 Experimental Setup
For generating the presolve certificates we use the solver-independent presolve

library PaPILO [PaP], which provides a large set of MIP and LP techniques

from the literature, described in Sec. 3. Additionally, it accelerates the search

for presolving reductions by parallelization, encapsulating each reduction in a

so-called transaction to avoid expensive synchronization [GGH23]. Logging the

certificate, however, is performed sequentially while evaluating the transactions.

We base our experiments on models from the Pseudo-Boolean Competition

2016 [Rou16] including 1398 linear small integer decision and 532 linear small

integer optimization instances of the competitions PB10, PB11, PB12, PB15, and

PB16 and 295 decision and 145 optimization instances from MIPLIB 2017 [GHG
+
21]

in the OPB translation [Dev20], excluding 10 large-scale instances1 for which

PaPILO reaches the memory limit. This yields a total of 671 optimization and

1681 decision instances. We use PaPILO 2.2.0 [HG23] running on 6 threads and

VeriPB 2.0 [GO23]. The experiments are carried out on identical machines with

an 11th Gen Intel(R) Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory

and are assigned 14,000 MB of memory. The strict time limit for presolve plus

certification and verification is three hours. Times (reported in seconds) do not

include the time for reading the instance file. For all aggregations, we use the

shifted geometric mean with a shift of 1 second.

4.2 Overhead of Proof Logging
In the first experiment, we analyze the overhead of proof logging in PaPILO.

The average results are summarized in Tab. 2, separately over decision (dec) and

optimization (opt) instances for PB16 and MIPLIB. Column “relative” indicates

the average slow-down incurred by printing the certificate.

The relative overhead of proof logging is less than 6% across all test sets. VeriPB

supports two variants to change the objective function. Either printing the entire

objective (obju new) or printing only the changes in the objective (obju diff). In

our experiments, we only print the changes, since printing the entire objective for

each change can lead to a large certificate and overhead, especially for instances

with large and dense objective functions. On the PB16 instance normalized-

1normalized-184, normalized-pb-simp-nonunif, a2864-99blp, ivu06-big, ivu59, supportcase11, a2864-

99blp.0.s/u, supportcase11.0.s/u

4. Computational Study 183

Table 2: Runtime comparison of PaPILO with and without proof logging.

test set size default [s] w/proof log [s] relative

PB16-dec 1397 0.06 0.06 1.00

MIPLIB-dec 291 0.42 0.43 1.02

PB16-opt 531 0.65 0.66 1.02

MIPLIB-opt 142 0.33 0.35 1.06

Table 3: Time to verify the certificates. VeriPB timeouts are treated with PAR2.

PaPILO time [s] VeriPB relative time w.r.t.

test set size verified default w/proof log time [s] default w/proof log

PB16-dec 1397 1397 0.06 0.06 0.88 14.67 14.67

MIPLIB-dec 291 267 0.42 0.43 9.64 22.85 22.42

PB16-opt 531 520 0.65 0.66 10.44 16.06 15.82

MIPLIB-opt 142 139 0.33 0.35 5.25 15.91 15.00

datt256, for example, PaPILO finds 135 206 variable fixings. Updating the entire

objective function with 262 144 non-zeros for each of these variables leads to a

huge certificate of about 138 GB and increases the time from 3.3 seconds (when

printing only the changes) to 6625 seconds.2

For 99% of the instances, we can further observe that the overhead per applied

reduction is below 0.001 · 10
−3

seconds over both test sets. This means that the

proof logging overhead is not only small on average, but also small per applied

reduction on the vast majority of instances. These results show that the overhead

scales well with the number of applied reductions and that proof logging remains

viable even for instances with many transactions. Here, under applied reductions

we subsume all applied transactions and each variable fixing or row deletion in the

first model clean-up phase. During model clean-up, PaPILO fixes variables and

removes redundant constraints from the problem. While PaPILO technically does

not count these reductions as full transactions found during the parallel presolve

phase, their certification can incur the same overhead.

4.3 Verification Performance on Presolve Certificates

In this section, we analyze the time to verify the certificates generated by PaPILO.

The results are summarized in Tab. 3. The “verified” column lists the number of

instances verified within 3 hours. VeriPB timeouts are counted as twice the time

limit, i.e., PAR2 score. Similar to Tab. 2, the “relative” columns report the relative

overhead of VeriPB runtime compared to PaPILO.

2Certificate generated on Intel Xeon Gold 5122 @ 3.60GHz 96 GB with 50,000 MB of memory

assigned.

184 Certifying MIP-Based Presolve Reductions for 0–1 ILP

10
−2

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

PaPILO (time in seconds)

V
e
r
i
P

B
(
t
i
m

e
i
n

s
e
c
o
n

d
s
)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

PaPILO (time in seconds)

V
e
r
i
P

B
(
t
i
m

e
i
n

s
e
c
o
n

d
s
)

Figure 2: Running times of VeriPB vs. PaPILO on test sets PB16 (left) and MIPLIB

(right), including all instances with more than 1 seconds in VeriPB and less than 30 minutes

in PaPILO, and excluding timeouts. Green + signs mark optimization and blue × signs

mark decision instances.

First note that all certificates are verified by VeriPB (partially on the 38 instances

where VeriPB times out). On average, it takes between 14.7 and 22.4 times as much

time to verify the certificates than to produce them. Nevertheless, some instances

take a longer than average time to verify. Over all test sets, 25% of the instances

have an overhead of at least a factor of 193, see also Fig. 2.

To put this result into context, note that presolving amounts more to a trans-

formation than to a (partial) solution of the problem. Each reduction has to be

certified and verified while a purely solution-targeted algorithm may be able to

skip certifying of a larger part of the findings that are not form a part of the

final proof of optimality. Hence, it makes sense to compare the performance

of VeriPB on presolve certificates to the overhead for, e.g., for verifying CNF

translations [GMNO22]. For this study, a similar performance overhead is reported

as in Fig. 2.

4.4 Performance Analysis on Constraint Propagation
Finally, we investigate how the performance of VeriPB depends on whether we

use RUP (as in Sec. 4.2 and Sec. 4.3) or explicit cutting planes derivations (POL)

to certify bound strengthening reductions from constraint propagation. Here,

we additionally exclude 9 large-scale instances3 for which PaPILO reaches the

memory limit when certifying with POL. The results are summarized in Tab. 4.

The “verified” column contains the number of instances verified by VeriPB within

the time limit. The “time” column reports the time for verification.

Deriving the propagation directly with cutting planes is 3.2% faster on PB16-

dec, 2.8% faster on MIPLIB-dec, 13.1% faster on MIPLIB-opt, and 0.7% faster on

3neos-4754521-awarau.0.s, neos-827015.0.s/u, neos-829552.0.s/u, s100.0.s/u, normalized-datt256,

s100

5. Conclusion 185

Table 4: Comparison of the runtime of VeriPB with RUP and POL over instances with at

least 10 propagations.

RUP POL

test set size verified time [s] verified time [s] relative

PB16-dec 284 284 2.21 284 2.14 0.968

MIPLIB-dec 35 31 153.23 31 148.88 0.972

PB16-opt 153 142 28.43 142 28.22 0.993

MIPLIB-opt 16 14 147.11 14 127.83 0.869

PB16-opt. On 95% of the decision instances using RUP is at most 9.7% slower.

While it is expected that verification is faster when the cutting planes proof is given

explicitly, it is surprising that the performance difference between the methods

is not more pronounced.This is partly due to the cost of the watched-literal

scheme [MMZ
+
01, SS06] used by VeriPB for unit propagation. The overhead of

maintaining the watches is present regardless of whether (reverse) unit propagation

is used or not. Furthermore, unit propagation is also used for automatically

verifying redundance-based strengthening. Together, this limits the potential for

runtime savings by providing the explicit cutting planes proof.

Furthermore, providing an explicit cutting planes proof for propagation re-

quires printing the constraint into the certificate. Hence, the certificate size becomes

dependent on the number of non-zeros in the constraints leading to propagations.

In contrast, the overhead of RUP is constant and much smaller.

All in all, these results suggest to prefer RUP when deriving constraint prop-

agation since it barely impacts the performance of VeriPB and keeps the size of

the certificate smaller. The computational cost of RUP could be further reduced

by extending it to accept an ordered list of constraints that shall be propagated

first, similar as in [CFHH
+
17]. Such an extension could also be used for other

presolving techniques, in particular probing and simple probing.

5 Conclusion
In this paper we set out to demonstrate how presolve techniques from state-of-the-

art MIP solvers can be equipped with certificates in order to verify the equivalence

between original and reduced models. Although the pseudo-Boolean proof logging

format behind VeriPB [BGMN22] was not designed with this purpose in mind, we

could show that a limited extension needed for handling updates of the objective

function is sufficient to craft a certified presolver for 0–1 ILPs.

However, our experimental study on instances from pseudo-Boolean compe-

titions and MIPLIB also exhibited that the verification of MIP-based presolving

can suffer from large and overly verbose certificates. To shrink the proof size

we introduced a sparse objective update function but identified further possible

improvements. First, a native substitution rule in VeriPB would remove the need

186 Certifying MIP-Based Presolve Reductions for 0–1 ILP

for the explicit derivation of new aggregations and the verification of checked

deletion as described in Sec. 3.1. For instances where presolving is dominated by

substitutions, we estimate that this would reduce certificate sizes by up to 90%,

and no more time would be spent on checked deletion for substitutions. Second,

augmenting the RUP syntax by the option to specify an ordered list of constraints

to propagate first, similarly as in [CFHH
+
17], would accelerate RUP, in particular

for fast verification of bound strengthenings by constraint propagation.

While VeriPB is currently restricted to operate on integer coefficients only, the

certification techniques presented in Sec. 3 do not rely on this assumption and

are applicable to general binary programs. It has been shown how to construct

VeriPB certificates for bounded integer domains [GMN22, MM23], and within the

framework of the generalized proof system laid out in [DEGH23], our certificates

would even translate to continuous and unbounded integer domains. To conclude,

we believe our results show convincingly that this type of proof logging techniques

is a very promising direction of research also for MIP presolve beyond 0–1 ILPs.

Acknowledgements
The authors wish to acknowledge helpful technical discussions on VeriPB in

general and the objective update rule in particular with Bart Bogaerts, Ciaran

McCreesh, and Yong Kiam Tan. The work for this article has been partly conducted

within the Research Campus MODAL funded by the German Federal Ministry of

Education and Research (BMBF grant number 05M14ZAM). Jakob Nordström was

supported by the Swedish Research Council grant 2016-00782 and the Independent

Research Fund Denmark grant 9040-00389B. Andy Oertel was supported by the

Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by

the Knut and Alice Wallenberg Foundation. The computational experiments were

enabled by resources provided by LUNARC at Lund University.

References
[ABG

+
19] Tobias Achterberg, Robert Bixby, Zonghao Gu, Edward Rothberg, and

Dieter Weninger. Presolve reductions in mixed integer programming.

INFORMS Journal on Computing, 32, 11 2019.

[Ach07] Tobias Achterberg. Constraint Integer Programming. Doctoral the-

sis, Technische Universität Berlin, Fakultät II - Mathematik und

Naturwissenschaften, Berlin, 2007.

[AGJ
+
18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and

Peter Nightingale. Metamorphic testing of constraint solvers. In

Proceedings of the 24th International Conference on Principles and Practice

of Constraint Programming (CP ’18), volume 11008 of Lecture Notes in

Computer Science, pages 727–736. Springer, August 2018.

References 187

[BBN
+
23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and

Dieter Vandesande. Certified core-guided MaxSAT solving. In

Proceedings of the 29th International Conference on Automated Deduction

(CADE-29), volume 14132 of Lecture Notes in Computer Science, pages

1–22. Springer, July 2023.

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nord-

ström. Certified symmetry and dominance breaking for combina-

torial optimisation. In Proceedings of the 36th AAAI Conference on

Artificial Intelligence (AAAI ’22), pages 3698–3707, February 2022.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nord-

ström. Certified dominance and symmetry breaking for com-

binatorial optimisation. Journal of Artificial Intelligence Research,

77:1539–1589, August 2023. Preliminary version in AAAI ’22.

[BHvMW21] Armin Biere, Marĳn J. H. Heule, Hans van Maaren, and Toby Walsh,

editors. Handbook of Satisfiability, volume 336 of Frontiers in Artificial

Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[BJK21] Armin Biere, Matti Järvisalo, and Benjamin Kiesl. Preprocessing in

SAT solving. In Biere et al. [BHvMW21], chapter 9, pages 391–435.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT

solving. In Biere et al. [BHvMW21], chapter 7, pages 233–350.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the

complexity of cutting-plane proofs. Discrete Applied Mathematics,

18(1):25–38, November 1987.

[CFHH
+
17] Luís Cruz-Filipe, Marĳn J. H. Heule, Warren A. Hunt, Matt Kauf-

mann, and Peter Schneider-Kamp. Efficient certified rat verification.

In Leonardo de Moura, editor, Automated Deduction – CADE 26, pages

220–236, Cham, 2017. Springer International Publishing.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy.

Verifying integer programming results. In Proceedings of the 19th

International Conference on Integer Programming and Combinatorial

Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer

Science, pages 148–160. Springer, June 2017.

[CHH
+
17] Luís Cruz-Filipe, Marĳn J. H. Heule, Warren A. Hunt Jr., Matt Kauf-

mann, and Peter Schneider-Kamp. Efficient certified RAT verification.

In Proceedings of the 26th International Conference on Automated Deduc-

tion (CADE-26), volume 10395 of Lecture Notes in Computer Science,

pages 220–236. Springer, August 2017.

188 Certifying MIP-Based Presolve Reductions for 0–1 ILP

[CK05] Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean con-

straint solver. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 24(3):305–317, March 2005. Preliminary version

in DAC ’03.

[CKSW13a] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A

hybrid branch-and-bound approach for exact rational mixed-integer

programming. Mathematical Programming Computation, 5(3):305–344,

September 2013.

[CKSW13b] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A

hybrid branch-and-bound approach for exact rational mixed-integer

programming. Mathematical Programming Computation, 5(3):305–344,

2013.

[CM93] S. Frank Chang and S. Thomas McCormick. Implementation and

computational results for the hierarchical algorithm for making

sparse matrices sparser. ACM Trans. Math. Softw., 19(3):419–441, sep

1993.

[CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp.

Efficient certified resolution proof checking. In Proceedings of the 23rd

International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in

Computer Science, pages 118–135. Springer, April 2017.

[DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christo-

pher Hojny. A proof system for certifying symmetry and optimality

reasoning in integer programming. Technical Report 2311.03877,

arXiv.org, November 2023.

[Dev20] Jo Devriendt. Miplib 0-1 instances in opb format. 05 2020.

[EG22] Leon Eifler and Ambros Gleixner. A computational status update for

exact rational mixed integer programming. Mathematical Program-

ming, 2022.

[EG24] Leon Eifler and Ambros Gleixner. Safe and verified gomory mixed in-

teger cuts in a rational MIP framework. SIAM Journal on Optimization,

34(1):742–763, 2024.

[EGP22] Leon Eifler, Ambros Gleixner, and Jonad Pulaj. A safe computational

framework for integer programming applied to chvátal’s conjecture.

ACM Transactions on Mathematical Software, 48(2), 2022.

[FM05] Armin Fügenschuh and Alexander Martin. Computational integer

programming and cutting planes. In K. Aardal, G.L. Nemhauser, and

R. Weismantel, editors, Discrete Optimization, volume 12 of Handbooks

References 189

in Operations Research and Management Science, pages 69–121. Elsevier,

2005.

[GCW
+
20] Patrick Gemander, Wei-Kun Chen, Dieter Weninger, Leona Gottwald,

and Ambros Gleixner. Two-row and two-column mixed-integer

presolve using hashing-based pairing methods. EURO Journal on

Computational Optimization, 8(3-4):205 – 240, 2020.

[GGH23] Ambros Gleixner, Leona Gottwald, and Alexander Hoen. PaPILO: A

parallel presolving library for integer and linear programming with

multiprecision support. INFORMS Journal on Computing, 2023.

[GHG
+
21] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achter-

berg, Michael Bastubbe, Timo Berthold, Philipp M. Christophel,

Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke, Hans D.

Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin,

and Yuji Shinano. MIPLIB 2017: Data-Driven Compilation of the

6th Mixed-Integer Programming Library. Mathematical Programming

Computation, 13:443–490, 2021.

[GKM
+
15] Gerald Gamrath, Thorsten Koch, Alexander Martin, Matthias Mil-

tenberger, and Dieter Weninger. Progress in presolving for mixed

integer programming. Mathematical Programming Computation, 7, 06

2015.

[GMM
+
20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström,

Patrick Prosser, and James Trimble. Certifying solvers for clique and

maximum common (connected) subgraph problems. In Proceedings of

the 26th International Conference on Principles and Practice of Constraint

Programming (CP ’20), volume 12333 of Lecture Notes in Computer

Science, pages 338–357. Springer, September 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph

isomorphism meets cutting planes: Solving with certified solutions.

In Proceedings of the 29th International Joint Conference on Artificial

Intelligence (ĲCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An au-

ditable constraint programming solver. In Proceedings of the 28th

International Conference on Principles and Practice of Constraint Pro-

gramming (CP ’22), volume 235 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel.

Certified CNF translations for pseudo-Boolean solving. In Proceed-

ings of the 25th International Conference on Theory and Applications of

Satisfiability Testing (SAT ’22), volume 236 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

190 Certifying MIP-Based Presolve Reductions for 0–1 ILP

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning

efficiently using pseudo-Boolean proofs. In Proceedings of the 35th

AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777,

February 2021.

[GO23] Stefan Gocht and Andy Oertel. Veripb, 2023. githash: dd7aa5a1.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declar-

ative testing of constraints. In Proceedings of the 25th International

Conference on Principles and Practice of Constraint Programming (CP ’19),

volume 11802 of Lecture Notes in Computer Science, pages 565–582.

Springer, October 2019.

[HG23] Alexander Hoen and Leona Gottwald. Papilo: Parallel presolve

integer and linear optimization, 2023. githash: 3b082d4.

[HHW13a] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trim-

ming while checking clausal proofs. In Proceedings of the 13th In-

ternational Conference on Formal Methods in Computer-Aided Design

(FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying

refutations with extended resolution. In Proceedings of the 24th

International Conference on Automated Deduction (CADE-24), volume

7898 of Lecture Notes in Computer Science, pages 345–359. Springer,

June 2013.

[Hoe23] Alexander Hoen. Papilo: Parallel presolve integer and linear opti-

mization, 2023. githash: 5df3dd6d.

[Klo14] Ed Klotz. Identification, assessment, and correction of ill-

conditioning and numerical instability in linear and integer programs.

In Alexandra Newman and Janny Leung, editors, Bridging Data and

Decisions, TutORials in Operations Research, pages 54–108. 2014.

[LBMW20] Daniel Le Berre, Pierre Marquis, and Romain Wallon. On weakening

strategies for pb solvers. In Luca Pulina and Martina Seidl, editors,

Theory and Applications of Satisfiability Testing – SAT 2020, pages

322–331, Cham, 2020. Springer International Publishing.

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart

extensional constraints. In Proceedings of the 29th International Con-

ference on Principles and Practice of Constraint Programming (CP ’23),

volume 280 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 26:1–26:17, August 2023.

[MMZ
+
01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao

Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT solver.

References 191

In Proceedings of the 38th Design Automation Conference (DAC ’01),

pages 530–535, June 2001.

[PaP] PaPILO — parallel presolve for integer and linear optimization.

https://github.com/lgottwald/PaPILO.

[Rou16] Olivier Roussel. Pseudo-boolean competition 2016, 2016.

[Sav94] Martin Savelsbergh. Preprocessing and probing techniques for mixed

integer programming problems. ORSA Journal on Computing, 6, 11

1994.

[SBD19] Youcef Sahraoui, Pascale Bendotti, and Claudia D’Ambrosio. Real-

world hydro-power unit-commitment: Dealing with numerical

errors and feasibility issues. Energy, 184:91–104, 2019. Shaping

research in gas-, heat- and electric- energy infrastructures.

[SS06] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-

Boolean SAT solver. Journal on Satisfiability, Boolean Modeling and

Computation, 2(1-4):165–189, March 2006. Preliminary version in

DATE ’05.

[Ste11] Daniel E. Steffy. Topics in exact precision mathematical programming.

PhD thesis, Georgia Institute of Technology, 2011.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb:

A certified MaxSAT solver. In Proceedings of the 16th International

Conference on Logic Programming and Non-monotonic Reasoning (LP-

NMR ’22), volume 13416 of Lecture Notes in Computer Science, pages

429–442. Springer, September 2022.

[Wen16] Dieter Weninger. Solving mixed-integer programs arising in production

planning. Phd thesis, Friedrich-Alexander-Universität Erlangen-

Nürnberg, 2016.

[WHH14] Nathan Wetzler, Marĳn J. H. Heule, and Warren A. Hunt Jr. DRAT-

trim: Efficient checking and trimming using expressive clausal

proofs. In Proceedings of the 17th International Conference on Theory and

Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture

Notes in Computer Science, pages 422–429. Springer, July 2014.

https://github.com/lgottwald/PaPILO

192 Certifying MIP-Based Presolve Reductions for 0–1 ILP

Pa
pe

r
V

End-to-End Verification for
Subgraph Solving

Abstract
Modern subgraph-finding algorithm implementations consist of thousands of

lines of highly optimized code, and this complexity raises questions about their

trustworthiness. Recently, some state-of-the-art subgraph solvers have been

enhanced to output machine-verifiable proofs that their results are correct. While

this significantly improves reliability, it is not a fully satisfactory solution, since

end-users have to trust both the proof checking algorithms and the translation

of the high-level graph problem into a low-level 0–1 integer linear program (ILP)

used for the proofs.

