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Abstract

Combinatorial optimization provides a powerful framework for solving complex
optimization problems with general-purpose solvers by modelling the problem in
an abstract language. Due to breakthroughs in algorithms to solve combinatorial
optimization problems in last decades, combinatorial optimization has become a
valid approach to solve many real world problems efficiently. Key application areas
are planning, scheduling, computer-aided design, verification, and even theorem
proving. However, the efficiency of the tools to solve these problems comes at the
cost of increased complexity of the solvers. This makes it difficult to trust that the
result computed by a combinatorial optimization solver is correct, which especially
becomes a concern if the correctness of the result is mission-critical.

The main approach to address this issue is certifying algorithms, where an
algorithm has to also generate a certificate that its result is correct, which can
then be checked independently. This thesis demonstrates how pseudo-Boolean
reasoning can be used to provide efficient certification of results returned by
different kinds of combinatorial optimization solvers. We present a unified
multipurpose certification system with a formally verified end-to-end verification
toolchain, which guarantees that the combinatorial optimization problem was
solved correctly. Developing a multipurpose certification system distinguishes
this work from any prior work, which predominantly focused on very specialized
approaches. We also present certification for many algorithms which, prior to our
work, lacked any approach for certifying their result.
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1 Introduction

In the last couple of decades, combinatorial optimization solvers have been vastly
improved across all paradigms and are able to solve very large optimization
problems efficiently. This revolution led to combinatorial optimization solvers
of all paradigms being used for many commercial and academic applications.
For instance, Boolean satisfiability (SAT) and maximum Boolean satisfiability
(MaxSAT) solving [BHVMW?21] are used for, e.g., hardware verification [BCCZ99],
in chip design [CNR21], or to prove theorems [HKM16, SH23]. Constraint pro-
gramming (CP) [RvBWO6] is used for solving, e.g., personnel allocation and
timetabling [Wal96], power plant production planning [BBVC13], and sports
league scheduling [Wei25]. Mixed integer programming (MIP) [AW13] is used for,
e.g., supply chain optimization [GGK*19], public transport planning [S*20], and
investment portfolio optimization [MOS15].

However, the improved performance of solvers comes at the cost of complexity
by using more sophisticated and specialized reasoning techniques. This complexity
naturally raises the question if modern combinatorial solvers are implemented
correctly. Correctness is especially crucial when combinatorial optimization solvers
are used to solve mission-critical problems, like for ambulance dispatch [Sch12],
kidney exchange programs [MO12], or air traffic control [HPRS24]. Specifically,
it well-know that combinatorial optimization solvers for all paradigms and of
different levels of maturity contain bugs and can return incorrect results [BLB10,
CKSW13, AGJ*18, GSD19, GS19, BBN*23, PB23, WS24]. Since mature solvers
where many people reviewed the code contain bugs, it is even harder to believe
that new cutting edge techniques are implemented correctly. To mitigate this issue
the following approaches are known in software engineering.

The most used approach in software engineering is testing, where a program is
checked to give the correct output given a specific input [MSB11]. However, this
approach is limited to known pairs of input and output, which can be generated
manually or automatically, e.g., by fuzzing [MKL*95, ZWCX22, PB23]. Considering
the number of found bugs, the most successful approach for testing in combinatorial
optimization is fuzzing with a structured way to generate instances that triggers the
use of all possible techniques and their interaction in the solver [ABS13, PB23]. To
conclude, testing can only show the existence of a fault, but there are no guarantees
on the correctness of the software.

The other extreme is formal verification of software by formally specifying the
behaviour of the program and proving that the implementation adheres to this
specification [HT15]. This approach fully guarantees that the software adheres
to the specification, but the effort involved in formally verifying a program is
huge and does not scale to the size and complexity of modern solvers. The most
advanced formally verified solver is the SAT solver IsaSAT [FL23], which performs
significantly worse than any other modern solver and SAT solving is the least
complex combinatorial optimization paradigm.

The approach of certifying algorithms [MMNS11], which we will focus on in this
thesis, provides a good middle ground between testing and formal verification.
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The idea of certifying algorithms is that an algorithm not just returns an output, but
also a certificate that shows that the output is correct. Using the certificate, it should
be easy to verify that the output is correct for the given input to the algorithm.
Hence, with certifying algorithms we do not need to trust the implementation
or algorithm to trust that the output is correct. We only need to trust a simpler
algorithm that checks that the output is correct using the certificate, which is
typically simple enough so that this implementation can be formally verified to be
correct. Therefore, we obtain the guarantee that the output is correct for the given
input, which is actually the main guarantee that is usually interesting, since we
just want to know that our problem was solved correctly.