In this work, we present the first formally verified toolchain capable of full

end-to-end verification for subgraph solving, which closes both of these trust

gaps. We have built encoder frontends for various graph problems together with

a 0–1 ILP (a.k.a. pseudo-Boolean) proof checker, all implemented and formally

verified in the CakeML ecosystem. This toolchain is flexible and extensible, and

we use it to build verified proof checkers for both decision and optimization graph

problems, namely, subgraph isomorphism, maximum clique, and maximum common

(connected) induced subgraph. Our experimental evaluation shows that end-to-end

formal verification is now feasible for a wide range of hard graph problems.

1 Introduction
Combinatorial optimization algorithms have improved immensely since the turn

of the millennium, and are now routinely used to solve large-scale real-world

problems, through both general-purpose solving paradigms [BHvMW21, BR07,

GSVW14] and dedicated algorithms for more specialised problems such as sub-

graph finding [MPT20]. Since these combinatorial solvers are used for an increas-

Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam

Tan. “End-to-End Verification for Subgraph Solving”. In Proceedings of the 38th AAAI Conference on

Artificial Intelligence (AAAI ’24), pages 8038–8047, Febuary 2024.

194 End-to-End Verification for Subgraph Solving

Graph File(s)

Graph Solver

Untrusted

Encoding

Augmented

Proof

Checker

✓?

Elaborator

Kernel Proof

Verified

Encoder

Verified

Encoding

Verified

Checker

✓ Trusted

Conclusion

VeriPB

CakePBGraph

CakePB

This paper

Figure 1: The full verification workflow. Without verified proof checking, only the left-hand

part of the diagram is used. Our current work enables the additional shaded parts, where the

thick dashed box is the formally verified program and thick arrows show its key input-output

interfaces.

ingly wide range of applications, it becomes crucial that the results they compute

can be trusted. Sadly, this is currently not the case [CKSW13, AGJ
+
18, GSD19,

BMN22]. Extensive testing, though beneficial, has not been able to resolve the

problem of solvers occasionally producing faulty answers, and attempts to build

correct-by-construction software using formal verification run into the obstacle

that current techniques cannot scale to the level of complexity of modern solvers.

Instead, the most promising way to achieve verifiably correct combinatorial

solving seems to be proof logging, meaning that solvers produce efficiently verifiable

certificates of correctness that can be corroborated by an independent proof

checking program [MMNS11]. This approach has been successfully used in the

SAT community [HHW13a, HHW13b, WHH14], which raises the question of

whether similar techniques could be employed in other settings such as subgraph

finding. For this it would seem that the proof checker would need to understand

graph concepts such as vertices, edges, neighbourhoods, et cetera. Surprisingly,

this turns out not to be the case—instead, the solver can encode the graph problem

using 0–1 linear inequalities (also referred to as pseudo-Boolean constraints), and then

justify its complex high-level reasoning in terms of this low-level representation.

This approach has been used to add proof logging with the VeriPB tool to state-

of-the-art solvers for subgraph isomorphism, clique, and maximum common

1. Introduction 195

(connected) induced subgraph [GMN20, GMM
+
20], as illustrated in the left-hand

part of Figure 1. We emphasize that although this approach uses reasoning with

pseudo-Boolean constraints for the proof logging, it is not limited to pseudo-

Boolean solving. Rather, it can be used to certify the output of any untrusted

solver—such as tools that operate natively on graph representations—as long as

the solver’s relevant reasoning steps can be expressed with pseudo-Boolean proofs.

While this approach has been successful for debugging solvers and providing

convincing demonstrations that the fixed solvers are producing correct answers,

it is important to observe that it crucially hinges on the assumption that three

components are correct: (1) the low-level encoding of the problem, (2) the proof

checker, and (3) the interpretation of the final output. For example, if the maximum

clique solver in [GMM
+
20] produces a proof accepted by the VeriPB checker, then

one can conclude that if the 0–1 ILP encoding of clique is implemented correctly,

and if VeriPB does not contain bugs, and if (say) a 200-vertex graph having a

maximum clique size of 13 corresponds to the optimal objective value for the

low-level encoding being 187 (because it minimises the number of vertices not in

the clique), then the maximum clique size is indeed 13. Such assumptions are not

unreasonable—encodings have been chosen to be as simple as possible and the

code can be subjected to extensive testing; the proof format is designed so that

proof checking should be easy; and verifying that proof outputs correspond to

solver outputs is not too cumbersome. Compared to having to trust an extremely

complex solver, this is a vast improvement. However, if provably correct results

are the end goal, then this still leaves much to be desired.

1.1 Our Contribution
In this work, we resolve all the concerns discussed above by presenting the first

toolchain capable of end-to-end formal verification for state-of-the-art algorithms

for maximum clique, subgraph isomorphism, and maximum common (connected)

induced subgraph problems. Although the implementations of modern solvers

for these problems are far too complicated to be formally verified by current

techniques, we can still use formal verification to certify the correctness of the

proof logging and proof checking process. We do so by defining a solver-friendly

augmented VeriPB proof format; enhancing the VeriPB tool with a proof elaborator

that can translate such augmented proofs to a more explicit kernel format; and

designing a formally verified proof checker for the kernel format. This formally verified

checker is also capable of providing its own formally verified encodings from

graph problems to 0–1 ILPs. Finally, the output provided by the formally verified

proof checker is in terms of the original problem, not the low-level encoding. This

means that using the process illustrated in the right-hand part of Figure 1, if the

checking process outputs (say)

s VERIFIED MAX CLIQUE SIZE |CLIQUE| = 13

then we can be absolutely sure that the maximum clique size for our graph is 13,

if we trust the formal verification tool(s) and if the formal higher-order logic

196 End-to-End Verification for Subgraph Solving

is_clique vs (v,e) def
=

vs ⊆ { 0,1,...,v−1 } ∧
∀x y. x ∈ vs ∧ y ∈ vs ∧ x ≠ y⇒ is_edge e x y

max_clique_size g
def
= maxset { card vs | is_clique vs g }

has_subgraph_iso (vp,ep) (vt,et)
def
=

∃ f . inj f { 0,1,...,vp−1 } { 0,1,...,vt−1 } ∧
∀a b. is_edge ep a b⇒ is_edge et (f a) (f b)

Figure 2: HOL definitions for maximum clique size of a graph with 𝑣 vertices and edge

set 𝑒 (top), and existence of a subgraph isomorphism from a pattern graph (𝑣𝑝 , 𝑒𝑝) to a

target graph (𝑣𝑡 , 𝑒𝑡) (bottom).

(HOL) specifications (as shown in Figure 2) accurately reflect what it means to

be a clique. The toolchain we provide is also flexible and extensible, in that it

can be readily adapted to other combinatorial problems, including problems not

involving graphs.

1.2 Comparison to Related Work

Formally verified proof checkers have previously played an important role in SAT

solving [CMS17, CHH
+
17, Lam20] and are vital for widespread acceptance of

SAT-solver-generated mathematical proofs [HK17]. However, such proof checkers

have worked only for conjunctive normal form (CNF), and only to establish that

decision problems encoded in CNF are infeasible: verification that the encoding

accurately reflects the problem to be solved has either been ignored or has been

handled separately, e.g., [CMS19, SFL
+
21, CAH23]. For graph problems, previous

attempts at verified proof checking have been tied to one specific problem, or even

one specific algorithm, e.g., [BDM23]. In contrast, we provide formal verification

for optimization problems and with much more expressive formats than CNF, and

we do so in a unified way with a single pseudo-Boolean proof logging format for 0–1

linear inequalities together with a general-purpose toolchain, rather than having to

design proof logging from scratch for each new combinatorial problem considered.

In this way, we demonstrate that end-to-end formally verified combinatorial solving

is now eminently within reach, by combining pseudo-Boolean proof logging with

formally verified tools for 0–1 ILP encodings and pseudo-Boolean proof checking.

1.3 Outline of This Paper

After reviewing preliminaries in Section 2, we describe the formally verified proof

checker in Section 3 and how solver proofs in a user-friendly proof format can be

converted to a more restricted format accepted by this proof checker in Section 4.

2. Preliminaries 197

We report results from an experimental evaluation in Section 5. We conclude in

Section 6 with a discussion of future research directions.

2 Preliminaries
Our discussion of pseudo-Boolean proof logging will be brief, since the main

thrust of this work is how to formally verify proof logging rather than to design

it. See [GN21] and [BGMN23] for more on the VeriPB system and [BN21] for

background on the cutting planes reasoning method used.

A literal ℓ over a variable 𝑥 is 𝑥 itself or its negation 𝑥, taking values 0 (false)

or 1 (true), so that 𝑥 = 1 − 𝑥. A pseudo-Boolean (PB) constraint 𝐶 is a 0-1 integer

linear inequality

∑
𝑖𝑎𝑖ℓ𝑖 ≥ 𝐴, which without loss of generality we can always

assume to be in normalized form; i.e., all literals ℓ𝑖 are over distinct variables and the

coefficients 𝑎𝑖 and the degree (of falsity) 𝐴 are non-negative. The negation ¬𝐶 of 𝐶 is∑
𝑖𝑎𝑖ℓ 𝑖 ≥

∑
𝑖𝑎𝑖 − 𝐴 + 1 (saying that the sum of the coefficients of falsified literals is

so large that the satisfied literals can contribute at most 𝐴 − 1). A pseudo-Boolean

formula is a conjunction 𝐹 =
∧
𝑗 𝐶 𝑗 of PB constraints.

Cutting planes [CCT87] is a method for iteratively deriving new constraints

logically implied by a PB formula by taking positive linear combinations or dividing

a constraint and rounding up. We say that 𝐶 unit propagates the literal ℓ if under

the current partial assignment 𝐶 cannot be satisfied unless ℓ is set to true, and

that 𝐶 is implied by 𝐹 by reverse unit propagation (RUP) if adding ¬𝐶 to 𝐹 and then

unit propagating until saturation leads to contradiction in the form of a violated

constraint. VeriPB allows adding constraints by RUP, which is a convenient way of

avoiding having to write out explicit syntactic derivations.

In addition to deriving constraints 𝐶 that are implied by 𝐹, VeriPB also has

strengthening rules for inferring redundant constraints 𝐷 having the property that 𝐹
and 𝐹 ∧𝐷 are equisatisfiable. If there is a partial mapping 𝜔 of variables to literals

and/or truth values such that

𝐹 ∪ {¬𝐷} ⊢ (𝐹 ∪ 𝐷)↾𝜔 (1)

holds, meaning that after applying 𝜔 to 𝐹 ∪ {𝐷} all of the resulting constraints can

be derived by cutting planes from 𝐹 ∪ {¬𝐷}, then 𝐷 can be added by redundance-

based strengthening. There is also a similar but slightly different dominance-based

strengthening rule. Importantly, the proof has to specify 𝜔 and also contain explicit

subderivations for all proof goals in (𝐹∪𝐷)↾𝜔 in Equation (1) unless they are obvious

enough that VeriPB can automatically figure them out (e.g., by using RUP). Finally,

for optimization problems there are rules to deal with objective functions and

incumbent solutions, and the strengthening rules also need to be slightly adapted

for this setting.

The formalization of our proof checking toolchain is carried out in the HOL4

proof assistant for classical higher-order logic [SN08]. We make particular use of

the CakeML tools for production and optimization of verified CakeML source

198 End-to-End Verification for Subgraph Solving

Other Domains

Graph File(s)

✓ Trusted Conclusion

Other Encoders

Subgraph Iso.

Max Clique

Max CIS

Max CCIS

Conclusion Translator

PB Encoding

PB Conclusion

PB Normalizer

Norm. PB Encoding

PB Proof Checker

Externally

Generated

Kernel Proof

CakePB

(common backend)

CakePBGraph

(various frontends)

Figure 3: Architecture of the end-to-end verified proof checkers for various graph problems.

code [MO14, GMKN17] as well as for formally verified compilation [TMK
+
19],

allowing to transfer guarantees of source-code-level correctness down to executable

machine code. Where applicable, formal code snippets are pretty-printed for

illustration, e.g., as shown in Figure 2. The set and first-logic notation is standard

(e.g., ⇒ denotes logical implication); other HOL notation is explained where

appropriate. Formally verified results are preceded by a turnstile ⊢. All code is

available in the supplementary material [GMM
+
23].

3 Formally Verified Graph Proof Checkers
This section details the formal verification of our pseudo-Boolean proof checker

CakePB and its various graph frontends, focusing on the key architectural decisions

and reusable insights behind the verification effort. An overview of the tool is

shown in Figure 3. We first present the different components, and then plug them

together to obtain end-to-end verified graph proof checkers.

3.1 Verified Pseudo-Boolean Proof Checking
A key design objective for CakePB is to make it a general yet effective pseudo-

Boolean proof checking backend. To this end, CakePB supports a kernel subset

of the VeriPB proof format with cutting planes, strengthening, and optimization

rules as discussed in Section 2. The implementation and verification of all of this

within a single proof checker backend presents several new challenges compared

to prior tools for efficient verified CNF proof checking [CHH
+
17, Lam20, THM23].

Firstly, the pseudo-Boolean proof system features a much richer set of rules, each

of which needs a formal soundness justification. Secondly, there is an intricate

interplay between different proof rules, especially concerning how they preserve

optimal solutions (or satisfiability for decision problems). This necessitates careful

maintenance of state invariants within the proof checker implementation. And

thirdly, all of the above needs to be adequately optimized for practical use, whilst

being formally verified.

3. Formally Verified Graph Proof Checkers 199

We use a refinement-based approach to tackle each challenge in order and at

the appropriate level of abstraction.

1. The verification process starts by defining an abstract, mathematical, pseudo-

Boolean semantics, with respect to which the soundness of each rule is

justified. For example, we prove lemmas that justify the soundness of adding

two constraints and dividing a constraint by a non-zero natural number in a

cutting planes proof step:

⊢ satisfies_npbc w C1 ∧ satisfies_npbc w C2 ⇒
satisfies_npbc w (add C1 C2)

⊢ satisfies_npbc w C ∧ k ≠ 0⇒
satisfies_npbc w (divide C k)

Here, satisfies_npbc w C says that the pseudo-Boolean constraint C is sat-

isfied by the Boolean assignment w. We verify similar lemmas for all

supported reasoning principles, the most involved of which is dominance-

based strengthening. Specifically, this rule requires making a well-founded

induction argument over an arbitrary user-specified order for Boolean assign-

ments, for which we largely follow the proof from [BGMN23, Proposition

4].

2. Next, we implement a prototype proof checker that ensures that every

application of a proof rule is valid, e.g., that divide is never applied with 𝑘 = 0,

throwing an error otherwise. The proof checker is verified to maintain key

invariants on the proof state, especially the ones needed for dominance and

optimization reasoning. Soundness of the checker is proved by induction

over the sequence of proof steps. The main idea is illustrated by the following

abridged lemma snippet.

⊢ ... ∧ valid_conf ord obj fml⇒
check_step step ord obj fml ... =

Some (ord
′,obj

′,fml
′, ...) ⇒

... ∧ valid_conf ord
′

obj
′

fml
′

Here, valid_conf ord obj fml says that for any satisfying assignment w to the core

constraints in formula fml, there exists another satisfying assignment w
′ ≼ w

which satisfies all constraints in fml, where ≼ is the order on assignments

induced by ord and obj. The lemma fragment says that, whenever checking

a single proof step (check_step) succeeds and returns a new proof checker

state (result Some), the valid_conf invariant is maintained for the state. Other

key properties verified for check_step include showing that fml
′
and fml are

equisatisfiable by assignments that improve the best known objective value.

3. The final phase involves refining the prototype into an optimized proof

checker implementation using the CakeML tools for profiling and source

code verification [MO14, GMKN17]. We manually optimize several hotspots

encountered in the pseudo-Boolean proofs generated in our experimental

200 End-to-End Verification for Subgraph Solving

is_cis vs (vp,ep) (vt,et)
def
=

∃ f . vs ⊆ { 0,1,...,vp−1 } ∧ inj f vs { 0,1,...,vt−1 } ∧
∀a b. a ∈ vs ∧ b ∈ vs⇒
(is_edge ep a b ⇐⇒ is_edge et (f a) (f b))

connected_subgraph vs e
def
=

∀a b. a ∈ vs ∧ b ∈ vs⇒
(𝜆 x y. y ∈ vs ∧ is_edge e x y)∗ a b

is_ccis vs (vp,ep) (vt,et)
def
=

is_cis vs (vp,ep) (vt,et) ∧ connected_subgraph vs ep

max_ccis_size gp gt

def
=

maxset { card vs | is_ccis vs gp gt }

⊢ good_graph (vp,ep) ∧ good_graph (vt,et) ∧
encode (vp,ep) (vt,et) = constraints⇒
((∃ vs. is_ccis vs (vp,ep) (vt,et) ∧ card vs = k) ⇐⇒
∃w. satisfies w (set constraints) ∧

eval_obj (unmapped_obj vp) w = vp − k)

Figure 4: HOL definition of the size of a maximum common connected induced subgraph

(MCCIS) for a pattern graph gp and a target graph gt (top), and a correctness theorem for

encoding the MCCIS problem using PB constraints (bottom).

evaluation, e.g., using buffered I/O to stream large proof files, and swapping

to constant-time array-based constraint lookups for cutting planes steps and

hash-based proof goal coverage checks in application of the dominance-based

strengthening rule.

The verified proof checker backend operates most naturally and efficiently with

normalized pseudo-Boolean constraints where, in addition, variables are indexed

by numbers. However, this is not the most convenient interface for frontend users.

Accordingly, CakePB also includes a verified pseudo-Boolean normalizer. As shown

in Figure 3, CakePB accepts any pseudo-Boolean formula as input (normalized

or otherwise) together with an externally generated kernel proof. It produces an

appropriate verified conclusion about the formula, such as satisfiability status

or upper and lower bounds on the objective function, depending on the type of

problem and on the claims made by the proof.

3.2 Verified Graph Problem Encoders
Pseudo-Boolean formulas provide a convenient format for verified frontend

encoders for graph problems, which we turn to next. Graphs are represented

in HOL as a pair (v,e), where v is the number of vertices corresponding to the

vertex set { 0,1,...,v−1 } , and e is an edge list representation such that is_edge e a b

3. Formally Verified Graph Proof Checkers 201

is true iff there is an edge between vertices a and b. All graphs considered here

are undirected.1 The graph encoders use a shared graph library which formalizes

these basic graph notions and provides parsing functions for standard text formats

such as LAD and DIMACS.

The HOL definitions of various graph problems formalized in this paper are

shown in Figures 2 and 4; we use maximum common connected induced subgraph

(MCCIS) as a representative example. Given a pattern graph gp and a target

graph gt, a subset of vertices vs of gp is a common induced subgraph (is_cis) iff

there exists an injective mapping f from vs into the target graph vertices which

preserves edges and non-edges. Additionally, vs is a connected subgraph of gp iff

its vertices are pairwise connected in the reflexive transitive closure (denoted
∗
) of

the induced is_edge relation. The MCCIS size is the size of the largest common

connected induced subgraph between gp and gt (max_ccis_size).

The MCCIS pseudo-Boolean encoding from [GMM
+
20, Section 3.1] is imple-

mented as a HOL function encode. The main subtlety is connected_subgraph; briefly,

connectedness is encoded using additional auxiliary variables that indicate whether

a walk of length 𝑛 for some 𝑛 < min(𝑣𝑝 , 𝑣𝑡), exists between each pair of vertices

in the chosen subgraph. The correctness theorem for encode is shown in Figure 4

(bottom). It says that a CCIS of cardinality 𝑘 exists iff a satisfying assignment to the

encoding constraints exists with objective value 𝑣𝑝 − 𝑘. Therefore, minimizing the

objective (unmapped_obj vp) yields the MCCIS size. Similar theorems are proved

for encodings of subgraph isomorphism and maximum clique. The value of formal

verification here is twofold: to gain confidence in the pen-and-paper justification

of the encodings, and to ensure that the encodings are correctly implemented in

code.

3.3 End-to-End Verification
Feeding the output of each frontend encoder into CakePB yields a suite of

formally verified graph proof checkers, collectively called CakePBGraph. Since

we are working within the CakeML ecosystem, we can further achieve end-to-end

verification by running the CakeML compiler on CakePBGraph to transfer the

source-level correctness guarantees for the CakePBGraph checkers down to the

level of their respective machine code implementations.

Let us illustrate this by briefly discussing the final correctness theorem for the

maximum clique proof checker as shown in Figure 5. The assumption on Line 1 is

standard for all programs written in CakeML, and states that the compiled machine

code is correctly loaded in memory of an x64 machine and that the appropriate

command line and file system foreign function interfaces (FFIs) are available to

CakeML. The first correctness guarantee on Lines 2–4 says that the code will run

without crashing and will terminate safely, possibly reporting an out-of-memory

resource error. The second correctness guarantee starting at Line 5–6 says there

1In practice, we apply a consistency check good_graph for undirectedness and other syntactic

properties when parsing input graphs. Graphs failing the check are rejected by the encoders.