While certifying algorithms existed already in the form of the extended Eu-
clidean algorithm [MMNS11] and primal-dual optimization algorithms [Far02], on
a large scale certifying algorithms were first explored in the LEDA project{MN89,
MN95]. The term certifying algorithms was first used by Kratsch et al. [KMMS06].
In combinatorial optimization, certifying algorithms are becoming increasingly
popular in many paradigm [BFT11, CGS17, VS10]. Especially in the community of
SAT solving, certifying algorithms became so mainstream that since 2013 all solvers
competing in the main track of the annual SAT competition require certification.
This interest and the proximity to the theory of proof complexity [BN21] led
to many certification systems for SAT solving [Heu21], like RUP [GN03, Van08],
DRAT [JHB12], FRAT [BCH21], PR [HKB17], and SR [BT21].

In this thesis, we are studying and extend a certification system based on
pseudo-Boolean reasoning called VeEriIPB [BGMN23, GN21, Goc22]. VEriPB is
inspired by the success of certification in SAT solving and is based on the cutting
planes proof system [CCT87] from the theory of proof complexity [BN21]. This
thesis extends the VERIPB system from the certification of decision problems to
optimization problems by introducing new rules that capture the reasoning in
optimization solvers and making it possible to certify bounds on the optimal value.
This thesis also shows how to certify problem reformulations independent of
solving using VERIPB, where it is possible to certify various guarantees on the
reformulated problem in relation to the original problem. Finally, to provide
formal guarantees that output is correct, we develop a framework for formally
verified certificate checkers called CakePB, which makes it easy to get formally
verified checkers for different combinatorial optimization paradigms.

This thesis makes progress towards the development of a general certi-
fication framework for all combinatorial optimization paradigms using one
unified multipurpose system. Specifically, this thesis shows that VErIPB can
be used to obtain certification for various algorithms to solve MaxSAT, sub-
graph solving algorithms, and preprocessing and presolving techniques for
MaxSAT and 0-1 integer linear programming. Additionally, in related work
it has been shown how to use VEerIPB for certification of advanced SAT solv-
ing techniques [GN21, BGMN23], dynamic programming algorithms [DMM™*24],
constraint programming solvers [EGMN20, GMN22, MM23, MMN24, MM25],
automated planning [DHN*25], and pseudo-Boolean optimization [KLM*25]. It
has also been proposed to extend the VErIPB certification system to fully support
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certification of mixed integer programming [DEGH23], which would directly
enable certification for any kind of combinatorial optimization.

The first part of this thesis is a comprehensive summary of the work (the
so-called kappa), which is structured as follows. In Section 2, background for the
topics discussed in this thesis is introduced. This includes a review of different
combinatorial optimization paradigms and an introduction to certifying algorithm.
In Section 3, related work is reviewed that also studies certifying algorithms for
combinatorial optimization. The pseudo-Boolean certification system that we
study to certify combinatorial optimization algorithms is presented in Section 4
and is a full description of the certification system including all contributions by
this thesis. In Section 5, the contributions of this thesis are discussed in detail. The
introduction of the thesis ends with some concluding remarks and future work in
Section 6. The second part of this thesis consists of included papers.

2 Background

This section introduces the necessary preliminaries required to understand this
thesis together with the used notation. Itis assumed the reader has basic knowledge
in Theoretical Computer Science, including basic computational complexity, logic,
and graph theory. For additional background on computational complexity and
logic see [AB16] and for some background on graph theory see [Diel6].

2.1 Basic Notation

It follows some review of standard logic notation, which can be found, e.g.,
in [AB16]. We use T to denote true (tautology) and L to denote false (contradiction).
The symbol A denotes a logical conjunction, V a logical disjunction, = a material
implication, and < a material equivalence. A Boolean variable is a variable with
domain {1, T}, where often L is associated with 0 and T with 1. A literal of a
Boolean variable x is either the Boolean variable itself x or its negation x or also —x.

2.2 Combinatorial Optimization

We will start this section with a review of standard notation and definitions that
will be used throughout this thesis, which can be found in, e.g., [Sau24, BN21].
For more history on combinatorial optimization, see [Sch05].

The goal of mathematical optimization is to find an optimal element in a set of
feasible elements [Sau24]. A combinatorial optimization problem is a special case
of mathematical optimization problem where the feasible elements are (at least
partially) from a discrete set. While most of the definitions can be extended to
arbitrary sets, in this thesis we only consider Boolean optimization problems (aka 0-1
optimization problems), i.e., the feasible elements are from a subset of {0, 1}". The
optimal value is usually defined by an objective function mapping an element from
the set to a numerical value that without loss of generality should be minimized,
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hence for this thesis the objective function f : {0, 1}" — Z should be minimized.
A constraint to be a function C : {0,1}" — {L, T}. The set of feasible elements
is further restricted by a set of constraints so that an element is feasible if and
only if all constraints evaluated on this element return T, i.e., the conjunction of
all constraints evaluates to T. A trivial constraint maps to T for any input and a
contradictory constraint maps to L for any input.

A decision problem is a special case of an optimization problem where we are only
interested in knowing if there is a feasible element with respect to the constraint.
Hence, the objective function can be viewed as being constant, e.g., f : ¥ = 0.