202 End-to-End Verification for Subgraph Solving

clique_eq_str n
def
= "s VERIFIED MAX CLIQUE SIZE |CLIQUE| = " ˆ toString n ˆ "\n"

clique_bound_str l u
def
=

"s VERIFIED MAX CLIQUE SIZE BOUND " ˆ toString l ˆ " <= |CLIQUE| <= "

ˆ toString u ˆ "\n"

1

2

3

4

5

6

7

8

9

10

11

12

13

⊢ cake_pb_clique_run cl fs mc ms⇒
machine_sem mc (basis_ffi cl fs) ms ⊆

extend_with_resource_limit
{ Terminate Success (cake_pb_clique_io_events cl fs) } ∧
∃ out err. extract_fs fs (cake_pb_clique_io_events cl fs) =

Some (add_stdout (add_stderr fs err) out) ∧
(out ≠ ""⇒
∃ g. get_graph_dimacs fs (el 1 cl) = Some g ∧
(length cl = 2 ∧ out = concat (print_pbf (full_encode g)) ∨
length cl = 3 ∧
(out = clique_eq_str (max_clique_size g) ∨
∃ l u. out = clique_bound_str l u ∧ (∀vs. is_clique vs g⇒ card vs ≤ u) ∧
∃ vs. is_clique vs g ∧ l ≤ card vs)))

Figure 5: End-to-end correctness theorem for CakePB with a maximum clique pseudo-

Boolean encoder frontend.

will be (possibly empty) strings out and err printed to standard output and error,

respectively. The remaining lines now claim that if standard output is non-empty,

then the input file was parsed in DIMACS format to a graph 𝑔 (Lines 7–8), and the

output is either:

• a pretty-printed pseudo-Boolean encoding of the maximum clique problem

for 𝑔 (Line 9), or

• a pretty-printed conclusion string which is either:

– a verified exact maximum clique size for 𝑔 formatted using clique_eq_str
(Line 11), or

– verified lower and upper bounds on clique sizes in 𝑔 formatted using

clique_bound_str (Lines 12–13).

Let us clarify what needs to be trusted, or at least carefully inspected, in order to

claim that the conclusions by CakePBGraph checkers are formally verified:

• The HOL definitions of the graph input parsers and of various graph problems

that appear in the final correctness theorems (e.g., Figure 5). We have kept

these definitions as simple as possible. Notably, the internal definitions of

pseudo-Boolean semantics and cutting planes used in the proof checker are

not part of CakePBGraph’s trusted base because conversion into and out of

pseudo-Boolean semantics is formally verified.

4. Proof Elaboration 203

• The formal HOL model of the CakeML execution environment and its

correspondence with the real system on which CakePBGraph runs. CakeML

has been used in various other proof checkers, e.g., by [THM23], and its

target architecture models have been validated extensively [TMK
+
19].

• The HOL4 theorem prover, including its logic, implementation and execution

environment. The prover follows an LCF-style design [SN08] with a well-

separated and trustworthy kernel responsible for checking every logical

inference.

A trusted base for binary code extraction [KMTM18] as above is of the highest

assurance standard for formally verified software—correctness is proved within a

single system down to the machine code that runs. This provides a gold standard

of trustworthiness for subgraph solving, in contrast to prior unverified proof

checking approaches.

4 Proof Elaboration
CakePBGraph verification helps solver users who wish to attain a high level of

trust in solver conclusions. In this section, we discuss our new elaboration phase,

which aids solver authors who wish to add trustworthy proof logging and checking

to their tools.

The convenience afforded by proof elaboration is illustrated in the workflow

in Figure 1. First, solver authors can design their proof output with respect to

their own (untrusted) pseudo-Boolean encodings, without following the verified

encodings from CakePBGraph exactly; elaboration helps to automatically line up

(where possible) untrusted and verified encodings. Second, elaboration supports

an augmented proof format with syntactic sugar that makes proof logging much

easier at runtime; elaboration then fills in the necessary details to convert the proof

into the kernel format understood by CakePBGraph. The VeriPB proof elaborator

also performs (unverified) proof checking during the translation process, helping

solver authors to detect bugs in their proof logging or solver code even before the

formal verification process starts.

4.1 Lining up Encodings
Many VeriPB proof rules refer to constraints by positive integer constraint IDs,

assigned automatically in order of appearance in the proof. It would be quite a

hassle for solver authors to keep track of the exact order in which constraints in

the encoding are generated by CakePBGraph. Fortunately, it is straightforward

to instead recover an ID by rederiving the constraint, which provides it with a

new, known ID, before it is used. This can either be done upfront, at the start of

the proof, or lazily (which avoids a potentially large overhead for instances with

very short proofs). A useful fact is that the two constraints do not need to match

204 End-to-End Verification for Subgraph Solving

Pattern Target

0

1

2

3

4

5

5

6

78

9

0

1

23

4

Verified Encoding

min: 1 x0_n 1 x1_n 1 x2_n 1 x3_n 1 x4_n 1 x5_n ;
1 x0_n 1 x0_0 1 x0_1 1 x0_2 1 x0_3 1 x0_4 \

1 x0_5 1 x0_6 1 x0_7 1 x0_8 1 x0_9 = 1 ;
1 x1_n 1 x1_0 1 x1_1 1 x1_2 1 x1_3 1 x1_4 \

1 x1_5 1 x1_6 1 x1_7 1 x1_8 1 x1_9 = 1 ;
... 1172 omitted constraints ...

Augmented Proof

pseudo-Boolean proof version 2.0
...
* Specifying a partial solution
soli x5_9 x2_7 ...
(58 omitted literals) ...
* Unit propagation step
u 1 ∼x4_0 >= 1 ;

...
conclusion BOUNDS 2 2
end pseudo-Boolean proof

Kernel Proof

pseudo-Boolean proof version 2.0
...
* Specifying a full solution
soli x0_n x1_n ...
(304 omitted literals) ...
* Derivation by cutting planes
red 1 ∼x4_0 >= 1 ; ; begin

pol 8784 8778 + 8772 + 8766 + \
... 8133 13 * + 8085 13 * +

end 8786
...
conclusion BOUNDS 2 : 8798 2
end pseudo-Boolean proof

Figure 6: (Top) MCCIS problem encoding for the pattern graph 𝐾3,3 and the target

Petersen graph. (Bottom) An augmented proof generated by a solver on the left, and a

corresponding elaborated kernel proof on the right; kernel annotations in bold. When run

on the kernel proof, CakePBGraph outputs: s VERIFIED MAX CCIS SIZE |CCIS| =
4. This corresponds to the conclusion in the proof, which claims that at least two of the six

pattern vertices must be mapped to null.

exactly—it is sufficient that they are close enough so that VeriPB can automatically

check and prove that one of them follows from the other.

When it comes to variable names, the solver proof logging routines are required

to agree exactly with the CakePBGraph encoding. This is an easier task, however,

since VeriPB and CakePB both support expressive variable names. For example,

for subgraph mapping problems, we use the protocol that the variable name x1_2
means that pattern vertex 1 will be mapped to target vertex 2.

4.2 Elaborating on Syntactic Sugar

The augmented proof format contains a number of rules designed to support

the ease of proof logging. Chief among these is reverse unit propagation (RUP),

which allows to add a constraint when the VeriPB proof checker can easily verify

5. Experiments 205

that it is implied by applying unit propagation. Such RUP steps occur frequently

in proofs in many applications, and so have to be dealt with efficiently by the

proof checker, but implementing efficient formally verified unit propagation is a

challenging task even for the simpler case of CNF [FBL18]. Instead, a RUP rule

application deriving 𝐶 from 𝐹 is converted to an explicit cutting planes proof of

contradiction from 𝐹 ∪ {¬𝐶}. This is possible since unit propagation on the latter

set of constraints leads to a violation (by the definition of RUP), and this in turn

means that pseudo-Boolean conflict analysis can be used to derive contradiction.

This algorithm is more involved than CNF-based conflict analysis as used in SAT

solvers, but we employ a procedure similar to the PB conflict analysis in [EN18]

for this. For optimization problems, the augmented format allows incumbent

solutions to be partially specified, so long as the given assignment unit propagates

to a full solution; the kernel format will always specify a full solution instead. This

is illustrated in Figure 6.

Another convenient rule is syntactic implication, where a constraint to be

derived is implied by a single (unspecified) previous constraint by simple syntactic

manipulations. This condition is again easy to check, but the elaborator converts

this into an explicit derivation or explicitly annotates the kernel proof with IDs.

Yet another important aspect that we are ignoring here, but which is crucial for

efficient proof checking, is deletion of constraints no longer needed in the proof.

Finally, applications of strengthening rules generate a separate proof goal

for each constraint currently in use in the proof, which is a potentially huge

overhead, but often most of these proof goals are obvious and can be skipped in the

augmented format (e.g., if they can be obtained by RUP or syntactic implication).

The proof elaborator fills in the necessary missing details for such proof goals.

5 Experiments
To validate our approach, we performed experiments on a cluster of machines with

dual AMD EPYC 7643 processors, 2TBytes RAM, and a RAID array of solid state

drives, running Ubuntu 22.04. We ran up to 40 jobs in parallel, and limited each

individual process to 64GBytes RAM. Note that performance of the verification

process is strongly affected by I/O and memory cache speeds, and so we do not

expect running time measurements to be highly reproducible, but they should still

be indicative of the feasibility of the approach and the slowdowns that one might

encounter. We used the Glasgow Subgraph Solver [MPT20] as the proof-producing

solver for all experiments, and made small modifications so that it would lazily

recover constraint IDs as required. The results are plotted on an instance by

instance basis in Figure 7 and explained below.

For maximum clique, we took the 54 instances from the Second DIMACS

Implementation Challenge [JT96] that [GMM
+
20] were able to check. We managed

to produce proofs for and formally verify 50 of these instances; for the 4 instances

that we could not verify, 3 were due to VeriPB taking over one week to check

the proof files, and the final one to the 64GByte memory limit for the verified

206 End-to-End Verification for Subgraph Solving

103

106

109

1012

103 106 109 1012

K
er

ne
lp

ro
of

(b
yt

es
)

Augmented proof (bytes)

10−3

100

103

106

10−3 100 103 106

C
A

K
E

P
B

tim
e

(s
)

VERIPB time (s)

(a) Max clique

103

106

109

1012

103 106 109 1012

K
er

ne
lp

ro
of

(b
yt

es
)

Augmented proof (bytes)

10−3

100

103

106

10−3 100 103 106

C
A

K
E

P
B

tim
e

(s
)

VERIPB time (s)

(b) Subgraph isomorphism

103

106

109

1012

103 106 109 1012

K
er

ne
lp

ro
of

(b
yt

es
)

Augmented proof (bytes)

10−3

100

103

106

10−3 100 103 106

C
A

K
E

P
B

tim
e

(s
)

VERIPB time (s)

(c) Max common connected induced subgraph

Figure 7: Experiments using the Glasgow Subgraph Solver on (a) max clique, (b) subgraph

isomorphism, and (c) max common connected induced subgraph problem instances. In

the left column, comparisons of kernel and augmented proof sizes; in the right column,

time comparisons for verified and unverified checking of kernel and augmented proofs,

respectively. Crosses indicate failures due to space or memory limits.

6. Conclusion 207

checker. Over the successfully checked instances, translating augmented proofs to

kernel proofs took, on average, 18% longer than simply verifying the proofs, and

produced proof files that were on average 2.26 times as large. However, verified

checking of these kernel proofs was consistently faster than checking the original

augmented proofs using VeriPB: the average running time was 3.8 times lower.

For subgraph isomorphism, we used the same subset of 1,226 small-to-medium-

sized instances from the benchmark set in [KMS16] as was studied by [GMN20].

We were able to verify 417 satisfiable and 784 unsatisfiable instances; 13 instances

failed due to memory limits on the verified checker, and 12 instances when the

converted kernel proofs exceeded 500GBytes in size. Performance-wise, running

VeriPB and asking it to output a kernel proof was on average 27% slower than

verification alone. Producing the verified encoding was never a significant cost in

the process. Verifying kernel proofs was on average 2.4 times slower than verifying

the original, augmented proofs; the former were on average 10.5 times larger than

the latter.

For maximum common connected induced subgraph, we used a database

of randomly generated instances [CFV07, DFSV03], and ran the solver in clique

reformulation mode. We were able to verify all 690 instances involving up to

20 vertices in each graph. Elaborating the proofs took on average 43% longer than

verifying them using VeriPB, and the proofs were on average 14.7 times larger.

However, verifying the kernel proofs using CakePB took on average only 9% longer

than using VeriPB for the original, augmented proofs.

Across each problem family, producing formally verified encodings was always

extremely cheap, and asking VeriPB to produce an elaborated kernel proof was

never substantially more expensive than simply checking the augmented proof.

This is to be expected: VeriPB already has to produce nearly all of the information

needed for proof elaboration to check a proof anyway. Checking elaborated proofs

was sometimes a little faster than checking the original, augmented proof, and

sometimes a little slower, and we were able to formally check almost every proof

that was amenable to unverified checking.

6 Conclusion
In this paper, we present the first efficient toolchain for formal end-to-end verifica-

tion of state-of-the-art subgraph solving. Our design is easily adaptable, which

opens up the possibility of bringing formal verification to other combinatorial

problem domains where problem instances can be suitably represented using the

expressivity of 0–1 integer linear programs. In fact, our formally verified CakePB

proof checker equipped with a CNF frontend has also been used for SAT solving in

the SAT Competition 2023 [BMM
+
23], supporting, also for the first time, efficient

verified proof logging and checking for the full range of advanced techniques

used in modern SAT solvers such as cardinality reasoning, Gaussian elimination,

and symmetry breaking. A future challenge of particular interest would be to

provide a formally verified setting for the proof logging techniques for constraint

208 End-to-End Verification for Subgraph Solving

programming developed in a sequence of papers by [EGMN20, GMN22] and

[MM23]. It would also be valuable to expand the reach of pseudo-Boolean proof

logging to problems like (projected) model enumeration problems, which were

dealt with in a somewhat ad-hoc fashion by [GMM
+
20].

To further improve performance, it would be highly desirable to enhance the

VeriPB elaborator with proof trimming to be able to remove unnecessary proof steps

before handing the kernel proof to CakePB. Currently, our system verifies all of the

steps carried out by the solver to reach its conclusion. This is useful for detecting

solver bugs, but for storing and distributing proofs a trimmed proof would suffice

and could be much faster to verify. Another significant source of performance

gains could come from switching from a text proof format to a binary format:

although this would lose some human-readability, our experiments suggest that

text parsing often forms a substantial portion of the elaboration and checking

times.

Acknowledgements
Stephan Gocht and Jakob Nordström were supported by the Swedish Research

Council grant 2016-00782, and Jakob Nordström also received funding from the

Independent Research Fund Denmark grant 9040-00389B. Ciaran McCreesh was

supported by a Royal Academy of Engineering research fellowship, and by the

Engineering and Physical Sciences Research Council [grant number EP/X030032/1].

Magnus Myreen was supported by Swedish Research Council grant 2021-05165.

Andy Oertel was supported by the Wallenberg AI, Autonomous Systems and

Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Yong Kiam Tan was supported by A*STAR, Singapore. Part of this work was carried

out while taking part in the Dagstuhl workshops 22411 “Theory and Practice of

SAT and Combinatorial Solving” and 23261 “SAT Encodings and Beyond”, as well

as in the extended reunion of the program “Satisfiability: Theory, Practice, and

Beyond” in the spring of 2023 at the Simons Institute for the Theory of Computing

at UC Berkeley.

References
[AGJ

+
18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and

Peter Nightingale. Metamorphic testing of constraint solvers. In

Proceedings of the 24th International Conference on Principles and Practice

of Constraint Programming (CP ’18), volume 11008 of Lecture Notes in

Computer Science, pages 727–736. Springer, August 2018.

[BDM23] Milan Bankovic, Ivan Drecun, and Filip Maric. A proof system for

graph (non)-isomorphism verification. Logical Methods in Computer

Science, 19(1), February 2023.

References 209

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nord-

ström. Certified dominance and symmetry breaking for com-

binatorial optimisation. Journal of Artificial Intelligence Research,

77:1539–1589, August 2023. Preliminary version in AAAI ’22.

[BHvMW21] Armin Biere, Marĳn J. H. Heule, Hans van Maaren, and Toby Walsh,

editors. Handbook of Satisfiability, volume 336 of Frontiers in Artificial

Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[BMM
+
23] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nord-

ström, Andy Oertel, and Yong Kiam Tan. Documentation of VeriPB

and CakePB for the SAT competition 2023. Available at https://
satcompetition.github.io/2023/checkers.html, March 2023.

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving

with provably correct results: Beyond satisfiability, and towards

constraint programming. Tutorial at the 28th International Conference

on Principles and Practice of Constraint Programming. Slides available at

http://www.jakobnordstrom.se/presentations/, August 2022.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT

solving. In Biere et al. [BHvMW21], chapter 7, pages 233–350.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational

mixed integer programming—A look back from the other side of the

tipping point. Annals of Operations Research, 149(1):37–41, February

2007.

[CAH23] Cayden R. Codel, Jeremy Avigad, and Marĳn J. H. Heule. Verified

encodings for SAT solvers. In Proceedings of the 23rd Conference

on Formal Methods in Computer-Aided Design (FMCAD ’23), pages

141–151, October 2023.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the

complexity of cutting-plane proofs. Discrete Applied Mathematics,

18(1):25–38, November 1987.

[CFV07] Donatello Conte, Pasquale Foggia, and Mario Vento. Challenging

complexity of maximum common subgraph detection algorithms:

A performance analysis of three algorithms on a wide database of

graphs. Journal of Graph Algorithms and Applications, 11(1):99–143,

January 2007.

[CHH
+
17] Luís Cruz-Filipe, Marĳn J. H. Heule, Warren A. Hunt Jr., Matt Kauf-

mann, and Peter Schneider-Kamp. Efficient certified RAT verification.

In Proceedings of the 26th International Conference on Automated Deduc-

tion (CADE-26), volume 10395 of Lecture Notes in Computer Science,

pages 220–236. Springer, August 2017.

https://satcompetition.github.io/2023/checkers.html
https://satcompetition.github.io/2023/checkers.html
http://www.jakobnordstrom.se/presentations/

210 End-to-End Verification for Subgraph Solving

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A

hybrid branch-and-bound approach for exact rational mixed-integer

programming. Mathematical Programming Computation, 5(3):305–344,

September 2013.

[CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp.

Efficient certified resolution proof checking. In Proceedings of the 23rd

International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in

Computer Science, pages 118–135. Springer, April 2017.

[CMS19] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp.

Formally verifying the solution to the Boolean Pythagorean triples

problem. Journal of Automated Reasoning, 63(3):695–722, October 2019.

[DFSV03] Massimo De Santo, Pasquale Foggia, Carlo Sansone, and Mario Vento.

A large database of graphs and its use for benchmarking graph

isomorphism algorithms. Pattern Recognition Letters, 24(8):1067–1079,

May 2003.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.

Justifying all differences using pseudo-Boolean reasoning. In Pro-

ceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),

pages 1486–1494, February 2020.

[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards

faster pseudo-Boolean solving. In Proceedings of the 27th International

Joint Conference on Artificial Intelligence (ĲCAI ’18), pages 1291–1299,

July 2018.

[FBL18] Mathias Fleury, Jasmin Christian Blanchette, and Peter Lammich.

A verified SAT solver with watched literals using imperative HOL.

In Proceedings of the 7th ACM SIGPLAN International Conference on

Certified Programs and Proofs (CPP ’18), pages 158––171, January 2018.

[GMKN17] Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael

Norrish. Verified characteristic formulae for CakeML. In Proceedings

of the 26th European Symposium on Programming (ESOP ’17), volume

10201 of Lecture Notes in Computer Science, pages 584–610. Springer,

April 2017.

[GMM
+
20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström,

Patrick Prosser, and James Trimble. Certifying solvers for clique and

maximum common (connected) subgraph problems. In Proceedings of

the 26th International Conference on Principles and Practice of Constraint

Programming (CP ’20), volume 12333 of Lecture Notes in Computer

Science, pages 338–357. Springer, September 2020.

References 211

[GMM
+
23] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob

Nordström, Andy Oertel, and Yong Kiam Tan. End-to-end ver-

ification for subgraph solving: Supplementary material. https:
//doi.org/10.5281/zenodo.10369401, December 2023.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph

isomorphism meets cutting planes: Solving with certified solutions.

In Proceedings of the 29th International Joint Conference on Artificial

Intelligence (ĲCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An au-

ditable constraint programming solver. In Proceedings of the 28th

International Conference on Principles and Practice of Constraint Pro-

gramming (CP ’22), volume 235 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning

efficiently using pseudo-Boolean proofs. In Proceedings of the 35th

AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777,

February 2021.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declar-

ative testing of constraints. In Proceedings of the 25th International

Conference on Principles and Practice of Constraint Programming (CP ’19),

volume 11802 of Lecture Notes in Computer Science, pages 565–582.

Springer, October 2019.

[GSVW14] Maria Garcia de la Banda, Peter J. Stuckey, Pascal Van Hentenryck,

and Mark Wallace. The future of optimization technology. Constraints,

19(2):126–138, April 2014.

[HHW13a] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trim-

ming while checking clausal proofs. In Proceedings of the 13th In-

ternational Conference on Formal Methods in Computer-Aided Design

(FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying

refutations with extended resolution. In Proceedings of the 24th

International Conference on Automated Deduction (CADE-24), volume

7898 of Lecture Notes in Computer Science, pages 345–359. Springer,

June 2013.

[HK17] Marĳn J. H. Heule and Oliver Kullmann. The science of brute force.

Communications of the ACM, 60(8):70–79, August 2017.

[JT96] David S. Johnson and Michael A. Trick. Introduction to the second

DIMACS challenge: Cliques, coloring, and satisfiability. In Cliques,

Coloring and Satisfiability: Second DIMACS Implementation Challenge,

https://doi.org/10.5281/zenodo.10369401
https://doi.org/10.5281/zenodo.10369401

212 End-to-End Verification for Subgraph Solving

volume 26 of DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, pages 1–10. American Mathematical Society, 1996.

[KMS16] Lars Kotthoff, Ciaran McCreesh, and Christine Solnon. Portfolios of

subgraph isomorphism algorithms. In 10th International Conference

on Learning and Intelligent Optimization (LION ’16), Selected Revised

Papers, volume 10079 of Lecture Notes in Computer Science, pages

107–122. Springer, May-June 2016.

[KMTM18] Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O.

Myreen. Software verification with ITPs should use binary code

extraction to reduce the TCB. In Proceedings of the 9th International

Conference on Interactive Theorem Proving (ITP ’18), volume 10895 of

Lecture Notes in Computer Science, pages 362–369. Springer, July 2018.

[Lam20] Peter Lammich. Efficient verified (UN)SAT certificate checking.

Journal of Automated Reasoning, 64(3):513–532, March 2020. Extended

version of paper in CADE 2017.

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart

extensional constraints. In Proceedings of the 29th International Con-

ference on Principles and Practice of Constraint Programming (CP ’23),

volume 280 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 26:1–26:17, August 2023.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pas-

cal Schweitzer. Certifying algorithms. Computer Science Review,

5(2):119–161, May 2011.

[MO14] Magnus O. Myreen and Scott Owens. Proof-producing translation

of higher-order logic into pure and stateful ML. Journal of Functional

Programming, 24(2–3):284–315, January 2014.

[MPT20] Ciaran McCreesh, Patrick Prosser, and James Trimble. The Glasgow

subgraph solver: Using constraint programming to tackle hard

subgraph isomorphism problem variants. In Proceedings of the 13th

International Conference on Graph Transformation (ICGT ’20), volume

12150 of Lecture Notes in Computer Science, pages 316–324. Springer,

June 2020.

[SFL
+
21] Xiaomu Shi, Yu-Fu Fu, Jiaxiang Liu, Ming-Hsien Tsai, Bow-Yaw

Wang, and Bo-Yin Yang. CoqQFBV: A scalable certified SMT

quantifier-free bit-vector solver. In Proceedings of the 33rd Inter-

national Conference on Computer Aided Verification (CAV ’21), volume

12760 of Lecture Notes in Computer Science, pages 149–171. Springer,

July 2021.

References 213

[SN08] Konrad Slind and Michael Norrish. A brief overview of HOL4. In

Proceedings of the 21st International Conference on Theorem Proving in

Higher Order Logics (TPHOLs ’08), volume 5170 of Lecture Notes in

Computer Science, pages 28–32. Springer, August 2008.

[THM23] Yong Kiam Tan, Marĳn J. H. Heule, and Magnus O. Myreen. Verified

propagation redundancy and compositional UNSAT checking in

CakeML. International Journal on Software Tools for Technology Transfer,

25:167–184, February 2023. Preliminary version in TACAS ’21.

[TMK
+
19] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony

C. J. Fox, Scott Owens, and Michael Norrish. The verified CakeML

compiler backend. Journal of Functional Programming, 29:e2:1–e2:57,

February 2019.

[WHH14] Nathan Wetzler, Marĳn J. H. Heule, and Warren A. Hunt Jr. DRAT-

trim: Efficient checking and trimming using expressive clausal

proofs. In Proceedings of the 17th International Conference on Theory and

Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture

Notes in Computer Science, pages 422–429. Springer, July 2014.

214 End-to-End Verification for Subgraph Solving

Pa
pe

r
VI

Certified MaxSAT
Preprocessing

Abstract
Building on the progress in Boolean satisfiability (SAT) solving over the last decades,

maximum satisfiability (MaxSAT) has become a viable approach for solving NP-

hard optimization problems. However, ensuring correctness of MaxSAT solvers

has remained a considerable concern. For SAT, this is largely a solved problem

thanks to the use of proof logging, meaning that solvers emit machine-verifiable

proofs to certify correctness. However, for MaxSAT, proof logging solvers have

started being developed only very recently. Moreover, these nascent efforts have

only targeted the core solving process, ignoring the preprocessing phase where

input problem instances can be substantially reformulated before being passed on

to the solver proper.

In this work, we demonstrate how pseudo-Boolean proof logging can be used

to certify the correctness of a wide range of modern MaxSAT preprocessing

techniques. By combining and extending the VeriPB and CakePB tools, we provide

formally verified end-to-end proof checking that the input and preprocessed

output MaxSAT problem instances have the same optimal value. An extensive

evaluation on applied MaxSAT benchmarks shows that our approach is feasible in

practice.

1 Introduction
The development of Boolean satisfiability (SAT) solvers is arguably one of the

true success stories of modern computer science—today, SAT solvers are routinely

used as core engines in many types of complex automated reasoning systems.

One example of this is SAT-based optimization, usually referred to as maximum

satisfiability (MaxSAT) solving. The improved performance of SAT solvers, coupled

Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O. Myreen,

and Jakob Nordström. “Certified MaxSAT Preprocessing”. In Proceedings of the 12th International Joint

Conference on Automated Reasoning (ĲCAR ’24), volume 14739 of Lecture Notes in Computer Science, pages

396–418. Springer, July 2024.

216 Certified MaxSAT Preprocessing

with increasingly sophisticated techniques for using SAT solver calls to reason

about optimization problems, have made MaxSAT solvers a powerful tool for

tackling real-world NP-hard optimization problems [BHvMW21].

However, Modern MaxSAT solvers are quite intricate pieces of software,

and it has been shown repeatedly in the MaxSAT evaluations [Maxb] that even

the best solvers sometimes report incorrect results. This was previously a se-

rious issue also for SAT solvers (see, e.g., [BLB10]), but the SAT community

has essentially eliminated this problem by requiring that solvers should be cer-

tifying [ABM
+
11, MMNS11], i.e., not only report whether a given formula is

satisfiable or unsatisfiable but also produce a machine-verifiable proof that this

conclusion is correct. Many different SAT proof formats such as RUP [GN03],

TraceCheck [Bie06], GRIT [CMS17], and LRAT [CHH
+
17] have been proposed,

with DRAT [HHW13a, HHW13b, WHH14] established as the de facto standard;

for the last ten years, proof logging has been compulsory in the (main track of

the) SAT competitions [SAT]. It is all the more striking, then, that until recently no

similar developments have been observed in MaxSAT solving.

1.1 Previous Work

A first natural question to ask—since MaxSAT solvers are based on repeated calls

to SAT solvers—is why we cannot simply use SAT proof logging also for MaxSAT.

The problem is that DRAT can only reason about clauses, whereas MaxSAT solvers

argue about costs of solutions and values of objective functions. Translating such

claims to clausal form would require an external tool to certify correctness of the

translation. Also, such clausal translations incur a significant overhead and do not

seem well-adapted for, e.g., counting arguments in MaxSAT.

While there have been several attempts to design proof systems specifically

for MaxSAT solving [BLM07, FMSV20, IBJ22, LNOR11, MIB
+
19, MM11, PCH20,

PCH21, PCH22], none of these have come close to providing a general proof logging

solution, because they apply only for very specific algorithm implementations

and/or fail to capture the full range of techniques used. Recent papers have instead

proposed using pseudo-Boolean proof logging with VeriPB [BGMN23, GN21]

to certify correctness of so-called solution-improving solvers [VDB22] and core-

guided solvers [BBN
+
23]. Although these works demonstrate, for the first time,

practical proof logging for modern MaxSAT solving, the methods developed

thus far only apply to the core solving process. This ignores the preprocessing

phase, where the input formula can undergo major reformulation. State-of-the-art

solvers sometimes use stand-alone preprocessor tools, or sometimes integrate

preprocessing-style reasoning more tightly within the MaxSAT solver engine, to

speed up the search for optimal solutions. Some of these preprocessing techniques

are lifted from SAT to MaxSAT, but there are also native MaxSAT preprocessing

methods that lack analogies in SAT solving.

2. Preliminaries 217

1.2 Our Contribution

In this paper, we show, for the first time, how to use pseudo-Boolean proof

logging with VeriPB to produce proofs of correctness for a wide range of pre-

processing techniques used in modern MaxSAT solvers. VeriPB proof logging

has previously been successfully used not only for core MaxSAT search as dis-

cussed above, but also for advanced SAT solving techniques (including symmetry

breaking) [BGMN23, GMNO22, GN21], subgraph solving [GMM
+
20, GMM

+
24,

GMN20], constraint programming [EGMN20, GMN22, MM23, MMN24], and 0–1

ILP presolving [HOGN24], and we add MaxSAT preprocessing to this list.

In order to do so, we extend the VeriPB proof format to include an output section

where a reformulated output can be presented, and where the pseudo-Boolean

proof establishes that this output formula and the input formula are equioptimal,

i.e., have optimal solutions of the same value. We also enhance CakePB [BMM
+
23,

GMM
+
24]—a verified proof checker for pseudo-Boolean proofs—to handle proofs

of reformulation. In this way, we obtain an end-to-end formally verified toolchain

for certified preprocessing of MaxSAT instances.

It is worth noting that although preprocessing is also a critical component in

SAT solving, we are not aware of any tool for certifying reformulations even for the

restricted case of decision problems, i.e., showing that formulas are equisatisfiable—

the DRAT format and tools support proofs that satisfiability of an input CNF

formula 𝐹 implies satisfiability of an output CNF formula 𝐺 but not the converse

direction (except in the special case where 𝐹 is a subset of 𝐺). To the best of

our knowledge, our work presents the first practical tool for proving (two-way)

equisatisfiability or equioptimality of reformulated problems.

We have performed computational experiments running a MaxSAT prepro-

cessor with proof logging and proof checking on benchmarks from the MaxSAT

evaluations [Maxb]. Although there is certainly room for improvements in perfor-

mance, these experiments provide empirical evidence for the feasibility of certified

preprocessing for real-world MaxSAT benchmarks.

1.3 Organization of This Paper

After reviewing preliminaries in Section 2, we explain our pseudo-Boolean proof

logging for MaxSAT preprocessing in Section 3, and Section 4 discusses verified

proof checking. We present results from a computational evaluation in Section 5,

after which we conclude with a summary and outlook for future work in Section 6.

2 Preliminaries

We write ℓ to denote a literal, i.e., a {0, 1}-valued Boolean variable 𝑥 or its negation

𝑥 = 1 − 𝑥. A clause 𝐶 = ℓ1 ∨ . . . ∨ ℓ𝑘 is a disjunction of literals, where a unit

clause consists of only one literal. A formula in conjunctive normal form (CNF)

218 Certified MaxSAT Preprocessing

𝐹 = 𝐶1 ∧ . . . ∧ 𝐶𝑚 is a conjunction of clauses, where we think of clauses and

formulas as sets so that there are no repetitions and order is irrelevant.

A pseudo-Boolean (PB) constraint is a 0–1 linear inequality

∑
𝑗 𝑎 𝑗ℓ 𝑗 ≥ 𝑏, where,

when convenient, we can assume all literals ℓ 𝑗 to refer to distinct variables and all

integers 𝑎 𝑗 and 𝑏 to be positive (so-called normalized form). A pseudo-Boolean formula

is a conjunction of such constraints. We identify the clause 𝐶 = ℓ1 ∨ · · · ∨ ℓ𝑘 with

the pseudo-Boolean constraint PB(𝐶) = ℓ1 + · · · + ℓ𝑘 ≥ 1, so a CNF formula 𝐹 is just

a special type of PB formula PB(𝐹) = {PB(𝐶) | 𝐶 ∈ 𝐹}.
A (partial) assignment 𝜌 mapping variables to {0, 1}, is extended to literals

by respecting the meaning of negation, satisfies a PB constraint

∑
𝑗 𝑎 𝑗ℓ 𝑗 ≥ 𝑏 if∑

ℓ 𝑗 :𝜌(ℓ 𝑗)=1
𝑎 𝑗 ≥ 𝑏 (assuming normalized form). A PB formula is satisfied by 𝜌 if all

constraints in it are. We also refer to total satisfying assignments 𝜌 as solutions.

In a pseudo-Boolean optimization (PBO) problem we ask for a solution minimizing

a given objective function 𝑂 =
∑
𝑗 𝑐 𝑗ℓ 𝑗 +𝑊 , where 𝑐 𝑗 and 𝑊 are integers and 𝑊

represents a trivial lower bound on the minimum cost.

2.1 Pseudo-Boolean Proof Logging Using Cutting Planes

The pseudo-Boolean proof logging in VeriPB is based on the cutting planes proof

system [CCT87] with extensions as discussed briefly next. We refer the reader

to [BN21] for and in-depth discussion of cutting planes and to [BGMN23, Goc22,

HOGN24, Ver] for more detailed information about the VeriPB proof system and

format.

A pseudo-Boolean proof maintains two sets of core constraints 𝒞 and derived

constraints𝒟 under which the objective 𝑂 should be minimized. At the start of the

proof, 𝒞 is initialized to the constraints in the input formula 𝐹. Any constraints

derived by the rules described below are placed in𝒟, from where they can later

be moved to 𝒞 (but not vice versa). The proof system semantics preserves the

invariant that the optimal value of any solution to 𝒞 and to the original input

problem 𝐹 is the same. New constraints can be derived from 𝒞 ∪𝒟 by performing

addition of two constraints or multiplication of a constraint by a positive integer,

and literal axioms ℓ ≥ 0 can be used at any time. Additionally, we can apply

division to

∑
𝑗 𝑎 𝑗ℓ 𝑗 ≥ 𝑏 by a positive integer 𝑑 followed by rounding up to obtain∑

𝑗 ⌈𝑎 𝑗/𝑑⌉ℓ 𝑗 ≥ ⌈𝑏/𝑑⌉, and saturation to yield

∑
𝑗 min{𝑎 𝑗 , 𝑏} · ℓ 𝑗 ≥ 𝑏 (where we again

assume normalized form).

The negation of a constraint 𝐶 =
∑
𝑗 𝑎 𝑗ℓ 𝑗 ≥ 𝑏 is ¬𝐶 =

∑
𝑗 𝑎 𝑗ℓ 𝑗 ≤ 𝑏 − 1. For

a (partial) assignment 𝜌 we write 𝐶 ↾𝜌 for the restricted constraint obtained by

replacing literals in 𝐶 assigned by 𝜌 with their values and simplifying. We say that

𝐶 unit propagates ℓ under 𝜌 if 𝐶↾𝜌 cannot be satisfied unless ℓ is assigned to 1. If

repeated unit propagation on all constraints in 𝒞 ∪ 𝒟 ∪ {¬𝐶}, starting with the

empty assignment 𝜌 = ∅, leads to contradiction in the form of an unsatisfiable

constraint, we say that 𝐶 follows by reverse unit propagation (RUP) from 𝒞 ∪ 𝒟.

Such (efficiently verifiable) RUP steps are allowed in VeriPB proofs as a convenient

way to avoid writing out an explicit cutting planes derivation. We use the same

2. Preliminaries 219

notation 𝐶↾𝜔 to denote the result of applying to 𝐶 a (partial) substitution 𝜔, which

can map variables not only to {0, 1} but also to literals, and extend this notation to

sets of constraints by taking unions.

In addition to the above rules, which derive semantically implied constraints,

there is a redundance-based strengthening rule, or just redundance rule for short, that

can derive non-implied constraints 𝐶 as long as they do not change the feasibility

or optimal value. This can be guaranteed by exhibiting a witness substitution 𝜔 such

that for any total assignment 𝛼 satisfying 𝒞 ∪ 𝒟 but violating 𝐶, the composition

𝛼 ◦𝜔 is another total assignment that satisfies 𝒞 ∪𝒟 ∪ {𝐶} and yields an objective

value that is at least as good. Formally, 𝐶 can be derived from 𝒞 ∪𝒟 by exhibiting

𝜔 and subproofs for

𝒞 ∪ 𝒟 ∪ {¬𝐶} ⊢ (𝒞 ∪ 𝒟 ∪ {𝐶})↾𝜔 ∪{𝑂 ≥ 𝑂↾𝜔} , (1)

using the previously discussed rules (where the notation 𝒞1 ⊢ 𝒞2 means that the

constraints 𝒞2 can be derived from the constraints 𝒞1).

During preprocessing, constraints in the input formula are often deleted or

replaced by other constraints, in which case the proof should establish that these

deletions maintain equioptimality. Removing constraints from the derived set𝒟 is

unproblematic, but unrestricted deletion from the core set 𝒞 can clearly introduce

spurious better solutions. Therefore, removing 𝐶 from 𝒞 can only be done by the

checked deletion rule, which requires a proof that the redundance rule can be used

to rederive 𝐶 from 𝒞 \ {𝐶} (see [BGMN23] for a more detailed explanation).

Finally, it turns out to be useful to allow replacing 𝑂 by a new objective 𝑂′

using an objective function update rule, as long as this does not change the optimal

value of the problem. Formally, updating the objective from 𝑂 to 𝑂′ requires

derivations of the two constraints 𝑂 ≥ 𝑂′ and 𝑂′ ≥ 𝑂 from the core set 𝒞, which

shows that any satisfying solution to 𝒞 has the same value for both objectives.

More details on this rule can be found in [HOGN24].

2.2 Maximum Satisfiability
A WCNF instance of (weighted partial) maximum satisfiability ℱ𝑊 = (𝐹𝐻 , 𝐹𝑆) is a

conjunction of two CNF formulas 𝐹𝐻 and 𝐹𝑆 with hard and soft clauses, respectively,

where soft clauses 𝐶 ∈ 𝐹𝑆 have positive weights 𝑤𝐶
. A solution 𝜌 to ℱ𝑊

must

satisfy 𝐹𝐻 and has value cost(𝐹𝑆 , 𝜌) equal to the sum of weights of all soft clauses

not satisfied by 𝜌. The optimum opt

(
ℱ𝑊

)
of ℱ𝑊

is the minimum of cost(𝐹𝑆 , 𝜌)
over all solutions 𝜌, or∞ if no solution exists.

State-of-the-art MaxSAT preprocessors such as MaxPre [IBJ22, KBSJ17] take

a slightly different objective-centric view [BJ19] of MaxSAT instances ℱ = (𝐹, 𝑂)
as consisting of a CNF formula 𝐹 and an objective function 𝑂 =

∑
𝑗 𝑐 𝑗ℓ 𝑗 +𝑊 to

be minimized under assignments 𝜌 satisfying 𝐹. A WCNF MaxSAT instance

ℱ𝑊 = (𝐹𝐻 , 𝐹𝑆) is converted into objective-centric form ObjMaxSAT(ℱ𝑊) = (𝐹, 𝑂)
by letting the formula 𝐹 = 𝐹𝐻 ∪ {𝐶 ∨ 𝑏𝐶 | 𝐶 ∈ 𝐹𝑆 , |𝐶 | > 1} of ObjMaxSAT(ℱ𝑊)
consist of the hard clauses of ℱ𝑊

and the non-unit soft clauses in 𝐹𝑆, each extended

220 Certified MaxSAT Preprocessing

with a fresh variable 𝑏𝐶 that does not appear in any other clause. The objective

𝑂 =
∑
(ℓ)∈𝐹𝑆 𝑤

(ℓ)ℓ +∑𝑤𝐶𝑏𝐶 contains literals ℓ for all unit soft clauses ℓ in 𝐹𝑆 as

well as literals for all new variables 𝑏𝐶 , with coefficients equal to the weights of the

corresponding soft clauses. In other words, each unit soft clause ℓ ∈ 𝐹𝑆 of weight

𝑤 is transformed into the term 𝑤 · ℓ in the objective function 𝑂, and each non-unit

soft clause 𝐶 is transformed into the hard clause 𝐶 ∨ 𝑏𝐶 paired with the unit soft

clause (𝑏𝐶) with same weight as 𝐶. The following observation summarizes the

properties of ObjMaxSAT(ℱ𝑊) that are central to our work.

Observation 1. For any solution 𝜌 to a WCNF MaxSAT instance ℱ𝑊
there exists a

solution 𝜌′ to (𝐹, 𝑂) = ObjMaxSAT(ℱ𝑊) with 𝑂(𝜌′) = cost(ℱ𝑊 , 𝜌). Conversely, if

𝜌′ is a solution to ObjMaxSAT(ℱ𝑊), then there exists a solution 𝜌 of ℱ𝑊
for which

cost(ℱ𝑊 , 𝜌) ≤ 𝑂(𝜌′).

For the second part of the observation, the reason 𝑂(𝜌′) is only an upper bound

on cost(ℱ𝑊 , 𝜌) is that the encoding forces 𝑏𝐶 to be true whenever 𝐶 is not satisfied

by an assignment but not vice versa.

An objective-centric MaxSAT instance (𝐹, 𝑂), in turn, clearly has the same

optimum as the pseudo-Boolean optimization problem of minimizing 𝑂 subject

to PB(𝐹). For the end-to-end formal verification, the fact that this coincides

with opt

(
ℱ𝑊

)
needs to be formalized into theorems as shown in Figure 4.