Each dimension of the feasible set {0, 1}" is associated with a Boolean variable.
For a set of constraint F or an objective f, we use the notation F(X) or f(¥) to
stress that F or f is defined over the vector of Boolean variables X = x1,..., Xy,
respectively. We syntactically highlight a partitioning of the vector of Boolean
variables by writing F(/, Z) or F(d, b, ¢) meaning X = j,Zorx =4, b, ¢, respectively.

A (partial) assignment p is a (partial) function from variables to {L, T}. A
substitution w is a generalization of an assignment by allowing variables to map
to literals. Hence, we consider a (partial) assignment to be a special case of a
substitution, where all unassigned variables map to themselves. Substitutions are
extended to literals by defining for the negation of a variable that w(x) = —w(x),
and to preserve truth values, i.e.,, w(0) = 0 and w(1) = 1. When denoting a
substitution, then all variables that are not explicitly mentioned are mapped to
themselves, e.g., the substitution {x — ¥,z > 0} maps x to ¥, z to 0, and all other
variables to themselves.

For a list of variables ¥ = x1, ..., x, and a substitution w, we define that w(¥) =
w(x1),...,w(x,). A substitution @ can be composed with another substitution w by
applying w first and then ¢, i.e., (@ 0 w)(X) = a(w(X)). We can apply a substitution
w to a constraint C(X), which is denoted by C(¥)[, or Cly, by first applying w
on ¥ and then evaluating C on w(¥), i.e., every variable x; of C is substituted by
w(x;). A substitution w satisfies a constraint C if C[,, is trivial and falsifies C if C[,,
is contradictory.

There are many paradigms of combinatorial optimization that have been
studied, where each paradigm restricts the combinatorial optimization problem in
some way or takes a different view on how the constraints are formulated. Some
key paradigms that are relevant for this thesis are introduced in the rest of this
section.

2.2.1 Boolean Satisfiability (SAT)

The Boolean satisfiability (SAT) problem is one of the core decision problems in
computer science [BHvMW21] and is the canonical NP-complete problem [Co071,
Lev?73]. To define the SAT problem we need some further notation. A (disjunctive)
clause is a logical disjunction of literal, e.g., x V ¥ V z, which is the type of
constraint considered for the SAT problem. Without loss of generality, a Boolean
formula is in conjunctive normal form (CNF), which is a conjunction of clauses, e.g.,

xVYHAERVY)AEXVY).
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The SAT problem is a decision problem that asks if there exists an assignment
that satisfies a Boolean formula. If there exists such an assignment, then the
formula is said to be satisfiable. If there does not exist such an assignment, then the
formula is said to be unsatisfiable.

The SAT problem can also be phrased in terms of a combinatorial decision
problem. An element for in a SAT problem is an assignment, the constraints are the
clauses, and we want to find an assignment that satisfies all clauses. We can also
additionally associate the truth value L with 0 and T with 1 so that the considered
elements are in {0, 1}".

At the core of all modern SAT solving algorithms conflict-driven clause learning
(CDCL) is used, which is enhanced with techniques for pre- and inprocessing,
which are discussed in Section 2.2.4. We will briefly review the CDCL algorithm
presented in Algorithm 1, where more detail about the components can be found
in [MSLM21].

One subroutine of the CDCL algorithm is unit propagation. Given a partial
assignment p, a clause C unit propagates the literal ¢ if all literals except ¢ are
mapped to L by p. Then the resulting assignment is p o {£ = T}. The first step in
the CDCL loop is to do unit propagation on the clauses in F starting with the partial
assignment p. If the current assignment p satisfies the formula, then the formula
is satisfiable. Otherwise, we check if there is a clause that is falsified by p. If there
is no such clause, we assign an unassigned variable to a value. Otherwise, we
learn a new clause based on the propagations and decisions that were responsible
to falsify the clause, which is called conflict analysis. If the learnt clause is the
empty clause, then we know that the formula is unsatisfiable, as the empty clause
cannot be satisfied by any assignment. Otherwise, the learnt clause is added to the
formula and some variables are unassigned, which is called backjumping.

2.2.2 Maximum Satisfiability

The canonical extension of the SAT problem to an optimization problem is the
maximum satisfiability (MaxSAT) problem [BJM21]. Given a set of (weighted) soft
clauses and a set of hard clauses, the MaxSAT problem asks for an assignment that
maximizes the sum of the weights of satisfied soft clauses subject to satisfying all
hard clauses. In practice, the MaxSAT problem is more commonly formulated
as finding an assignment that minimizes an integer linear function over literals
f subject to satisfying all clauses, where L and T are associated with 0 and 1,
respectively. Without loss of generality, all coefficients in the objective function f
are assumed to be positive by using that x = 1 — x. Hence, we will assume for the
rest of the thesis that a MaxSAT problem is given in the latter formulation.