3 Proof Logging for MaxSAT Preprocessing
We now discuss how pseudo-Boolean proof logging can be used to reason about

correctness of MaxSAT preprocessing steps. Our approach maintains the invariant

that the current working instance in the preprocessor is synchronized with the

PB constraints in the core set 𝒞 as described in Section 2.2. At the end of each

preprocessing step (i.e., application of a preprocessing technique) the set of derived

constraints 𝒟 is empty. All constraints derived in the proof as described in this

section are moved to the core set, and constraints are always removed by checked

deletion from the core set. Full technical details are in Appendix A.

3.1 Overview
All our preprocessing steps maintain equioptimality, which means that if prepro-

cessing of the WCNF MaxSAT instance ℱ𝑊
yields the output instance ℱ𝑊

𝑃
, then

the equality opt

(
ℱ𝑊

)
= opt

(
ℱ𝑊
𝑃

)
is guaranteed to hold. Our preprocessing is

certified, meaning that we provide a machine-verifiable proof justifying this claimed

equality. Our discussion below focuses on input instances that have solutions, but

our techniques also handle the—arguably less interesting—case of ℱ𝑊
not having

solutions; details are in Appendix A.5.

An overview of the workflow of our certifying MaxSAT preprocessor is shown

in Figure 1. Given a WCNF instance ℱ𝑊
as input, the preprocessor proceeds in five

3. Proof Logging for MaxSAT Preprocessing 221

preprocessing

(MaxSAT)

proof

(pseudo-Boolean)

1. Initialization (ℱ𝑊 , 0) (PB(𝐹0), 𝑂0)
where (𝐹0 , 𝑂0) = ObjMaxSAT(ℱ𝑊)

2. Preprocessing
on WCNF

(ℱ𝑊
1
, lb

1) (𝒞1 , 𝑂1)

3. Conversion to
objective-centric

(𝐹2 , 𝑂2 + lb
1)

where

(𝐹2 , 𝑂2) = ObjMaxSAT(ℱ𝑊
1
)

(PB(𝐹2), 𝑂2 + lb
1)

4. Preprocessing
on objective-
centric

(𝐹3 , 𝑂3) (PB(𝐹3), 𝑂3)

5. Constant
removal

(𝐹4 , 𝑂4)
where 𝐹4 = 𝐹3 ∧ (𝑏𝑊3)
𝑂4 = 𝑂3 −𝑊3 +𝑊3𝑏𝑊

3

(PB(𝐹4), 𝑂4)

Output Preprocessed

WCNF ℱ𝑊
𝑃

= (𝐹4 , 𝐹𝑃
𝑆
)

Proof of equioptimality

of PB(𝐹0) under 𝑂0

and PB(𝐹4) under 𝑂4

Figure 1: Overview of the five stages of certified MaxSAT preprocessing of a WCNF

instance ℱ𝑊
. The middle column contains the state of the working MaxSAT instance

as a WCNF instance and a lower bound on its optimum cost (Stages 1–2), or as an

objective-centric instance (Stages 3–5). The right column contains a tuple (𝒞 , 𝑂) with the

set 𝒞 of core constraints, and objective 𝑂, respectively, of the proof after each stage.

stages (illustrated on the left in Figure 1), and then outputs a preprocessed MaxSAT

instance ℱ𝑊
𝑃

together with a pseudo-Boolean proof that opt

(
ObjMaxSAT

(
ℱ𝑊

))
=

opt

(
ObjMaxSAT

(
ℱ𝑊
𝑃

))
. For certified MaxSAT preprocessing, this proof can then

be fed to a formally verified checker as in Section 4 to verify that (a) the initial core

constraints in the proof correspond exactly to the clauses in ObjMaxSAT

(
ℱ𝑊

)
,

(b) each step in the proof is valid, and (c) the final core constraints in the proof

correspond exactly to the clauses in ObjMaxSAT

(
ℱ𝑊
𝑃

)
. Below, we provide more

details on the five stages of the preprocessing flow.

Stage 1: Initialization.

An input WCNF instance ℱ𝑊
is transformed to pseudo-Boolean format by con-

verting it to an objective-centric representation (𝐹0 , 𝑂0) = ObjMaxSAT

(
ℱ𝑊

)
and

then representing all clauses in 𝐹0
as pseudo-Boolean constraints as described

in Section 2.2. The VeriPB proof starts out with core constraints PB(𝐹0) and

objective 𝑂0
. The preprocessor maintains a lower bound on the optimal cost of the

working instance, which is initialized to 0 for the input ℱ𝑊
.

222 Certified MaxSAT Preprocessing

Stage 2: Preprocessing on the Initial WCNF Representation.

During preprocessing on the WCNF representation, a (very limited) set of sim-

plification techniques are applied on the working formula. At this stage the

preprocessor removes duplicate, tautological, and blocked clauses [JBH10]. Ad-

ditionally, hard unit clauses are unit propagated and clauses subsumed by hard

clauses are removed. Importantly, the preprocessor is performing these simplifica-

tions on a WCNF MaxSAT instance where it deals with hard and soft clauses. As

the pseudo-Boolean proof has no concept of hard or soft clauses, the reformulation

steps must be expressed in terms of the constraints in the proof. The next example

illustrates how reasoning with different types of clauses is logged in the proof.

Example 1. Suppose the working instance has two duplicate clauses 𝐶 and 𝐷.

If both are hard, then the proof has two identical constraints PB(𝐶) and PB(𝐷)
in the core set, and PB(𝐷) can be deleted since it follows from PB(𝐶) by reverse

unit propagation (RUP). If 𝐷 is instead a non-unit soft clause, the proof has the

constraint PB(𝐷 ∨ 𝑏𝐷) and the term 𝑤𝐷𝑏𝐷 in the objective, where 𝑏𝐷 does not

appear in any other constraint. Then in the proof we (1) remove the RUP constraint

PB(𝐷 ∨ 𝑏𝐷), (2) introduce 𝑏𝐷 ≥ 1 by redundance-based strengthening using the

witness {𝑏𝐷 → 0}, (3) remove the term 𝑤𝐷𝑏𝐷 from the objective, and (4) delete

𝑏𝐷 ≥ 1 with the witness {𝑏𝐷 → 0}.

Stage 3: Conversion to Objective-Centric Representation.

In order to apply more simplification rules in a cost-preserving way, the working

instance ℱ𝑊
1

= (𝐹1

𝐻
, 𝐹1

𝑆
) at the end of Stage 2 is converted into the corresponding

objective-centric representation that takes the lower-bound lb inferred during

Stage 1 into account. More specifically, the preprocessor next converts its working

MaxSAT instance into the objective-centric instance ℱ2 = (𝐹2 , 𝑂2 + lb) where

(𝐹2 , 𝑂2) = ObjMaxSAT(ℱ𝑊
1
).

Here it is important to note that at the end of Stage 2, the core constraints 𝒞1

and objective 𝑂1
of the proof are not necessarily PB(𝐹2) and 𝑂2 + lb, respectively.

Specifically, consider a unit soft clause (ℓ) of ℱ𝑊
1

obtained by shrinking a non-unit

soft clause 𝐶 ⊇ (ℓ) of the input instance, with weight 𝑤𝐶
. Then the objective

function 𝑂2
in the preprocessor will include the term 𝑤𝐶ℓ that does not appear in

the objective function 𝑂1
in the proof. Instead, 𝑂1

contains the term 𝑤𝐶𝑏𝐶 and 𝒞1

the constraint ℓ + 𝑏𝐶 ≥ 1 where 𝑏𝐶 is the fresh variable added to 𝐶 in Stage 1. In

order to “sync up” the working instance and the proof we (1) introduce ℓ + 𝑏𝐶 ≥ 1

to the proof with the witness {𝑏𝐶 → 0}, (2) update 𝑂1
by adding 𝑤𝐶ℓ − 𝑤𝐶𝑏𝐶 ,

(3) remove the constraint ℓ + 𝑏𝐶 ≥ 1 with the witness {𝑏𝐶 → 0}, and (4) remove

the constraint ℓ + 𝑏𝐶 ≥ 1 with witness {𝑏𝐶 → 1}. The same steps are logged for

all soft unit clauses of ℱ𝑊
1

obtained during Stage 2. In the following stages, the

preprocessor will operate on an objective-centric MaxSAT instance whose clauses

correspond exactly to the core constraints of the proof.

3. Proof Logging for MaxSAT Preprocessing 223

Stage 4: Preprocessing on the Objective-Centric Representation.

During preprocessing on the objective-centric representation, more simplifica-

tion techniques are applied to the working objective-centric instance and logged

to the proof. We implemented proof logging for a wide range of preprocess-

ing techniques. These include MaxSAT versions of rules commonly used in

SAT solving like bounded variable elimination (BVE) [EB05, SP04], bounded

variable addition [MHB13], blocked clause elimination [JBH10], subsumption

elimination, self-subsuming resolution [EB05, OGMS02], failed literal elimina-

tion [Fre95, LB01, ZM88], and equivalent literal substitution [Bra04, Li00, VG05].

We also cover MaxSAT-specific preprocessing rules like TrimMaxSAT [PRB21],

(group)-subsumed literal (or label) elimination (SLE) [BSJ16, KBSJ17], intrinsic

at-most-ones [IMM19, IBJ22], binary core removal (BCR) [Gim64, KBSJ17], label

matching [KBSJ17], and hardening [ABGL12, IBJ22, MHM12]. Here we give exam-

ples for BVE, SLE, label matching, and BCR—the rest are detailed in Appendix A.

In the following descriptions, let (𝐹, 𝑂) be the current objective-centric working

instance.

Bounded Variable Elimination (BVE) [EB05, SP04]. BVE eliminates from 𝐹 a

variable 𝑥 that does not appear in the objective by replacing all clauses in which

either 𝑥 or 𝑥 appears with the non-tautological clauses in {𝐶∨𝐷 | 𝐶∨𝑥 ∈ 𝐹, 𝐷∨𝑥 ∈
𝐹}.

An application of BVE is logged as follows: (1) each non-tautological constraint

PB(𝐶 ∨𝐷) is added by summing the existing constraints PB(𝐶 ∨ 𝑥) and PB(𝐷 ∨ 𝑥)
and saturating, after which (2) each constraint of the form PB(𝐶 ∨ 𝑥) and PB(𝐷∨ 𝑥)
is deleted with the witness 𝑥 → 1 or 𝑥 → 0, respectively.

Label Matching [KBSJ17]. Label matching allows merging pairs of objective

variables that can be deduced to not both be set to 1 by optimal solutions. Assume

that (i) 𝐹 contains the clauses 𝐶 ∨ 𝑏𝐶 and 𝐷 ∨ 𝑏𝐷 , (ii) 𝑏𝐶 and 𝑏𝐷 are objective

variables with the same coefficient 𝑤 in 𝑂, and (iii) 𝐶 ∨ 𝐷 is a tautology. Then

label matching replaces 𝑏𝐶 and 𝑏𝐷 with a fresh variable 𝑏𝐶𝐷 , i.e., replaces 𝐶 ∨ 𝑏𝐶
and 𝐷 ∨ 𝑏𝐷 with 𝐶 ∨ 𝑏𝐶𝐷 and 𝐷 ∨ 𝑏𝐶𝐷 and adds −𝑤𝑏𝐶 − 𝑤𝑏𝐷 + 𝑤𝑏𝐶𝐷 to 𝑂.

As 𝐶 ∨ 𝐷 is a tautology there is some literal ℓ such that ℓ ∈ 𝐶 and ℓ ∈ 𝐷. Label

matching is logged via the following steps: (1) introduce the constraint 𝑏𝐶 + 𝑏𝐷 ≥ 1

with the witness {𝑏𝐶 → ℓ , 𝑏𝐷 → ℓ }, (2) introduce the constraints 𝑏𝐶𝐷 + 𝑏𝐶 + 𝑏𝐷 ≥ 2

and 𝑏𝐶𝐷 + 𝑏𝐶 + 𝑏𝐷 ≥ 1 by redundance; these correspond to 𝑏𝐶𝐷 = 𝑏𝐶 + 𝑏𝐷 which

holds even though the variables are binary due to the constraint added in the first

step, (3) update the objective by adding −𝑤𝑏𝐶 − 𝑤𝑏𝐷 + 𝑤𝑏𝐶𝐷 to it, (4) introduce

the constraints PB(𝐶 ∨ 𝑏𝐶𝐷) and PB(𝐷 ∨ 𝑏𝐶𝐷)which are RUP, (5) delete PB(𝐶 ∨ 𝑏𝐶)
and PB(𝐷 ∨ 𝑏𝐷) with the witness {𝑏𝐶 → ℓ , 𝑏𝐷 → ℓ }, (6) delete the constraint

𝑏𝐶𝐷 + 𝑏𝐶 + 𝑏𝐷 ≥ 2 with the witness {𝑏𝐶 → 0, 𝑏𝐷 → 0} and 𝑏𝐶𝐷 + 𝑏𝐶 + 𝑏𝐷 ≥ 1 with

the witness {𝑏𝐶 → 1, 𝑏𝐷 → 0}, (7) delete 𝑏𝐶 + 𝑏𝐷 ≥ 1 with the witness {𝑏𝐶 → 0}.

224 Certified MaxSAT Preprocessing

Subsumed Literal Elimination (SLE) [BSJ16, IBJ22]. Given two non-objective

variables 𝑥 and 𝑦 such that (i) {𝐶 | 𝐶 ∈ 𝐹, 𝑦 ∈ 𝐶} ⊆ {𝐶 | 𝐶 ∈ 𝐹, 𝑥 ∈ 𝐶} and

(ii) {𝐶 | 𝐶 ∈ 𝐹, 𝑥 ∈ 𝐶} ⊆ {𝐶 | 𝐶 ∈ 𝐹, 𝑦 ∈ 𝐶}, subsumed literal elimination (SLE)

allows fixing 𝑥 = 1 and 𝑦 = 0. This is proven by (1) introducing 𝑥 ≥ 1 and 𝑦 ≥ 1,

both with witness {𝑥 → 1, 𝑦 → 0}, (2) simplifying the constraint database via

propagation, and (3) deleting the constraints introduced in the first step as neither

𝑥 nor 𝑦 appears in any other constraints after simplification.

If 𝑥 and 𝑦 are objective variables, the application of SLE additionally requires

that: (iii) the coefficient in the objective of 𝑥 is at most as high as the coefficient of

𝑦. Then the value of 𝑥 is not fixed as it would incur cost. Instead, only 𝑦 = 0 is

fixed and 𝑦 removed from the objective. Intuitively, conditions (i) and (ii) establish

that the values of 𝑥 and 𝑦 can always be flipped to 0 and 1, respectively, without

falsifying any clauses. If neither of the variables is in the objective, this flip does

not increase the cost of any solutions. Otherwise, condition (iii) ensures that the

flip does not make the solution worse, i.e., increase its cost.

Binary Core Removal (BCR) [Gim64, KBSJ17]. Assume that the following four

prerequisites hold: (i) 𝐹 contains a clause 𝑏𝐶 ∨ 𝑏𝐷 for two objective variables 𝑏𝐶
and 𝑏𝐷 , (ii) 𝑏𝐶 and 𝑏𝐷 have the same coefficient 𝑤 in 𝑂, (iii) the negations 𝑏𝐶
and 𝑏𝐷 do not appear in any clause of 𝐹, and (iv) both 𝑏𝐶 and 𝑏𝐷 appear in at

least one other clause of 𝐹 but not together in any other clause of 𝐹. Binary core

removal replaces all clauses containing 𝑏𝐶 or 𝑏𝐷 with the non-tautological clauses

in {𝐶 ∨ 𝐷 ∨ 𝑏𝐶𝐷 | 𝐶 ∨ 𝑏𝐶 ∈ 𝐹, 𝐷 ∨ 𝑏𝐷 ∈ 𝐹}, where 𝑏𝐶𝐷 is a fresh variable, and

modifies the objective function by adding −𝑤𝑏𝐶 − 𝑤𝑏𝐷 + 𝑤𝑏𝐶𝐷 + 𝑤 to it.

BCR is logged as a combination of the so-called intrinsic at-most-ones tech-

nique [IMM19, IBJ22] and BVE. Applying intrinsic at most ones on the variables 𝑏𝐶

and 𝑏𝐷 introduces a new clause (𝑏𝐶∨𝑏𝐷∨𝑏𝐶𝐷) and adds−𝑤𝑏𝐶−𝑤𝑏𝐷+𝑤𝑏𝐶𝐷+𝑤 to

the objective. Our proof for intrinsic at most ones is the same as the one presented

in [BBN
+
23]. As this step removes 𝑏𝐶 and 𝑏𝐷 from the objective, both can now be

eliminated via BVE.

Stage 5: Constant Removal and Output.

After objective-centric preprocessing, the final objective-centric instance (𝐹3 , 𝑂3) is
converted back to a WCNF instance. Before doing so, the constant term𝑊3 of 𝑂3

is removed by introducing a fresh variable 𝑏𝑊3
, and setting 𝐹4 = 𝐹3 ∧ (𝑏𝑊3) and

𝑂4 = 𝑂3 −𝑊3 +𝑊3𝑏
𝑊3

. This step is straightforward to prove.

Finally, the preprocessor outputs the WCNF instance ℱ𝑊
𝑃

= (𝐹4 , 𝐹𝑃
𝑆
) that

has 𝐹4
as hard clauses. the set 𝐹𝑃

𝑆
of soft clauses consists of a unit soft clause

(ℓ) of weight 𝑐 for each term 𝑐 · ℓ in 𝑂4
. The preprocessor also outputs the

final proof of the fact that the minimum-cost of solutions to the pseudo-Boolean

formula PB(𝐹0) under 𝑂0
is the same as that of PB(𝐹4) under 𝑂4

, i.e. that

opt(ObjMaxSAT(ℱ𝑊)) = opt(ObjMaxSAT(ℱ𝑊
𝑃
)).

3. Proof Logging for MaxSAT Preprocessing 225

3.2 Worked Example of Certified Preprocessing

Table 1: Example proof produced by a certifying preprocessor. The column (ID) refers to

constraint IDs in the pseudo-Boolean proof. The column (Step) indexes all proof logging

steps and is used when referring to the steps in the discussion. The letter 𝜔 is used for the

witness substitution in redundance-based strengthening steps.

Step ID Type Justification Objective
1 (1) add 𝑥1 + 𝑥2 ≥ 1 input 𝑥1 + 2𝑏1 + 3𝑏2

2 (2) add 𝑥2 ≥ 1 input 𝑥1 + 2𝑏1 + 3𝑏2

3 (3) add 𝑥3 + 𝑥4 + 𝑏1 ≥ 1 input 𝑥1 + 2𝑏1 + 3𝑏2

4 (4) add 𝑥4 + 𝑥5 + 𝑏2 ≥ 1 input 𝑥1 + 2𝑏1 + 3𝑏2

Unit propagation: fix 𝑥2 = 0, constraint (2)

5 (5) add 𝑥1 ≥ 1 (1) + (2) 𝑥1 + 2𝑏1 + 3𝑏2

6 delete (1) RUP 𝑥1 + 2𝑏1 + 3𝑏2

7 delete (2) 𝜔 : {𝑥2 → 0} 𝑥1 + 2𝑏1 + 3𝑏2

Unit propagation; fix 𝑥1 = 1, constraint (5)

8 add −𝑥1 + 1 to obj. (5) 2𝑏1 + 3𝑏2 + 1

9 delete (5) 𝜔 : {𝑥1 → 1} 2𝑏1 + 3𝑏2 + 1

BVE: eliminate 𝑥4

10 (6)

add

𝑥3 + 𝑏1 + 𝑥5 + 𝑏2 ≥ 1

(3) + (4) 2𝑏1 + 3𝑏2 + 1

11 delete (3) 𝜔 : {𝑥4 → 0} 2𝑏1 + 3𝑏2 + 1

12 delete (4) 𝜔 : {𝑥4 → 1} 2𝑏1 + 3𝑏2 + 1

Subsumed literal elimination: 𝑏2

13 (7) add 𝑏2 ≥ 1 𝜔 : {𝑏2 → 0, 𝑏1 → 1} 2𝑏1 + 3𝑏2 + 1

14 add −3𝑏2 to obj. (7) 2𝑏1 + 1

15 (8) add 𝑥3 + 𝑏1 + 𝑥5 ≥ 1 (6) + (7) 2𝑏1 + 1

16 delete (6) RUP 2𝑏1 + 1

17 delete (7) 𝜔 : {𝑏2 → 0} 2𝑏1 + 1

Remove objective constant

18 (9) add 𝑏3 ≥ 1 𝜔 : {𝑏3 → 1} 2𝑏1 + 1

19 add 𝑏3 − 1 to obj. (9) 2𝑏1 + 𝑏3

We give a worked-out example of certified preprocessing of the instance

ℱ𝑊 = (𝐹𝐻 , 𝐹𝑆) where 𝐹𝐻 = {(𝑥1 ∨ 𝑥2), (𝑥2)} and three soft clauses: (𝑥1) with

weight 1, (𝑥3 ∨ 𝑥4)with weight 2, and (𝑥4 ∨ 𝑥5)with weight 3. The proof for one

possible execution of the preprocessor on this input instance is detailed in Table 1.

During Stage 1 (Steps 1–4 in Table 1), the core constraints of the proof are

initialized to contain the four constraints corresponding to the hard and non-unit

soft clauses of ℱ𝑊
(IDs (1)–(4) in Table 1), and the objective to 𝑥1+ 2𝑏1+ 3𝑏2, where

𝑏1 and 𝑏2 are fresh variables added to the non-unit soft clauses of ℱ𝑊
.

During Stage 2 (Steps 5–9), the preprocessor fixes 𝑥2 = 0 via unit propagation

by removing 𝑥2 from the clause (𝑥1 ∨ 𝑥2), and then removing the unit clause (𝑥2).

226 Certified MaxSAT Preprocessing

The justification for fixing 𝑥2 = 0 are Steps 5–7. Next the preprocessor fixes 𝑥1 = 1

which (i) removes the hard clause (𝑥1), and (ii) increases the lower bound on the

optimal cost by 1. The justification for fixing 𝑥1 = 1 are Steps 8 and 9 of Table 1. At

this point—at the end of Stage 2—the working instance ℱ𝑊
1

= (𝐹1

𝐻
, 𝐹1

𝑆
) has 𝐹1

𝐻
= {}

and 𝐹1

𝑆
= {(𝑥3 ∨ 𝑥4), (𝑥4 ∨ 𝑥5)}.

In Stage 3, the preprocessor converts its working instance into the objective-

centric representation (𝐹, 𝑂) where 𝐹 = {(𝑥3 ∨ 𝑥4 ∨ 𝑏1), (𝑥4 ∨ 𝑥5 ∨ 𝑏2)} and 𝑂 =

2𝑏1 + 3𝑏2 + 1, which exactly matches the core constraints and objective of the proof

after Step 9. Thus, in this instance, the conversion does not result in any proof

logging steps. Afterwards, during Stage 4 (Steps 10–17), the preprocessor applies

BVE in order to eliminate 𝑥4 (Steps 10–12) and SLE to fix 𝑏2 to 0 (Steps 13–17).

Finally, Steps 18 and 19 represent Stage 5, i.e., the removal of the constant 1 from

the objective. After these steps, the preprocessor outputs the preprocessed instance

ℱ𝑊
𝑃

= (𝐹𝑃
𝐻
, 𝐹𝑃

𝑆
), where 𝐹𝑃

𝐻
= {(𝑥3 ∨ 𝑥5 ∨ 𝑏1), (𝑏3)} and 𝐹𝑃

𝑆
contains two clauses: (𝑏1)

with weight 2, and (𝑏3)with weight 1.

4 Verified Proof Checking for Preprocessing Proofs
This section presents our new workflow for formally verified, end-to-end proof

checking of MaxSAT preprocessing proofs based on pseudo-Boolean reasoning;

an overview of this workflow is shown in Figure 2. To realize this workflow, we

extended the VeriPB tool and its proof format to support a new output section

for declaring (and checking) reformulation guarantees between input and output

PBO instances (Section 4.1); we similarly modified CakePB [GMM
+
24] a verified

proof checker to support the updated proof format (Section 4.2); finally, we built a

verified frontend, CakePBwcnf, which mediates between MaxSAT WCNF instances

and PBO instances (Section 4.3). Our formalization is carried out in the HOL4

proof assistant [SN08] using CakeML tools [GMKN17, MO14, TMK
+
19] to obtain

a verified executable implementation of CakePBwcnf.

In the workflow in Figure 2, the MaxSAT preprocessor produces a reformulated

output WCNF together with a proof of equioptimality with the input WCNF. This

proof is elaborated by VeriPB and then checked by CakePBwcnf, resulting in a

verified verdict—in case of success, the input and output WCNFs are equioptimal.

This workflow also supports verified checking of WCNF MaxSAT solving proofs

(where the output parts of the flow are omitted).

4.1 Output Section for Pseudo-Boolean Proofs
Given an input PBO instance (𝐹, 𝑂), the VeriPB proof system as described in Sec-

tion 2.1 maintains the invariant that the core constraints 𝒞 (and current objective)

are equioptimal to the input instance. Utilizing this invariant, the new output

section for VeriPB proofs allows users to optionally specify an output PBO instance

(𝐹′, 𝑂′) at the end of a proof. This output instance is claimed to be a reformulation

4. Verified Proof Checking for Preprocessing Proofs 227

Input WCNF

ℱ𝑊

Preprocessor

Proof Log

Elaborated

Proof Log

VeriPB (Elab-

oration)

Output WCNF

ℱ𝑊
𝑃

WCNF-to-PB

Encoder

WCNF-to-PB

Encoder

✓ WCNFs

Equioptimal

PB-to-WCNF

Translator

Input PB Encoding

PB Verdict

PB Proof

Checker

Reformulation

Checker

Output PB

Encoding

CakePB (Backend)CakePBwcnf (Frontend)

Figure 2: Workflow for end-to-end verified MaxSAT preprocessing proof checking.

of the input which is either: (i) derivable, i.e., satisfiability of 𝐹 implies satisfiability

of 𝐹′, (ii) equisatisfiable to 𝐹, or (iii) equioptimal to (𝐹, 𝑂). These are increasingly

stronger claims about the relationship between the input and output instances.

After checking a pseudo-Boolean derivation, VeriPB runs reformulation checking

which, e.g., for equioptimality, checks that 𝒞 ⊆ 𝐹′, 𝐹′ ⊆ 𝒞, and that the respective

objective functions are syntactically equal after normalization; other reformulation

guarantees are checked analogously.

The VeriPB tool supports an elaboration mode [GMM
+
24], where in addition to

checking the proof it also converts it from augmented format to kernel format. The

augmented format contains syntactic sugar rules to facilitate proof logging for

solvers and preprocessors like MaxPre, while the kernel format is supported by

the formally verified proof checker CakePB. The new output section is passed

unchanged from augmented to kernel format during elaboration.

4.2 Verified Proof Checking for Reformulations
There are two main verification tasks involved in extending CakePB with support for

the output section. The first task is to verify soundness of all cases of reformulation

checking. Formally, the equioptimality of an input PBO instance fml, obj and its

output counterpart fml
′
, obj

′
is specified as follows:

sem_output fml obj None fml
′

obj
′ Equioptimal

def
=

∀v. (∃w. satisfies w fml ∧ eval_obj obj w ≤ v) ⇐⇒
(∃w

′. satisfies w
′

fml
′ ∧ eval_obj obj

′
w
′ ≤ v)

This definition says that, for all values v, the input instance has a satisfying

assignment with objective value less than or equal to v iff the output instance

also has such an assignment; note that this implies (as a special case) that fml is

satisfiable iff fml
′
is satisfiable. The verified correctness theorem for CakePB says

that if CakePB successfully checks a pseudo-Boolean proof in kernel format and

228 Certified MaxSAT Preprocessing

prints a verdict declaring equioptimality, then the input and output instances are

indeed equioptimal as defined in sem_output.
The second task is to develop verified optimizations to speedup proof steps

which occur frequently in preprocessing proofs; some code hotspots were also

identified by profiling the proof checker against proofs generated by MaxPre.

Similar (unverified) versions of these optimizations are also used in VeriPB. These

optimizations turned out to be necessary in practice—they mostly target steps

which, when naïvely implemented, have quadratic (or worse) time complexity in

the size of the constraint database.

Optimizing Reformulation Checking. The most expensive step in reformulation

checking for the output section is to ensure that the core constraints 𝒞 are included

in the output formula and vice versa (possibly with permutations and duplicity).

Here, CakePB normalizes all pseudo-Boolean constraints involved to a canonical

form and then copies both 𝒞 and the output formula into respective array-backed

hash tables for fast membership tests.

Optimizing Redundance and Checked Deletion Rules. A naïve implementation

of these two rules would require iterating over the entire constraints database when

checking all subproofs in (1) for the right-hand-side constraints (𝒞 ∪ 𝒟 ∪ {𝐶})↾𝜔
∪{𝑂 ≥ 𝑂 ↾𝜔}. An important observation here is that preprocessing proofs

frequently use substitutions 𝜔 that only involve a small number of variables

(often a single variable, which in addition is fresh in the important special case of

reification constraints 𝑧 ⇔ 𝐶 encoding that 𝑧 is true precisely when the constraint 𝐶
is satisfied). Consequently, most of the constraints (𝒞 ∪𝒟∪ {𝐶})↾𝜔 can be skipped

when checking redundance because they are unchanged by the substitution.

Similarly, the constraint 𝑂 ≥ 𝑂↾𝜔 is expensive to construct when the objective 𝑂
contains many terms, but this construction can be skipped if no variables being

substituted occur in 𝑂. CakePB stores a lazily-updated mapping of variables to

their occurrences in the constraint database and the objective, which it uses to

detect these cases.

The occurrence mapping just discussed is crucial for performance due to the

frequency of steps involving witnesses for preprocessing proofs, but incurs some

memory overhead in the checker. More precisely, every variable occurrence in any

constraint in the database corresponds to exactly one ID in the mapping. Thus, the

overhead of storing the mapping is in the worst case quadratic in the number of

constraints, but it is still linear in the total space usage for the constraints database.

4.3 Verified WCNF Frontend
The CakePBwcnf frontend mediates between MaxSAT WCNF problems and

pseudo-Boolean optimization problems native to CakePB. Accordingly, the cor-

rectness of CakePBwcnf is stated in terms of MaxSAT semantics, i.e., the encoding,

underlying pseudo-Boolean semantics, and proof system are all formally verified.

4. Verified Proof Checking for Preprocessing Proofs 229

sat_hard w wfml
def
= ∀C. mem (0,C) wfml⇒ sat_clause w C

weight_clause w (n,C) def
= if sat_clause w C then 0 else n

cost w wfml
def
= sum (map (weight_clause w) wfml)

opt_cost wfml
def
= if ¬∃w. sat_hard w wfml then None

else Some (minset { cost w wfml | sat_hard w wfml })

Figure 3: Formalized semantics for MaxSAT WCNF problems.

⊢ wfml_to_pbf wfml = (obj,pbf) ∧
satisfies w (set pbf)⇒
∃w
′. sat_hard w

′
wfml ∧

cost w
′

wfml ≤ eval_obj obj w

⊢ wfml_to_pbf wfml = (obj,pbf) ∧
sat_hard w wfml⇒
∃w
′. satisfies w

′ (set pbf) ∧
eval_obj obj w

′ = cost w wfml

⊢ full_encode wfml = (obj,pbf) ∧ full_encode wfml
′ = (obj

′,pbf
′) ∧

sem_output (set pbf) obj None (set pbf
′) obj

′ Equioptimal⇒
opt_cost wfml = opt_cost wfml

′

Figure 4: Correctness theorems for the WCNF-to-PB encoding.

In order to trust CakePBwcnf, one only has to carefully inspect the formal definition

of MaxSAT semantics shown in Figure 3 to make sure that it matches the informal

definition in Section 2.2. Here, each clause C is paired with a natural number

n, where n = 0 indicates a hard clause and when n > 0 it is the weight of C.

The optimal cost of a weighted CNF formula wfml is None (representing∞) if no

satisfying assignment to the hard clauses exist; otherwise, it is the minimum cost

among all satisfying assignments to the hard clauses.

There and Back Again. CakePBwcnf contains a verified WCNF-to-PB encoder

implementing the encoding described in Section 2.2. Its correctness theorems are

shown in Figure 4, where the two lemmas in the top row relate the satisfiability

and cost of the WCNF to its PB optimization counterpart after running wcnf_to_pbf
(and vice versa), see Observation 1. Using these lemmas, the final theorem (bottom

row) shows that equioptimality for two (encoded) PB optimization problems can

be translated back to equioptimality for the input and preprocessed WCNFs.

Putting Everything Together. The final verification step is to specialize the

end-to-end machine code correctness theorem for CakePB to the new frontend.

The resulting theorem for CakePBwcnf is shown abridged in Figure 5; a detailed

explanation of similar CakeML-based theorems is available elsewhere [GMM
+
24,

THM23] so we do not go into details here. Briefly, the theorem says that whenever

the verdict string “s VERIFIED OUTPUT EQUIOPTIMAL” is printed (as a suffix) to

230 Certified MaxSAT Preprocessing

⊢ cake_pb_wcnf_run cl fs mc ms⇒
∃ out err.

extract_fs fs (cake_pb_wcnf_io_events cl fs) =
Some (add_stdout (add_stderr fs err) out) ∧
(length cl = 4 ∧ isSuffix "s VERIFIED OUTPUT EQUIOPTIMAL\n" out⇒
∃wfml wfml

′.
get_fml fs (el 1 cl) = Some wfml ∧ get_fml fs (el 3 cl) = Some wfml

′ ∧
opt_cost wfml = opt_cost wfml

′)

Figure 5: Abridged final correctness theorem for CakePBwcnf.

the standard output by an execution of CakePBwcnf, then the two input files given

on the command line parsed to equioptimal MaxSAT WCNF instances.

5 Experiments
We upgraded the MaxSAT preprocessor MaxPre 2.1 [IBJ22, JBĲ23, KBSJ17] to Max-

Pre 2.2, which produces proof logs in the VeriPB format [BMM
+
23]. MaxPre 2.2 is

available at the MaxPre 2 repository [Maxa]. The generated proofs were elaborated

using VeriPB [Ver] and then checked by the verified proof checker CakePBwcnf.

As benchmarks we used the 558 weighted and 572 unweighted MaxSAT instances

from the MaxSAT Evaluation 2023 [Max23].

The experiments were conducted on 11th Gen Intel(R) Core(TM) i5-1145G7 @

2.60GHz CPUs with 16 GB of memory, a solid state drive as storage, and Rocky

Linux 8.5 as operating system. Each benchmark ran exclusively on a node and the

memory was limited to 14 GB. The time for MaxPre was limited to 300 seconds.

There is an option to let MaxPre know about this time limit, but we did not use this

option since MaxPre then decides which techniques to try based on how much

time remains. This would have made it very hard to get reliable measurements of

the overhead when proof logging is switched on in the preprocessor. The time

limits for both VeriPB and CakePBwcnf were set to 6000 seconds to get as many

instances checked as possible.

The main focus of our evaluation was the default setting of MaxPre, which

does not use some of the techniques mentioned in Section 3 (or Appendix A). We

also conducted experiments with all techniques enabled to check the correctness

of the proof logging implementation for all preprocessing techniques. The data

and source code from our experiments can be found in [IOT
+
24].

The goal of the experiments was to answer the following questions:

RQ1. How much extra time is required to write the proof for the preprocessor?

RQ2. How long does proof checking take compared to proof generation?

To answer the first question, in Figure 6 we compare MaxPre with and

without proof logging. In total, 1081 instances were successfully preprocessed by

5. Experiments 231

10−3 10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

101

102

103

timelimit

memout

tim
elim

it

m
em

o
u
t

MaxPRE without proof logging (s)

M
a
x
P
R
E

w
it
h
p
ro
o
f
lo
g
gi
n
g
(s
)

unweighted
weighted

Figure 6: Proof logging overhead for Max-

Pre.

10−3 10−2 10−1 100 101 102 103 104
10−3

10−2

10−1

100

101

102

103

104
memout

MaxPRE with proof logging (s)

V
e
r
iP

B
+

C
a
k
e
P
B

fu
ll
ch
ec
k
in
g
(s
)

unweighted
weighted

Figure 7: MaxPre vs. combined proof

checking running time.

MaxPre without proof logging. With proof logging enabled, 8 fewer instances

were preprocessed due to either time- or memory-outs. For the successfully

preprocessed instances, the geometric mean of the proof logging overhead is

46% of the running time, and 95% of the instances were preprocessed with proof

logging in at most twice the time required without proof logging.

Our comparison between proof generation and proof checking is based on the

1073 instances for which preprocessing with proof logging was successful. Out

of these, 1021 instances were successfully checked and elaborated by VeriPB. For

991 instances the verdicts were confirmed by the formally verified proof checker

CakePBwcnf, with the remaining instances being time- or memory-outs. This

shows the practical viability of our approach, as the vast majority of preprocessing

proofs were checked within the resource limits.

A scatter plot comparing the running time of MaxPre with proof logging

enabled against the combined checking process is shown in Figure 7. For the

combined checking time, we only consider the instances that have been successfully

checked by CakePBwcnf. In the geometric mean, the time for the combined verified

checking pipeline of VeriPB elaboration followed by CakePBwcnf checking is 113×
the preprocessing time of MaxPre. A general reason for this overhead is that

the preprocessor has more MaxSAT application-specific context than the pseudo-

Boolean checker, so the preprocessor can log proof steps without performing the

actual reasoning while the checker must ensure that those steps are sound in an

application-agnostic way. An example for this is reification: as the preprocessor

knows its reification variables are fresh, it can easily emit redundance steps that

witness on those variables; but the checker has to verify freshness against its

own database. Similar behaviour has been observed in other applications of

pseudo-Boolean proof logging [GMNO22, HOGN24].

232 Certified MaxSAT Preprocessing

To analyse further the causes of proof checking overhead, we also compared

VeriPB to CakePBwcnf. The checking of the elaborated kernel proof with CakePB-

wcnf is 6.7× faster than checking and elaborating the augmented proof with

VeriPB. This suggests that the bottleneck for proof checking is VeriPB; VeriPB

without elaboration is about 5.3× slower than CakePBwcnf. As elaboration is a

necessary step before running CakePBwcnf, improving the performance of VeriPB

would benefit the performance of the pipeline as a whole. One specific feature

that seems desirable would be to augment RUP rule applications with LRAT-style

hints [CHH
+
17], so that VeriPB would not need to perform unit propagation

to elaborate RUP steps to cutting planes derivations. Though these types of

engineering challenges are important to address, they are beyond the scope of the

current paper and we have to leave them as future work.

6 Conclusion
In this work, we show how to use pseudo-Boolean proof logging to certify

correctness of the MaxSAT preprocessing phase, extending previous work for the

main solving phase in unweighted model-improving solvers [VDB22] and general

core-guided solvers [BBN
+
23]. As a further strengthening of previous work, we

present a fully formally verified toolchain which provides end-to-end verification

of correctness.

In contrast to SAT solving, there is a rich variety of techniques in maximum

satisfiability solving, and it still remains to design pseudo-Boolean proof logging

methods for general, weighted, model-improving MaxSAT solvers [ES06, LP10,

PRB18] and implicit hitting set (IHS) MaxSAT solvers [DB11, DB13] with abstract

cores [BBP20]. Nevertheless, our work adds further weight to the conclusion that

pseudo-Boolean reasoning seems like a very promising foundation for MaxSAT

proof logging. We are optimistic that this work is another step on the path towards

general adoption of proof logging in the context of SAT-based optimization.

Acknowledgements
This work has been financially supported by the University of Helsinki Doctoral

Programme in Computer Science DoCS, the Research Council of Finland under

grants 342145 and 346056, the Swedish Research Council grants 2016-00782 and

2021-05165, the Independent Research Fund Denmark grant 9040-00389B, the

Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by

the Knut and Alice Wallenberg Foundation, and by A*STAR, Singapore. Part of

this work was carried out while some of the authors participated in the extended

reunion of the semester program Satisfiability: Theory, Practice, and Beyond in the

spring of 2023 at the Simons Institute for the Theory of Computing at UC Berkeley.

We also acknowledge useful discussions at the Dagstuhl workshops 22411 Theory

and Practice of SAT and Combinatorial Solving and 23261 SAT Encodings and Beyond.

A. Complete Overview of Proof Logging for MaxSAT Preprocessing 233

The computational experiments were enabled by resources provided by LUNARC

at Lund University.

Appendix A Complete Overview of Proof Logging for
MaxSAT Preprocessing

In this appendix, we provide a complete overview of proof logging for the

preprocessing techniques implemented by MaxPre. As we already presented

proof logging for bounded variable elimination, subsumed literal elimination,

label matching and binary core removal in Section 3 of the paper, we do not present

those techniques here. In addition, we do not include intrinsic at-most-ones (even

though implemented in MaxPre), as it is already discussed in [BBN
+
23].

A.1 Fixing Variables
Many of the preprocessing techniques can fix variables (or literals) to either 0 or 1.

We describe here the generic procedure that is invoked when a variable is fixed.

Assume that a preprocessing technique decides to fix ℓ = 1 for a literal ℓ . Then, in

the preprocessor, each clause 𝐶 ∨ ℓ is replaced by clause 𝐶, i.e., falsified literal ℓ is

removed. Additionally, each clause 𝐶 ∨ ℓ is removed (as they are satisfied when

ℓ = 1).

In the proof, we do the following. First, the technique that fixes ℓ = 1, ensures

that constraint ℓ ≥ 1 is in the core constraints of the proof. It may be that ℓ ≥ 1 is

already in the core constraints of the proof (i.e. instance has a unit clause (ℓ)), or it

may be that ℓ ≥ 1 needs to be introduced as a new constraint. The details on how

ℓ ≥ 1 is introduced depends on the specific technique that is fixing ℓ = 1. Now,

assuming ℓ ≥ 1 is in the core constraints, the following procedure is invoked.

(1) If ℓ or ℓ appears in the objective function, the objective function is updated.

(2) For each clause 𝐶 ∨ ℓ , the constraint PB(𝐶) is introduced as a sum of PB(𝐶 ∨ ℓ)
and ℓ ≥ 1.

(3) Each constraint PB(𝐶 ∨ ℓ) is deleted (as a RUP constraint).

(4) Finally, the core constraint ℓ ≥ 1 is deleted last with witness {ℓ → 1}.