These two formulations can be translated into each other such that each
solution to one problem is also a solution to the other problem with the same
objective function value. The translation from the second to the first formulation is
straightforward by considering all constraints as hard clauses and for each term
in the objective function the negated literal is added as a soft clause weighted
by the coefficient of the term. The negated literal changes the problem from a
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Algorithm 1: Basic skeleton of the conflict-driven clause learning algo-
rithm, which is the core algorithm of modern SAT solvers. The input is a
Boolean formula F in CNF and the output is if F is satisfiable or not.

1 conflictDrivenClauseLearning(F):
2 p—0;

3 Loop

4 p < unitPropagation(F, p);

5 | if p satisfies F then

6 L return SAT;

7 | if p falsifies a clause in F then

8 C « conflictAnalysis(F, p);
9 if C is the empty clause then
10 L return UNSAT;

11 F«+— FUC;

12 p « backjump();

13 else

14 | p « decideVariable();

minimization problem to a maximization problem. To translate the first to the
second formulation, we add a new variable b; for each soft clause C; with weight
w; and add b; V C; to the hard clause. Then the resulting hard clauses are the
constraints and the objective is > ; w;b;.

There are several state-of-the-art solving techniques for MaxSAT that are based
on SAT solvers. The most straightforward algorithm to solve MaxSAT is solution-
improving search (SIS) [ES06, PRB18], which is outlined in Algorithm 2. The idea
is to solve the constraints using a SAT solver. If there is a solution, then we
compute the objective value for this solution and add clauses to the constraints
which enforce to find a solution that has a strictly better objective value. Then
we repeat to solve this problem with a SAT solver until the SAT solver returns
that the constraints is unsatisfiable, which means that the best solution found
so far is the optimal value. There are various encodings known to enforce a
strictly better solution [War98, BB03, ES06, JMM15, PRB18]. An incremental SAT
solvers [ES03] reuses information from previous calls to the solver and can be called
with so-called assumptions, which is a partial assignment that should be extended
to a full assignment by the solver. Such a solver helps to speed up SIS MaxSAT
solvers and allows efficient encodings that only change the used assumptions from
one call to the next.

Incremental SAT solvers also make core-guided MaxSAT solvers [MDM14, IB]J21]
possible. Another feature of incremental SAT solvers is that if the assumptions
cannot be extended to a complete solution, then the solver returns a subset of the
variables assigned in the assumptions where at least one variable should be set
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Algorithm 2: Basic skeleton of the solution-improving search algorithm
to solve the MaxSAT problem with objective f and Boolean formula F in
CNF. The output is the optimal value of the MaxSAT problem, where the
optimal value co means that F is unsatisfiable.

1 solutionlmprovingSearch(F, f):
2 UV« 00;
3 Loop
(sat?, p) « solveSAT(F);
if sat? = UNSAT then

L return v;

v f(p);
F « FUasCNF(f <v-—-1);

® 3 N Ul

to the opposite value to satisfy the formula. This subset {1, ..., ¢} is a so-called
core and expresses a clause {1 V --- V ¢, that is satisfied if at least on variable is
assigned to the opposite value than used in the assumptions. We will focus on the
state-of-the-art OLL algorithm [AKMS12, MDM14] to handle the core clause, but
there are other algorithms like PMREes [NB14] that differentiate on how they treat
the core clause. A general skeleton of the core-guided algorithm to solve MaxSAT
is outlined in Algorithm 3, where we use lits(f) to denote the set of literals in the
objective.

The OLL algorithm first calls the SAT solver with the assumptions that set
every literal in the objective to L, which is the partial assignment that leads to the
smallest possible objective value. If SAT solver is able to extend these assumptions
to a complete assignment that satisfies all constraints, then we found an optimal
solution, as the assumptions enforce the smallest possible objective value that can
be achieved with this objective. If the SAT solver is not able to do this, it will return
a core clause C. We say that the weight w(C, f) of a core C is the smallest coefficient
of a literal in C in the objective f. We will introduce as many new variables
c1,...,Ccy as there are literals in C and add clauses enforcing that ¢; & ; 6; > i
fori=1,...,n,ie., c;is true if at least i literals of C are true. There is now an
equivalence between /; literals and c; variables, so that } ; {; = }}; ¢;, which can be
used to substitute the expression Y,; w(C, f){; in f by >;; w(C, f)c; resulting in the
reformulated objective fs. This process is then repeated with the reformulated
problem.