A.2 Preprocessing on the Initial WCNF Representation
We explain the preprocessing techniques that can be applied during preprocessing

on the WCNF representation, detailing especially how the different types of clauses

are handled. The preprocessing techniques applied on the WCNF representation

only modify a clause 𝐶 by either removing a literal ℓ from 𝐶 or removing 𝐶 entirely.

With this intuition, given an input WCNF instance ℱ𝑊 = (𝐹𝐻 , 𝐹𝑆) and a working

instance ℱ𝑊
1

= (𝐹1

𝐻
, 𝐹1

𝑆
) each clause in ℱ𝑊

1
is one of the following three types:

234 Certified MaxSAT Preprocessing

(1) A hard clause 𝐶 ∈ 𝐹1

𝐻
that is a subset or equal to a hard clause 𝐶 ⊆ 𝐶orig ∈ 𝐹𝐻

of ℱ𝑊
.

(2) An originally unit soft clause, i.e., a soft clause 𝐶 ∈ 𝐹1

𝑆
that is equal to a unit soft

clause in 𝐹𝑆.

(3) An originally non-unit soft clause, i.e., 𝐶 ∈ 𝐹1

𝑆
that is a subset or equal to a

non-unit soft clause 𝐶 ⊆ 𝐶orig ∈ 𝐹𝑆 of ℱ𝑊
.

With this we next detail how the preprocessing rules permitted on the WCNF

representation are logged. In the following, we assume a fixed working WCNF

instance.

Duplicate Clause Removal.

In the paper we discussed how to log the removal of two duplicate clauses 𝐶 and

𝐷 when: (i) both are hard, or (ii) 𝐶 is hard and 𝐷 is an originally non-unit soft

clause. Here we detail the remaining cases.

Assume first that both 𝐶 and 𝐷 are originally non-unit duplicate soft clauses

with weights 𝑤𝐶
and 𝑤𝐷

, respectively. Then the proof has the core constraints

PB(𝐶 ∨ 𝑏𝐶) and PB(𝐷 ∨ 𝑏𝐷) and its objective the terms 𝑤𝐶𝑏𝐶 and 𝑤𝐷𝑏𝐷 . The

removal of 𝐷 is logged as follows.

(1) Introduce the constraints: 𝑏𝐶 + 𝑏𝐷 ≥ 1 with the witness {𝑏𝐶 → 0} and

𝑏𝐶 + 𝑏𝐷 ≥ 1, with the witness {𝑏𝐷 → 0} to the core set. These encode 𝑏𝐶 = 𝑏𝐷 .

(2) Update the objective by adding −𝑤𝐶𝑏𝐶 + 𝑤𝐶𝑏𝐷 to it, conceptually increasing

the coefficient of 𝑏𝐷 by 𝑤𝐶
.

(3) Remove the constraints introduced in step (1) using the same witnesses.

(4) Remove the (RUP) constraint PB(𝐷 ∨ 𝑏𝐶).

If 𝐶 = (ℓ) is originally a unit soft clause but 𝐷 = (ℓ) is originally a non-unit soft

clause, then the core constraints of the proof include constraint PB(ℓ ∨ 𝑏𝐷) and

the objective of the proof the terms 𝑤𝐶ℓ and 𝑤𝐷𝑏𝐷 . The removal of 𝐷 is logged

similarly to the previous case with the literal 𝑏𝐶 replaced with ℓ .
The case of two duplicate originally unit soft clauses does not require proof

logging since the corresponding terms in the objective are automatically summed.

Tautology Removal.

If a clause is a tautology, it is also a RUP clause. Thus, a tautological hard clause

is simply deleted. The removal of a tautological soft clause additionally requires

updating the objective.

More specifically, assume 𝐶 is a tautological soft clause of weight 𝑤𝐶
. Then 𝐶

is originally non-unit, so the proof has a constraint PB(𝐶 ∨ 𝑏𝐶) and its objective the

term 𝑤𝐶𝑏𝐶 . The removal of 𝐶 is logged with the following steps:

A. Complete Overview of Proof Logging for MaxSAT Preprocessing 235

(1) Delete the (RUP) constraint PB(𝐶 ∨ 𝑏𝐶).

(2) Introduce the constraint 𝑏𝐶 ≥ 1 with witness {𝑏𝐶 → 0} and move the new

constraint to the core set.

(3) Update the objective by adding −𝑤𝐶𝑏𝐶 to it.

(4) Remove the constraint introduced in step (2) with the same witness.

Unit Propagation of Hard Clauses.

If the instance contains a (hard) unit clause (𝑙), the literal 𝑙 is fixed to 1 with the

method of fixing variables described in Section A.1.

Removal of Empty Soft Clauses.

If the instance contains an empty soft clause 𝐶—either as input or as a consequence

of e.g., unit propagation—it is removed and the lower bound increased by its

weight 𝑤𝐶
. If 𝐶 was originally non-unit, the core constraints of the proof contain

the constraint 𝑏𝐶 ≥ 1 and the objective the term 𝑤𝐶𝑏𝐶 . The removal of 𝐶 is logged

by the following steps:

(1) Update the objective by adding −𝑤𝐶𝑏𝐶 + 𝑤𝐶
.

(2) Delete the constraint 𝑏𝐶 ≥ 1 with the witness {𝑏𝐶 → 1}.

If 𝐶 = (ℓ) is an originally unit soft clause the objective is updated in conjunction

with the literal ℓ getting fixed to 0, as described in Section A.1. Thus, no further

steps are required.

Blocked Clause Elimination (BCE) [JBH10].

Our implementation of BCE considers a clause 𝐶 ∨ ℓ blocked (on the literal ℓ) if for

each clause 𝐷 ∨ ℓ there is a literal ℓ ′ ∈ 𝐷 for which ℓ ′ ∈ 𝐶.

When preprocessing on the objective-centric representation, BCE considers

only literals ℓ for which neither ℓ nor ℓ appears in the objective function. During

initial WCNF preprocessing stage, there are no requirements for literal ℓ . (Notice

that whenever there is a unit clause (ℓ), 𝐶 ∨ ℓ is not blocked on the literal ℓ .)
The removal of a blocked clause is logged as the deletion of the corresponding

constraint PB(𝐶 ∨ ℓ) with the witness {ℓ → 1}. If 𝐶 ∨ ℓ is an (originally non-unit)

soft clause, the objective function is also updated exactly as with tautology removal.

Subsumption Elimination.

A clause 𝐷 is subsumed by the clause 𝐶 if 𝐶 ⊆ 𝐷. Whenever the subsuming clause

𝐶 is hard, 𝐷 is removed as a RUP clause. If 𝐷 is soft, the objective function is

updated exactly as with tautology removal.

236 Certified MaxSAT Preprocessing

A.3 Preprocessing on Objective-Centric Representation
We detail how the preprocessing techniques that are applied on the objective-

centric representation (𝐹, 𝑂) of the working instance are logged. In addition to

these, the preprocessor can also apply the techniques detailed in Section A.2.

TrimMaxSAT [PRB21].

The TrimMaxSAT technique heuristically looks for a set of literals 𝑁 s.t. every

solution 𝜌 to 𝐹 assigns each ℓ ∈ 𝑁 to 0, or more formally, 𝐹 entails the unit

clause (ℓ). All such literals are fixed by the generic procedure (recall Section A.1).

The literals to be fixed are identified by iterative calls to an (incremental) SAT

solver [ES03, MLM21] under different assumptions.

In order to log the TrimMaxSAT technique we log the proof produced by each

SAT solver call into the derived set of constraints in our PB proof. After the set

𝑁 is identified, we make |𝑁 | extra SAT calls, one for each ℓ ∈ 𝑁 . Each call is

made assuming the value of ℓ to 1. Due to the properties of TrimMaxSAT and

SAT-solvers, the result will be UNSAT, after which ℓ ≥ 1 will be RUP w.r.t to

the current set of core and derived constraints. As such it is added and moved

to core in order to invoke the generic variable fixing procedure. Finally, when

TrimMaxSAT will not be used any more, all constraints added to the derived set by

the SAT solver are removed.

Self-Subsuming Resolution (SSR) [EB05, OGMS02].

Given clauses 𝐶 ∨ 𝑙 and 𝐷 ∨ ℓ such that 𝐶 subsumes 𝐷 and ℓ is not in the objective,

SSR substitutes 𝐷 for 𝐷 ∨ ℓ . The proof has two steps: (1) Introduce PB(𝐷) as a new

RUP constraint. (2) Remove PB(𝐷 ∨ ℓ) as it is RUP.

Group-Subsumed Label Elimination (GSLE) [KBSJ17].

Let 𝑏 be an objective variable that has the coefficient 𝑐𝑏 in 𝑂, and 𝐿 a set of

objective variables such that each 𝑏𝑖 ∈ 𝐿 has coefficient 𝑐 𝑖 in 𝑂. Assume then that

(i) 𝑐𝑏 ≥ ∑
𝑏𝑖∈𝐿 𝑐

𝑖
, (ii) the negation of 𝑏 or any variables in 𝐿 do not appear in any

clauses, and (iii) {𝐶 | 𝑏 ∈ 𝐶} ⊆ {𝐷 | ∃𝑏 ∈ 𝐿 : 𝑏 ∈ 𝐷}. Then, an application of GSLE

fixes 𝑏 = 0. To prove an application of GSLE, we introduce the constraint 𝑏 ≥ 1

with the witness {𝑏 → 0, 𝑏𝑖 → 1 | 𝑏𝑖 ∈ 𝐿}, and invoke the generic variable fixing

procedure detailed in Section A.1 to fix 𝑏 = 0.

Bounded Variable Addition (BVA) [MHB13].

Consider a set of literals 𝑀lit and a set of clauses 𝑀cls ⊆ 𝐹, such that for all

ℓ ∈ 𝑀lit and 𝐶 ∈ 𝑀cls, each clause (𝐶 \ 𝑀lit ∪ {ℓ }) is either in 𝐹 or a tautology.

Then an application of BVA adds the clauses 𝑆𝑥 = {(ℓ ∨ 𝑥) | 𝑙 ∈ 𝑀lit} and

𝑆𝑥 = {(𝐶 \𝑀lit) ∪ {𝑥} | 𝐶 ∈ 𝑀cls}, and removes the clauses 𝐶 \𝑀lit.

A. Complete Overview of Proof Logging for MaxSAT Preprocessing 237

An application of BVA is logged as follows: (1) Add the constraint PB(𝐶) for

each 𝐶 ∈ 𝑆𝑥 with the witness {𝑥 → 0}. (2) Add the constraint PB(𝐶) for each

𝐶 ∈ 𝑆𝑥 with the witness {𝑥 → 1}. (3) Delete each constraint PB(𝐶) for 𝐶 ∈ 𝑀cls as

a RUP constraint.

Structure-based Labelling [KBSJ17].

Given an objective variable 𝑏 and a clause 𝐶 that is blocked on the literal ℓ , when

𝑏 = 1, an application of structure-based labelling replaces 𝐶 with 𝐶 ∨ 𝑏. The proof

is logged as follows: (1) Introduce the constraint PB(𝐶 ∨ 𝑏) that is RUP. (2) Delete

the constraint PB(𝐶)with the witness {ℓ → 1}.

Failed Literal Elimination (FLE) [Fre95, LB01, ZM88].

A literal ℓ is failed (denoted ℓ ⊢
up

⊥) if setting ℓ = 1 allows unit propagation to

derive a conflict (i.e., an empty clause). An application of FLE fixes ℓ = 0 when ℓ is

a failed literal for which ℓ is not in the objective.

In addition to standard FLE, MaxPre implements an extension that also fixes a

literal ℓ = 0 if: (i) ℓ is not in the objective function (ii) each clause in 𝐹 that contains ℓ
also contains some other literal ℓ ′ that is implied by ℓ by unit propagation (denoted

ℓ ⊢
up

ℓ ′), i.e., setting ℓ = 1 also fixes ℓ ′ = 1 after a sequence of unit propagation

steps is applied.

Logging FLE. For a failed literal ℓ the constraint ℓ ≥ 1 is RUP. For the extended

technique the constraint ℓ ≥ 1 is introduced with the witness {ℓ → 0}. Afterwards

the generic procedure for fixing literals described in Section A.1 is invoked.

Implied Literal Detection.

If both a literal ℓ1 and its negation ℓ 1 imply another literal ℓ2 by unit propagation

(i.e., propagating either ℓ = 1 or ℓ = 0 also propagates ℓ2 = 1), the preprocessor

fixes ℓ2 = 1.

As an extension to this technique, the preprocessor also fixes ℓ2 = 1 if (i) ℓ1
implies ℓ2 by unit propagation, (ii) neither ℓ1 nor ℓ2 appear in the objective function

in either polarity, and (iii) each clause containing ℓ 2 also contains some other literal

ℓ ′ that is implied by ℓ 1 by unit propagation.

Logging Implied Literals. For some intuition, note that ℓ1 ⊢
up

ℓ2 does not in

general imply ℓ 2 ⊢
up

ℓ 1. Thus, there is no guarantee that ℓ2 ≥ 1 would be RUP.

Given that ℓ1 ⊢
up

ℓ2 and ℓ 1 ⊢
up

ℓ2, the proof is instead logged as follows:

(1) Add ℓ 1 + ℓ2 ≥ 1 and ℓ1 + ℓ2 ≥ 1 that are both RUP.

238 Certified MaxSAT Preprocessing

(2) Introduce the constraint ℓ2 ≥ 1 by divide the sum of constraints introduced in

step (1) by 2. Move the new constraint to the core constraints.

(3) Delete the constraints introduced in step (1).

(4) Invoke the generic procedure detailed in Section A.1 to fix ℓ2 = 1.

The extended technique is logged by first adding the constraint ℓ1 + ℓ2 ≥ 1

with the witness {ℓ2 → 1}. For some intuition, if the constraint is falsified, the

assumptions guarantee that ℓ ′ = 1 so the value of ℓ2 can be flipped without

falsifying other constraints.

Equivalent Literal Substitution [Bra04, Li00, VG05].

If ℓ1 ⊢
up

ℓ2 and ℓ 1 ⊢
up

ℓ 2, the equivalent literal technique substitutes ℓ1 with ℓ2. As

an extension to this technique, the same substitution is applied also in cases where

the following three conditions hold: (i) ℓ1 ⊢
up

ℓ2, (ii) neither ℓ1 nor ℓ2 appear in the

objective function in either polarity, and (iii) ℓ 1 implies some other literal in each

clause containing ℓ 2 by unit propagation.

Logging Equivalent Literals. An application of equivalent literal substitution is

logged as follows.

(1) Introduce the clauses ℓ 1 + ℓ2 ≥ 1 and ℓ1 + ℓ 2 ≥ 1 as RUP. In the case of the

extended technique, ℓ1 + ℓ 2 ≥ 1 is added with the witness {ℓ2 → 0}.

(2) For each clause 𝐶 ∨ ℓ1, replace PB(𝐶 ∨ ℓ1)with PB(𝐶 ∨ ℓ2)with the RUP rule.

(3) For each clause 𝐶 ∨ ℓ 1, replace PB(𝐶 ∨ ℓ 1)with PB(𝐶 ∨ ℓ 2)with the RUP rule.

(4) If ℓ1 or ℓ 1 appear in the objective function, replace them with ℓ2 and ℓ 2,

respectively.

(5) Remove the constraints introduced in step (1).

Hardening [ABGL12, IBJ22, MHM12].

Given an upper bound𝑈𝐵 for the optimal cost of (𝐹, 𝑂) and an objective variable

𝑏 that has a coefficient 𝑤𝑏 > 𝑈𝐵 in 𝑂, hardening fixes 𝑏 = 0. Proof logging for

hardening has been previously studied in [BBN
+
23]. In [BBN

+
23], however, the

hardening is done with the presence of so-called objective-improving constraints,

i.e., constraints of form 𝑂 ≤ 𝑈𝐵 − 1, where 𝑈𝐵 is the cost of the best currently

known solution. In the context of preprocessing where the preprocessor should

provide an equioptimal instance as an output, introducing objective-improving

constraints to the instance is not possible. Instead, given a solution 𝜌 to 𝐹 with cost

𝑂(𝜌) = 𝑈𝐵 and an objective variable 𝑏 with 𝑤𝑏 > 𝑈𝐵, we introduce the constraint

𝑏 ≥ 1 with 𝜌 as the witness and then invoke the generic procedure for fixing

variables, as detailed in Section A.1.

A. Complete Overview of Proof Logging for MaxSAT Preprocessing 239

A.4 Conversion to WCNF — Renaming Variables
In the final stage of preprocessing, MaxPre converts the instance to WCNF. The

conversion removes the objective constant as described in Section 3.1 of the main

paper. Additionally, the conversion ‘renames’ (some of) the variables.

There are two reasons for renaming variables. The first is to remove any gaps

in the indexing of variables. In WCNF, variables are named with integers. During

preprocessing, some variables in the instance might have been eliminated from

the instance. At the end MaxPre compacts the range of variables to be continuous

and start from 1. The second reason for renaming variables is to sync names

between WCNF and the pseudo-Boolean proof. In the pseudo-Boolean proofs, the

naming scheme of variables is different, valid variable names include, for instance,

x1, x2, y15, _b4. When a WCNF instance is converted to a pseudo-Boolean

instance, the variable i of the WCNF instance is mapped to the variable xi of the

pseudo-Boolean instance. For 𝑗th non-unit soft clause of a WCNF instance, the

conversion introduces a variable _bj. During preprocessing, the ‘proof logger’

of MaxPre takes care of mapping MaxPre variables to correct variable names in

proof. In the end, however, MaxPre produces an output WCNF file, and at this

point, each variable i of WCNF instance should again correspond to variable xi of

proof. Thus, for example, all _b-variables are replaced with x-variables.

Logging variable naming. Assume that the instance has a set of variables 𝑉
and for each 𝑥 ∈ 𝑉 , we wish to use name 𝑓 (𝑥) instead of 𝑥 in the end. We do

proof logging for variable renaming in two phases. (1) For each 𝑥 ∈ 𝑉 , introduce

temporary variable 𝑡𝑥 , set 𝑥 = 𝑡𝑥 and then ‘move’ all the constraints and the

objective function to the temporary namespace. The original constraints and

encodings for 𝑥 = 𝑡𝑥 are then removed. (2) For each 𝑥 ∈ 𝑉 , introduce 𝑓 (𝑥) = 𝑡𝑥 ,
and ‘move’ the constraints and the objective to the final namespace. The temporary

constraints and encodings are then removed.

A.5 On Solution Reconstruction and Instances Solved During
Preprocessing

Finally, we note that while the focus of this work has been on certifying the

preservation of the costs of solutions, in practice our certified preprocessor also

allows reconstructing a minimum-cost solution to the input. More precisely,

consider an input WCNF instance ℱ𝑊
, a preprocessed instance ℱ𝑊

𝑃
, and an

optimal solution 𝜌𝑝 to ℱ𝑊
𝑃

. Then MaxPre can compute an optimal solution 𝜌 to

ℱ𝑊
in linear time with respect to the number of preprocessing steps performed.

More details can be found in [KBSJ17].

Importantly, the optimality of a reconstructed solution can be easily verified

without considering how the reconstruction is implemented in practice; given that

we have verified the equioptimality of ℱ𝑊
and ℱ𝑊

𝑃
, and that 𝜌𝑝 is an optimal

solution to ℱ𝑊
𝑃

, the optimality of reconstructed 𝜌 toℱ𝑊
can be verified by checking

240 Certified MaxSAT Preprocessing

that (i) 𝜌 indeed is a solution to ℱ𝑊
(ii) The cost of 𝜌 w.r.t. ℱ𝑊

is equivalent to the

cost of 𝜌𝑝 w.r.t. ℱ𝑊
𝑃

.

On a related note, MaxPre can actually solve some instances during preprocess-

ing, either by: (i) determining that the hard clauses do not have solutions, or (ii)

computing an optimal solution to some working instance. In practice (i) happens

by the derivation of the unsatisfiable empty (hard) clause and (ii) by the removal of

every single clause from the working instance. We have designed the preprocessor

to always terminate with an output WCNF and a proof of equioptimality rather

than producing different kinds of proofs.

If an empty hard clause is derived, the preprocessing is immediately terminated

and an output WCNF instance containing a single hard empty clause produced.

Additionally, an empty constraint 0 ≥ 1 is added to the proof and all other core

constraints deleted by the RUP rule. Notice how the proof of equioptimality

between the input and output can in this case be seen as a proof of infeasibility of

the input hard clauses.

If all clauses are removed from the working instance, MaxPRE terminates and

outputs the instance obtained after constant removal (recall Stage 5 in Section 3)

on an instance without other clauses.

References
[ABGL12] Carlos Ansótegui, María Luisa Bonet, Joel Gabàs, and Jordi Levy.

Improving SAT-based weighted MaxSAT solvers. In Proceedings of

the 18th International Conference on Principles and Practice of Constraint

Programming (CP ’12), volume 7514 of Lecture Notes in Computer

Science, pages 86–101. Springer, October 2012.

[ABM
+
11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah,

and Pascal Schweitzer. An introduction to certifying algorithms. it

- Information Technology Methoden und innovative Anwendungen der

Informatik und Informationstechnik, 53(6):287–293, December 2011.

[BBN
+
23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and

Dieter Vandesande. Certified core-guided MaxSAT solving. In

Proceedings of the 29th International Conference on Automated Deduction

(CADE-29), volume 14132 of Lecture Notes in Computer Science, pages

1–22. Springer, July 2023.