There are many other approaches used to solve MaxSAT, which are not of
interest for this thesis. Additional approaches to solve MaxSAT using incremental
SAT solvers are implicit hitting set (IHS) search [DB13] or branch and bound MaxSAT
solvers [AH14, LXC*21]. Furthermore, there are approaches that do not rely on
SAT solvers at all to solve the MaxSAT problem like integer-linear programming (ILP)
solvers [ Ach07].
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Algorithm 3: Basic skeleton of the core-guided algorithm for solving the
MaxSAT problem with objective f and Boolean formula F in CNF. The
output is the optimal value of the MaxSAT problem, where the optimal
value co means that F is unsatisfiable.
1 coreGuidedSearch(F, f):
2 Loop
a — {{— 0l elits(f)};
(sat?, p, k) < solveWithAssumptionsSAT(F, at);
if sat? = UNSAT then

if x = ( then

L return oo;

(F, f) « reformulateProblem(F, f, «);
9 else

10 | return f(p);

9 0 U A W

®

2.2.3 Pseudo-Boolean Optimization

A further generalization of SAT and MaxSAT is pseudo-Boolean optimization (PBO)
problem [RM21]. In pseudo-Boolean optimization the constraints are pseudo-
Boolean (PB) constraints, which are integer-linear inequalities over literals and the
objective function is an integer linear function over literals. Here we are again
using that convention that L and T are associated to 0 and 1, respectively, and
that the negation ¥ = 1 — x. Without loss of generality, these constraints are in
normalized form }; a;¢; > A, where the coefficients a; and the right-hand side
A are non-negative integers and the literals ¢; are over distinct variables. The
right-hand side A is also referred to as the degree (of falsity). We use = to denote
syntactic equivalence and to avoid confusion with the operator =. SAT is a special
case of PB solving, as a clause \/; {; has the same semantics as the pseudo-Boolean
constraint ) ; {; > 1.

Pseudo-Boolean optimization is equivalent to 0-1 ILP, where negative literals
are turned into positive literals using that x = 1 — x. Hence, any ILP solver [Ach07]
can be used to solve PBO. However, there are also specialized PB solvers that
follow the idea of CDCL presented in Algorithm 1, which gives rise to solve the PB
decision problem [LP10, EN18]. Pseudo-Boolean optimization can then be solved
using the MaxSAT approaches discussed in Section 2.2.2 using an incremental PB
decision solver instead of a SAT solver [DGD*21].

The only components that need to be changed to use Algorithm 1 to solve
a pseudo-Boolean problem are the procedures for unit propagation, conflict
analysis, and backjumping. There is a lot of literature about pseudo-Boolean
conflict analysis [LP10, EN18], but they are generally more complex as conflict
analysis in SAT solvers, but possible. To see that we can still efficiently do unit
propagation with pseudo-Boolean constraints we need to define the slack of a
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PB constraint, which measures how close a constraint is to be falsified by an
assignment. The slack of a constraint C = };4;{; > A under the assignment
p is slack(C, p) = p(6)20 i — A. Hence, if slack(C, p) < 0, then C is falsified
by p, as even setting all literal in C that are unassigned by p to 1 would not
satisfy C. A PB constraint C containing a;{; as a term propagates {; to 1 under
an assignment p if and only if slack(C, p) < a;, as setting ¢; to 0 would result in
slack(C, p o {¢; — 0}) < 0, which says that C is falsified by p o {¢; — 0}. Efficient
propagation is an active research area [Dev20b, NORZ24].

Another approach to solver pseudo-Boolean optimization problems is to
encode the PB constraints into clauses and then use a SAT solver to solve the
constraints [ES06, MML14, SN15]. There are many encodings with different
properties that are used to encode PB constraints into CNF [Bat68, War98, BB03,
ES06, JIMM15, PRB18]. These solvers use standard SAT solvers and directly benefit
from any improvement for SAT solving.

2.2.4 Preprocessing

When solving combinatorial optimization problems in practice, many solvers first
use some algorithm to reformulate the problem before using the main solving
procedure. This approach of reformulating the problem is called preprocessing,
which is sometimes also referred to as presolving. It is also possible to reformulate
the current problem maintained by the solver during the main solving procedure,
which is called inprocessing. It has been shown for all kinds of combinatorial
optimization paradigms that preprocessing is an important technique [ABG*20,
IBJ22, HGH23]. This section only gives a brief overview over preprocessing and
will not go into detail about specific techniques used in preprocessing. Specific
preprocessing techniques are discussed in [ABG*20, BJK21, IBJ22].

Preprocessing techniques can be grouped into two categories. The first category
are so-called primal preprocessing techniques, which preserve the set of feasible
solution and only change how this set is described. The second category of
techniques can change the feasible set if it is guaranteed that the optimal value
stays unchanged, which are called dual preprocessing techniques. A special kind
of dual preprocessing techniques is symmetry breaking, which restricts the set of
feasible solutions to only contain a few feasible solutions from the symmetric set of
solutions by introducing new constraints. Symmetry breaking is commonly only
preformed syntactically over the constraints describing the feasible set.

2.3 Proof Complexity Proof Systems

The research area of proof complexity studies how efficiently reasoning systems can
prove statements [Kral9]. A key concept of proof complexity is the so-called proof
system and was defined by Cook and Reckhow [CR79]. This thesis only considers
sequential refutation proof systems, hence we will just refer to them as proof systems in
this thesis.
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The following definition of a (refutation) proof system is presented in the
language of combinatorial optimization, but proof systems are commonly only
used for decision problems. A refutation proof system is a set of inference rules to
derive new constraints. A proof is a sequence of inference rule applications that
start with the original constraints describing the set of feasible solutions and each
inference rule application adds a new constraint. A proof system must satisfy
the following three conditions to be a proof system in the sense of Cook and
Reckhow [CR79]:

Soundness: If there is a feasible solution, then the proof system can not show that
there is no feasible solution.

Completeness: If there is no feasible solution, then there exists a proof in the proof
system showing that there is no feasible solution.

Polynomial time checkable: Each inference rule application can be checked in poly-
nomial time in the size of the size of the proof.

All inference rules that we consider in this section are polynomial time checkable,
since syntactic checks of the hypotheses are sufficient. By using the soundness
property, we can show that there were no feasible solutions for a problem if we
can derive a constraint that obviously states that is a contradictory constraint.

To denote the inference rules in a proof system, we will use the notation

H,

: C Inference rule

to say that the conclusion C can be derived if the hypotheses Hy, . . . , H, have been
derived before or are part of the original formula. We will now introduce a few
proof systems that are relevant for this thesis.

In the resolution proof system [Bla37, DP60, DLL62, Rob65] operates over
clauses, i.e., the conclusion and hypotheses are all clauses. This means that if we
manage to derive the empty clause, then this shows that the original set of clauses
was unsatisfiable. The only inference rule in the resolution proof system is the
resolution rule

CvVvux Dvx
CvD

Resolution over x

deriving the clause C Vv D from the clauses C V x and D V x. This rule is sound,
since any assignment satisfying C V x and D V x has to satisfy C if x = L or D if
x = T. For a proof that the resolution rule is complete, see [Rob65].

The cutting planes proof system [CCT87] uses pseudo-Boolean constraints. This
means that if we derive the constraint 0 > 1, then the original set of pseudo-Boolean
constraints was unsatisfiable. For additional details with of the cutting planes
proof system, we refer the reader to [BN21]. We will use the notation F + C to say
that there is a cutting planes derivation from the original PB constraint F to derive
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the PB constraint C, and write F + F/ if F + D for each D € F’. We start with [iteral
axiom rule for any literal ¢

750 Literal axiom for ¢ ,

which states that the constraint £ > 0 can always be derived. This rule is sound,
since adding ¢ > 0 is the same as all variables are between 0 and 1, hence every
literal is at least 0.

Two pseudo-Boolean constraints can be added together using the addition rule

Zi ail; > A Zi bit; > B
Zi(ai + bi)fi >A+B

Addition -

The addition rule is sound, since when we do not normalize the constraint, then
the sums of the coefficients of the satisfied literals by an assignment p satisfying
both constraints ;-1 4i and X,,)=1 bi are larger than A and B, respectively.
Hence, p also satisfies the sum of the constraints, as Zp(&):l (a; + b;) is larger than
A+B.

A pseudo-Boolean constraint can be multiplied by a positive integer using the
multiplication rule

Zi al‘ei 2 A
Yimaili > mA

Multiplication by m € N.

Multiplication is sound, as the sum of the coefficients of the satisfied literals by
an assignment is just multiplied by m and the degree is also just multiplied by
m. Hence, any assignment satisfying the original constraint also satisfies the
multiplied constraint.

A pseudo-Boolean constraint in normalized form can also be divided by a
positive integer d if all coefficients are divisible by d using the specialized division
rule

Zi dlll€1 > A
Yiaiti > [A/d]

Division of normalized constraint by d € N.

The division rule is sound, as the sum of the coefficients of the satisfied literals by an
assignment is divided by d and so is the degree divided by d without considering
rounding up. However, since all coefficients are integer, the satisfiability of the
constraint does not change if the degree is rounded to the next biggest integer. By
adding literal axioms before the division, division can be defined for all constraints
without the condition that the coefficients are divisible. This yields the (general)
division rule

Yiaili 2 A
Zilai/d]t: > [A/d]

The rules so far are already sufficient to get a cutting planes proof system that
is complete, since it can simulate resolution rule by adding the two hypotheses

Division of normalized constraint by d € N.
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together and dividing by 2. However, Gocht et al. [GNY19] showed that adding
the saturation rule [DGO02] for normalized constraints
Zi ail; > A
>imin{a;, A} > A

Saturation of normalized constraint

to the proof system yields a stronger proof system. This rule is sound, as the
constraint is satisfied if a literal with a coefficient larger than A is satisfied and also
if the coefficient is A.

Finally, we discuss extension rules that allow to derive constraints with new
variables. The resolution proof system can be modified to the extended resolution
proof system [Tse68] by adding the extension rule

q ¢ Vars(F)
GVvg bvg bVhLVY

Extended resolution for new variable g,

where Vars(F) is the set of variables used by the original and derived constraints
before this rule is applied. The extension rule introduces a new extension variable
q and clauses forcing g to be true if and only if ¢; V ¢, is true. Similarly, extended
cutting planes can be defined using the same rule.