[BBP20] Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores

in implicit hitting set MaxSat solving. In Proceedings of the 23rd

International Conference on Theory and Applications of Satisfiability

Testing (SAT ’20), volume 12178 of Lecture Notes in Computer Science,

pages 277–294. Springer, July 2020.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nord-

ström. Certified dominance and symmetry breaking for com-

References 241

binatorial optimisation. Journal of Artificial Intelligence Research,

77:1539–1589, August 2023. Preliminary version in AAAI ’22.

[BHvMW21] Armin Biere, Marĳn J. H. Heule, Hans van Maaren, and Toby Walsh,

editors. Handbook of Satisfiability, volume 336 of Frontiers in Artificial

Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[Bie06] Armin Biere. Tracecheck. http://fmv.jku.at/tracecheck/, 2006.

[BJ19] Jeremias Berg and Matti Järvisalo. Unifying reasoning and core-

guided search for maximum satisfiability. In Proceedings of the 16th

European Conference on Logics in Artificial Intelligence (JELIA ’19),

volume 11468 of Lecture Notes in Computer Science, pages 287–303.

Springer, 2019.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated

testing and debugging of SAT and QBF solvers. In Proceedings of the

13th International Conference on Theory and Applications of Satisfiability

Testing (SAT ’10), volume 6175 of Lecture Notes in Computer Science,

pages 44–57. Springer, July 2010.

[BLM07] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for

Max-SAT. Artificial Intelligence, 171(8-9):606–618, 2007.

[BMM
+
23] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nord-

ström, Andy Oertel, and Yong Kiam Tan. Documentation of VeriPB

and CakePB for the SAT competition 2023. Available at https://
satcompetition.github.io/2023/checkers.html, March 2023.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT

solving. In Biere et al. [BHvMW21], chapter 7, pages 233–350.

[Bra04] Ronen I. Brafman. A simplifier for propositional formulas with many

binary clauses. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 34(1):52–59, 2004.

[BSJ16] Jeremias Berg, Paul Saikko, and Matti Järvisalo. Subsumed label

elimination for maximum satisfiability. In Proceedings of the 22nd

European Conference on Artificial Intelligence (ECAI ’16), volume 285 of

FAIA, pages 630–638. IOS Press, 2016.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the

complexity of cutting-plane proofs. Discrete Applied Mathematics,

18(1):25–38, November 1987.

[CHH
+
17] Luís Cruz-Filipe, Marĳn J. H. Heule, Warren A. Hunt Jr., Matt Kauf-

mann, and Peter Schneider-Kamp. Efficient certified RAT verification.

In Proceedings of the 26th International Conference on Automated Deduc-

tion (CADE-26), volume 10395 of Lecture Notes in Computer Science,

pages 220–236. Springer, August 2017.

http://fmv.jku.at/tracecheck/
https://satcompetition.github.io/2023/checkers.html
https://satcompetition.github.io/2023/checkers.html

242 Certified MaxSAT Preprocessing

[CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp.

Efficient certified resolution proof checking. In Proceedings of the 23rd

International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in

Computer Science, pages 118–135. Springer, April 2017.

[DB11] Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a

sequence of simpler SAT instances. In Proceedings of the 17th Interna-

tional Conference on Principles and Practice of Constraint Programming

(CP ’11), volume 6876 of Lecture Notes in Computer Science, pages

225–239. Springer, September 2011.

[DB13] Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP

solvers in MAXSAT. In Proceedings of the 16th International Conference

on Theory and Applications of Satisfiability Testing (SAT ’13), volume

7962 of Lecture Notes in Computer Science, pages 166–181. Springer,

July 2013.

[EB05] Niklas Eén and Armin Biere. Effective preprocessing in SAT through

variable and clause elimination. In Proceedings of the 8th Interna-

tional Conference on Theory and Applications of Satisfiability Testing

(SAT ’05), volume 3569 of Lecture Notes in Computer Science, pages

61–75. Springer, June 2005.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.

Justifying all differences using pseudo-Boolean reasoning. In Pro-

ceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),

pages 1486–1494, February 2020.

[ES03] Niklas Eén and Niklas Sörensson. Temporal induction by incre-

mental SAT solving. In Ofer Strichman and Armin Biere, editors,

First International Workshop on Bounded Model Checking, (BMC ’03),

volume 89 of Electronic Notes in Theoretical Computer Science, pages

543–560. Elsevier, 2003.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean

constraints into SAT. Journal on Satisfiability, Boolean Modeling and

Computation, 2(1-4):1–26, March 2006.

[FMSV20] Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals.

MaxSAT resolution and subcube sums. In Proceedings of the 23rd

International Conference on Theory and Applications of Satisfiability

Testing (SAT ’20), volume 12178 of Lecture Notes in Computer Science,

pages 295–311. Springer, July 2020.

[Fre95] Jon William Freeman. Improvements to Propositional Satisfiability Search

Algorithms. PhD thesis, University of Pennsylvania, 1995.

References 243

[Gim64] James F. Gimpel. A reduction technique for prime implicant tables. In

Proceedings of the 5th Annual Symposium on Switching Circuit Theory and

Logical Design, (SWCT ’64), pages 183–191. IEEE Computer Society,

1964.

[GMKN17] Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael

Norrish. Verified characteristic formulae for CakeML. In Proceedings

of the 26th European Symposium on Programming (ESOP ’17), volume

10201 of Lecture Notes in Computer Science, pages 584–610. Springer,

April 2017.

[GMM
+
20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström,

Patrick Prosser, and James Trimble. Certifying solvers for clique and

maximum common (connected) subgraph problems. In Proceedings of

the 26th International Conference on Principles and Practice of Constraint

Programming (CP ’20), volume 12333 of Lecture Notes in Computer

Science, pages 338–357. Springer, September 2020.

[GMM
+
24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nord-

ström, Andy Oertel, and Yong Kiam Tan. End-to-end verification

for subgraph solving. In Proceedings of the 368h AAAI Conference on

Artificial Intelligence (AAAI ’24), pages 8038–8047, February 2024.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph

isomorphism meets cutting planes: Solving with certified solutions.

In Proceedings of the 29th International Joint Conference on Artificial

Intelligence (ĲCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An au-

ditable constraint programming solver. In Proceedings of the 28th

International Conference on Principles and Practice of Constraint Pro-

gramming (CP ’22), volume 235 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel.

Certified CNF translations for pseudo-Boolean solving. In Proceed-

ings of the 25th International Conference on Theory and Applications of

Satisfiability Testing (SAT ’22), volume 236 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN03] Evgueni Goldberg and Yakov Novikov. Verification of proofs of

unsatisfiability for CNF formulas. In Proceedings of the Conference

on Design, Automation and Test in Europe (DATE ’03), pages 886–891,

March 2003.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning

efficiently using pseudo-Boolean proofs. In Proceedings of the 35th

244 Certified MaxSAT Preprocessing

AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777,

February 2021.

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms

by Using Pseudo-Boolean Reasoning. PhD thesis, Lund University,

June 2022. Available at https://portal.research.lu.se/en/
publications/certifying-correctness-for-combinatorial-
algorithms-by-using-pseu.

[HHW13a] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trim-

ming while checking clausal proofs. In Proceedings of the 13th In-

ternational Conference on Formal Methods in Computer-Aided Design

(FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marĳn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying

refutations with extended resolution. In Proceedings of the 24th

International Conference on Automated Deduction (CADE-24), volume

7898 of Lecture Notes in Computer Science, pages 345–359. Springer,

June 2013.

[HOGN24] Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nord-

ström. Certifying MIP-based presolve reductions for 0–1 integer

linear programs. In Proceedings of the 21st International Conference on

the Integration of Constraint Programming, Artificial Intelligence, and

Operations Research (CPAIOR ’24), May 2024. To appear.

[IBJ22] Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Clause redun-

dancy and preprocessing in maximum satisfiability. In Proceedings

of the 11th International Joint Conference on Automated Reasoning (Ĳ-

CAR ’22), volume 13385 of Lecture Notes in Computer Science, pages

75–94. Springer, August 2022.

[IMM19] Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2:

an efficient MaxSAT solver. Journal on Satisfiability, Boolean Modeling

and Computation, 11(1):53–64, 2019.

[IOT
+
24] Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti

Järvisalo, Magnus O. Myreen, and Jakob Nordström. Experimental

Repository for “Certified MaxSAT Preprocessing”, February 2024.

[JBH10] Matti Järvisalo, Armin Biere, and Marĳn Heule. Blocked clause

elimination. In Proceedings of the 16th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS ’10),

volume 6015 of Lecture Notes in Computer Science, pages 129–144.

Springer, 2010.

[JBĲ23] Christoph Jabs, Jeremias Berg, Hannes Ihalainen, and Matti Järvisalo.

Preprocessing in SAT-based multi-objective combinatorial optimiza-

tion. In Proceedings of the 29th International Conference on Principles

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu

References 245

and Practice of Constraint Programming (CP ’23), volume 280 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 18:1–18:20, 2023.

[KBSJ17] Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo.

MaxPre: An extended MaxSAT preprocessor. In Proceedings of the

20th International Conference on Theory and Applications of Satisfiability

Testing (SAT ’17), volume 10491 of Lecture Notes in Computer Science,

pages 449–456. Springer, 2017.

[LB01] Daniel Le Berre. Exploiting the real power of unit propagation

lookahead. Electronic Notes in Discrete Mathematics, 9:59–80, 2001.

[Li00] Chu Min Li. Integrating equivalency reasoning into Davis-Putnam

procedure. In Proceedings of the 17th National Conference on Artificial

Intelligence and 12th Conference on Innovative Applications of Artificial

Intelligence, pages 291–296. AAAI Press / The MIT Press, 2000.

[LNOR11] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric

Rodríguez-Carbonell. A framework for certified Boolean branch-

and-bound optimization. Journal of Automated Reasoning, 46(1):81–102,

2011.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2.

Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64,

July 2010.

[Maxa] MaxPre 2 : MaxSAT preprocessor. https://bitbucket.org/
coreo-group/maxpre2.

[Maxb] MaxSAT evaluations: Evaluating the state of the art in maximum

satisfiability solver technology. https://maxsat-evaluations.
github.io/.

[Max23] MaxSAT evaluation 2023. https://maxsat-evaluations.github.
io/2023, July 2023.

[MHB13] Norbert Manthey, Marĳn J. H. Heule, and Armin Biere. Automated

reencoding of Boolean formulas. In 8th International Haifa Verification

Conference (HVC ’12), Revised Selected Papers, volume 7857 of Lecture

Notes in Computer Science, pages 102–117. Springer, 2013.

[MHM12] António Morgado, Federico Heras, and João Marques-Silva. Improve-

ments to core-guided binary search for MaxSAT. In Proceedings of the

15th International Conference on Theory and Applications of Satisfiability

Testing (SAT ’12), volume 7317 of Lecture Notes in Computer Science,

pages 284–297. Springer, 2012.

https://bitbucket.org/coreo-group/maxpre2
https://bitbucket.org/coreo-group/maxpre2
https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/2023
https://maxsat-evaluations.github.io/2023

246 Certified MaxSAT Preprocessing

[MIB
+
19] António Morgado, Alexey Ignatiev, María Luisa Bonet, João P.

Marques-Silva, and Samuel R. Buss. DRMaxSAT with MaxHS:

First contact. In Proceedings of the 22nd International Conference on

Theory and Applications of Satisfiability Testing (SAT ’19), volume 11628

of Lecture Notes in Computer Science, pages 239–249. Springer, July

2019.

[MLM21] João Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven

clause learning SAT solvers. In Armin Biere, Marĳn Heule, Hans

van Maaren, and Toby Walsh, editors, Handbook of Satisfiability -

Second Edition, volume 336 of Frontiers in Artificial Intelligence and

Applications, pages 133–182. IOS Press, 2021.

[MM11] António Morgado and João Marques-Silva. On validating Boolean

optimizers. In Proceedings of the 23rd IEEE International Conference on

Tools with Artificial Intelligence, (ICTAI ’11), pages 924–926, 2011.

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart

extensional constraints. In Proceedings of the 29th International Con-

ference on Principles and Practice of Constraint Programming (CP ’23),

volume 280 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 26:1–26:17, August 2023.

[MMN24] Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof

logging for the circuit constraint. In Proceedings of the 21st Interna-

tional Conference on the Integration of Constraint Programming, Artificial

Intelligence, and Operations Research (CPAIOR ’24), May 2024. To

appear.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pas-

cal Schweitzer. Certifying algorithms. Computer Science Review,

5(2):119–161, May 2011.

[MO14] Magnus O. Myreen and Scott Owens. Proof-producing translation

of higher-order logic into pure and stateful ML. Journal of Functional

Programming, 24(2–3):284–315, January 2014.

[OGMS02] Richard Ostrowski, Éric Grégoire, Bertrand Mazure, and Lakhdar

Sais. Recovering and exploiting structural knowledge from CNF

formulas. In Proceedings of the 8th International Conference on Principles

and Practice of Constraint Programming (CP ’02), volume 2470 of Lecture

Notes in Computer Science, pages 185–199. Springer, 2002.

[PCH20] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Towards

bridging the gap between SAT and Max-SAT refutations. In Proceed-

ings of the 32nd IEEE International Conference on Tools with Artificial

Intelligence (ICTAI ’20), pages 137–144, November 2020.

References 247

[PCH21] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. A proof

builder for Max-SAT. In Proceedings of the 24th International Conference

on Theory and Applications of Satisfiability Testing (SAT ’21), volume

12831 of Lecture Notes in Computer Science, pages 488–498. Springer,

July 2021.

[PCH22] Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Proofs

and certificates for Max-SAT. Journal of Artificial Intelligence Research,

75:1373–1400, December 2022.

[PRB18] Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic polynomial

watchdog encoding for solving weighted MaxSAT. In Proceedings of

the 21st International Conference on Theory and Applications of Satisfi-

ability Testing (SAT ’18), volume 10929 of Lecture Notes in Computer

Science, pages 37–53. Springer, July 2018.

[PRB21] Tobias Paxian, Pascal Raiola, and Bernd Becker. On preprocessing for

weighted MaxSAT. In Proceedings of the 22nd International Conference

on Verification, Model Checking, and Abstract Interpretation, (VMCAI ’21),

volume 12597 of Lecture Notes in Computer Science, pages 556–577.

Springer, 2021.

[SAT] The International SAT Competitions web page. http://www.
satcompetition.org.

[SN08] Konrad Slind and Michael Norrish. A brief overview of HOL4. In

Proceedings of the 21st International Conference on Theorem Proving in

Higher Order Logics (TPHOLs ’08), volume 5170 of Lecture Notes in

Computer Science, pages 28–32. Springer, August 2008.

[SP04] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. NiVER: Non-

increasing variable elimination resolution for preprocessing SAT

instances. In Proceedings of the 7th International Conference on Theory

and Applications of Satisfiability Testing (SAT ’04), volume 3542 of

Lecture Notes in Computer Science, pages 276–291. Springer, 2004.

[THM23] Yong Kiam Tan, Marĳn J. H. Heule, and Magnus O. Myreen. Verified

propagation redundancy and compositional UNSAT checking in

CakeML. International Journal on Software Tools for Technology Transfer,

25:167–184, February 2023. Preliminary version in TACAS ’21.

[TMK
+
19] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony

C. J. Fox, Scott Owens, and Michael Norrish. The verified CakeML

compiler backend. Journal of Functional Programming, 29:e2:1–e2:57,

February 2019.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb:

A certified MaxSAT solver. In Proceedings of the 16th International

http://www.satcompetition.org
http://www.satcompetition.org

248 Certified MaxSAT Preprocessing

Conference on Logic Programming and Non-monotonic Reasoning (LP-

NMR ’22), volume 13416 of Lecture Notes in Computer Science, pages

429–442. Springer, September 2022.

[Ver] VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/
MIAOresearch/software/VeriPB.

[VG05] Allen Van Gelder. Toward leaner binary-clause reasoning in a

satisfiability solver. Annals of Mathematics and Artificial Intelligence,

43(1):239–253, 2005.

[WHH14] Nathan Wetzler, Marĳn J. H. Heule, and Warren A. Hunt Jr. DRAT-

trim: Efficient checking and trimming using expressive clausal

proofs. In Proceedings of the 17th International Conference on Theory and

Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture

Notes in Computer Science, pages 422–429. Springer, July 2014.

[ZM88] Ramin Zabih and David A. McAllester. A rearrangement search

strategy for determining propositional satisfiability. In Proceedings of

the 7th National Conference on Artificial Intelligence (AAAI ’88), pages

155–160. AAAI Press / The MIT Press, 1988.

https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB

	Abstract
	Contribution Statement
	Acknowledgements
	Certifying Combinatorial Optimization Using Pseudo-Boolean Reasoning
	Introduction
	Background
	Basic Notation
	Combinatorial Optimization
	Boolean Satisfiability (SAT)
	Maximum Satisfiability
	Pseudo-Boolean Optimization
	Preprocessing

	Proof Complexity Proof Systems
	Certifying Algorithms
	Certifying Algorithms for SAT

	Related Work
	Pseudo-Boolean Certificates
	Motivation
	Our Pseudo-Boolean Proof System
	Rules from Previous Work
	Extensions to the System by This Thesis

	Pseudo-Boolean Proof Checking Tool

	Main Results of This Thesis
	Summary of Paper I
	Summary of Paper II
	Summary of Paper III
	Summary of Paper IV
	Summary of Paper V
	Summary of Paper VI
	Further Contributions Outside Included Papers

	Conclusions and Future Work
	Short Term Future Work
	Long Term Future Work

	References

	Included Papers
	Certified CNF Translations for Pseudo-Boolean Solving
	Introduction
	Preliminaries
	Certified CNF Translation Using the Sequential Counter Encoding
	A General Framework for Certifying CNF Translations
	Certifying the Binary Adder Network Encoding
	Certifying the Totalizer and Generalized Totalizer Encodings
	Experimental Evaluation
	Benchmarks
	End-to-End Solving and Verification
	Translation and Verification
	Overhead of Proof Logging
	Comparison with PB Solvers
	Certifying MaxSAT Optimal Values

	Concluding Remarks
	References

	Certified Core-Guided MaxSAT Solving
	Introduction
	Previous Work
	Our Contributions
	Outline of This Paper

	Preliminaries
	The OLL Algorithm for Core-Guided MaxSAT Solving
	Proof Logging for the OLL Algorithm for MaxSAT
	Experimental Evaluation
	Concluding Remarks
	References

	Certifying Without Loss of Generality Reasoning in SIS for MaxSAT
	Introduction
	Preliminaries
	The Dynamic Polynomial Watchdog Encoding for SIS
	Initialization
	Coarse Convergence Phase
	Fine Convergence Phase
	Stratification

	 Certifying Solution-Improving MaxSAT with the DPW Encoding
	Proof Logging for Clauses of the DPW Encoding
	Proofs Without Loss of Generality Using Shadow Circuits
	Stratification
	Limiting the Use of Shadow Circuits
	Discussion of an Even Simpler Approach and Why It Does Not Work

	Experimental Evaluation
	Conclusion
	Appendix Formalization of the Proof Logging of SIS with the DPW
	Coarse Convergence
	Fine Convergence
	Conclusion of Optimality

	Appendix Proof Logging of Additional Techniques Implemented in Pacose
	TrimMaxSAT
	Hardening

	Appendix Additional Experimental Evaluation
	Binary Adder Encoding and Encoding Selection Heuristic
	Coarse Convergence with Assumptions Instead of UnitClauses
	Proof Logging Overhead Analysis

	References

	Certifying MIP-Based Presolve Reductions for 0–1 ILP
	Introduction
	Pseudo-Boolean Proof Logging with VeriPB
	Pseudo-Boolean Reasoning with the Cutting Planes Method
	A New Rule for Objective Function Updates

	Certifying Presolve Reductions
	General Techniques
	Primal Reductions
	Dual Reductions
	Example

	Computational Study
	Experimental Setup
	Overhead of Proof Logging
	Verification Performance on Presolve Certificates
	Performance Analysis on Constraint Propagation

	Conclusion
	References

	End-to-End Verification for Subgraph Solving
	Introduction
	Our Contribution
	Comparison to Related Work
	Outline of This Paper

	Preliminaries
	Formally Verified Graph Proof Checkers
	Verified Pseudo-Boolean Proof Checking
	Verified Graph Problem Encoders
	End-to-End Verification

	Proof Elaboration
	Lining up Encodings
	Elaborating on Syntactic Sugar

	Experiments
	Conclusion
	References

	Certified MaxSAT Preprocessing
	Introduction
	Previous Work
	Our Contribution
	Organization of This Paper

	Preliminaries
	Pseudo-Boolean Proof Logging Using Cutting Planes
	Maximum Satisfiability

	Proof Logging for MaxSAT Preprocessing
	Overview
	Worked Example of Certified Preprocessing

	Verified Proof Checking for Preprocessing Proofs
	Output Section for Pseudo-Boolean Proofs
	Verified Proof Checking for Reformulations
	Verified WCNF Frontend

	Experiments
	Conclusion
	Appendix Complete Overview of Proof Logging for MaxSAT Preprocessing
	Fixing Variables
	Preprocessing on the Initial WCNF Representation
	Preprocessing on Objective-Centric Representation
	Conversion to WCNF — Renaming Variables
	On Solution Reconstruction and Instances Solved During Preprocessing

	References