2.4 Certifying Algorithms

This section briefly motivates and defines certifying algorithms. For more history
and details on certifying algorithms see [MMNSI11]. They also provide more
examples of certifying algorithms for different types of problems.

The problem that certifying algorithms is trying to solve is to know if a software
program is correct.! The approach of certifying algorithms tries to provide a middle
ground between testing [MSB11] and formal verification [HT15] by providing
correctness guarantees for the specific input we consider, but with less effort
than what is required for formal verification. The idea of certifying algorithms
is something we are all familiar with from solving school maths problems, e.g.,
solving equations. Then a way to make sure that the calculated result is correct
would be to plug in the calculated values for the variables in the equations and
check if all equalities hold. ILe., there is a procedure independent of the solving
process to check the correctness of the result. This intuition can be formalized into
certifying algorithms.

Before we can define what a certifying algorithm is, we require the following
two definitions. The precondition of a function is the restriction on the input for
which the function is valid. E.g., consider the function div(a, b) for a,b € R which
divides a by b, then the precondition of div(a, b) would be that b # 0, as division
by 0 is undefined. The precondition can also be trivially satisfied, if the function is

'We consider a software program to be correct if it returns the correct output for the given input
with respect to a formal specification of the function computed by the program. This means that an
error in the specification is not considered incorrect for our purpose.
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tnput x checker
certifying |—— output y ———— fo1t accept y
: function or reject
algorithm for f
function f [—— certificate c ——>

Figure 1: Workflow for a certifying algorithm for the function f and checking the certificate
with a checker for the function f.

defined for any value of the function domain. The postcondition of a function is
the expected output of the function with respect to the input of the function. E.g.,
for the function div(a, b) the postcondition would be that value of the function
div(a, b) is actually a/b, which be verified by computing a = b - ¢ where ¢ is the
computed result of div(a, b).

A certifying algorithm get an input x € X and returns an output y € Y and a
certificate? c. The x, y, and c are the input to the checker, which either verifies that
the y is the correct output for x or the checker fails to verify the correctness of y.
The latter case can either be due to y being the incorrect output or the certificate ¢
does not show the correctness of y. It can be the case that the certificate is trivial
(empty) if the checker can verify the correctness of output y for input x without
additional information. See Figure 1 for the workflow of a certifying algorithm
and the verification of the certificate.

In [MMNSI11] 3 categories of certifying algorithms are defined. All definitions
consider algorithms that compute the function f : X — Y. Strongly certifying
algorithms halt for all inputs x € X and the algorithm either returns that x does not
satisfy the precondition and the certificate also shows that or returns y € Y and the
certificate shows that f(x) = y. (Ordinary) certifying algorithms halt for all inputs
x € X and the algorithm either returns that x does not satisfy the precondition
and the certificate also shows that or returns y € Y and the certificate shows that
f(x) = y if x satisfies the precondition. In the latter case it can happen that if
x does not satisfy the precondition, then f(x) # y. Weakly certifying algorithms
only has to halt for x satisfying the preconditions. If the algorithm halts, then
it either returns that x does not satisfy the precondition and the certificate also
shows that or return y € Y and the certificate shows that f(x) = y if x satisfies the
precondition. Hence, if a weakly certifying algorithm halts, then it behaves exactly
as an ordinary certifying algorithm.

To illustrate these different categories, we consider the above example of
division. A strongly certifying algorithm for this problem would always halt and if
the divider is 0, then the algorithm would return an error and the certificate shows
that division by 0 is not possible. A (ordinary) certifying algorithm for division
might act as the strongly certifying algorithm and additionally is allowed to return
anything as long as the certificate is correct. For instance, if we want to divide 0

2The certificate is also referred to as the witness in [MMNS11].
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by 0 and the algorithm outputs O the certificate check would still be correct, as
0 =0-0. A weakly certifying algorithm is additionally allowed to run without
halting if we divide by 0.

For the rest of this thesis, we will only consider the case that the precondition
is trivial (i.e., it is always satisfied). If the precondition is trivial, then all certifying
algorithms are strongly certifying, as the exceptions for the other types can only
occur when the precondition is not satisfied. In fact, in [MMNS11, Theorem 5] it is
shown that any deterministic algorithm with a trivial precondition has a strongly
certifying algorithm for the same problem. Hence, all the algorithms we consider
from now on are strongly certifying.

Although the definitions for certifying algorithms only give guarantees about
the theoretical algorithm, we can not get any guarantees about the implementation
of the algorithm as software running on hardware. If we have bugs in the
implementation, then we do not have any guarantees about the output or the
certificate. Moreover, if there are no bugs in the implementation, it can still
happen that we run into resource limits (e.g., not enough free memory) and do not
produce a certificate or output at all. However, if the algorithm has correctly been
implemented and enough resources are available, then the theoretical guarantees
of the algorithms can be transferred.

On the one hand, this implies that if the implementation returns an output and
a certificate and the checker verifies that the output is correct, then the theoretical
guarantees of the algorithm transfer and the following holds. So for a strongly
certifying algorithm we know that if the input did not satisfy the precondition,
then the implementation correctly detected this or correctly computed an output
that satisfies the postcondition.

On the other hand, if the checker rejects the output using the certificate, then
there could be multiple reasons why this is the case. For instance possible reasons
could be that the implementation computed an incorrect output, the implementa-
tion computed an incorrect certificate for a correct output, the implementation was
prematurely terminated, or the implementation of the checker has a bug. Hence,
the checker can also reject a correct output.

Even if the checker rejects, the certification process can be useful to detect the
problem. A checker can be designed in a way that it not just accepts the output
of rejects. It can give a reason why it rejected, which can aid in the process of
debugging where the implementation of the certifying algorithm went wrong.

2.4.1 Certifying Algorithms for SAT

As the SAT problem, which was briefly introduced in Section 2.2.1, is decidable,
there exist deterministic algorithms that are guaranteed to terminate for any
propositional formula deciding if the formula is either satisfiable or not. We will
only consider algorithms that are deterministic and are guaranteed to terminate,
e.g., we will not consider local search algorithms. Since for any such algorithm
there exists an equivalent strongly certifying algorithm [MMNS11, Theorem 5]
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with a constant factor overhead running time, the goal is to only incur a constant
factor overhead for making an algorithm certifying.

A certificate for algorithms that decide the SAT problem is usually different
depending on the satisfiability of the formula. If the algorithm outputs satisfiable,
then the certificate is a solution that satisfies the formula, where a partial assignment
that trivializes the formula is sufficient. If the algorithm outputs unsatisfiable, then
the certificate is a proof showing that it is impossible to satisfy the formula. As, this
direction is the interesting case, certification in the SAT community is commonly
referred to as proof logging. This proof can take different forms and many formats
have been proposed in the last couple of decades, which are discussed in detail
in [Heu21]. We will briefly discuss different proof formats of unsatisfiability in
chronological order.

Van Gelder [VG02] proposed to certify unsatisfiability by a resolution proof. A
resolution proof [Bla37, DP60, DLL62, Rob65] starts with the clauses in the formula
and derives new clauses using the resolution rule from Section 2.3. The resolution
proof can be extracted from the clause learning procedure of CDCL.

Goldberg and Novikov [GNO3] instead suggested a proof format based on
so-called reverse unit propagation (RUP). The assignment obtained at the end of unit
propagation can be interpreted as the necessary assignments resulting from the
starting assignment to avoid falsifying the formula. Hence, if we encounter the
situation that an assignment obtained by unit propagation falsifies a clause, then
the original assignment can never be extended to a satisfying assignment of the
formula, which is called a conflict. Reverse unit propagation shows that a clause
C = {1 V---V{is implied by the formula by doing unit propagation that starts
with an assignment that satisfies the negated clause =C = {1 A - -- A €} and has
to result in a conflict. This conflict shows that the only way the formula could be
satisfied isif #1 V - -- V € = C, which shows that we can add the clause C to the
formula. To denote that F U {=C} unit propagates to conflict, we use F 1 C. For
sets of constraint F’, the notation F 1 F’ means that F +; D for each D € F’. Using
this notation we can formally state that the constraint C can be derived by reverse
unit propagation from the formula F if

FrH C. (1)

The performance of unit propagation depends on the number of clauses to keep
track of, as we do not know which clauses propagate. Hence, it became clear that
deletions of clauses are crucial [HHW14]. Alternatively, this issue can be fixed by
providing hints which constraints propagate in which order [WHH14, CHH*17].
Systems that allow to delete constraints will be prefixed with deletion (D), e.g.,
reverse unit propagation (RUP) with deletion becomes deletion reverse unit
propagation (DRUP). All the systems discussed in this section can be extended
with a deletion rule.

While RUP can certify CDCL, dual pre- and inprocessing techniques can not be
certified using RUP. The main issue is that RUP can only derive implied clauses,
i.e., clauses that do not change the set of solutions to a formula. To certify such pre-
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and inprocessing, Jarvisalo et al. [JHB12] proposed proofs based on the resolution
asymmetric tautology (RAT) rule, which guarantees satisfiability-equivalence of the
formula and the formula with the added clause. The idea of the rule is to extend
RUP? with one step of resolution. A clause C can be added to a formula F by RAT
if there is a literal ¢ € C such that resolvent of C and any clause C’ € F where
{ € C’ is RUP. The correctness of this rule can be seen by considering that C is not
satisfied by some solutions of F. Specifically, solutions that assign ¢ to false are no
longer solutions to F A C. Hence, we have to guarantee that all clauses in F that
might be falsified by removing these solutions, namely clauses C’ € F containing
the literal Z, can still be satisfied by some other solution to the formula. This is the
case if C’ \ {¢} is implied by F.

Alternatively, this can be formalized by saying that clause C with literal £ € C
can be derived by RAT from a formula F if

FA-CH Ff{ng} . )

Here, the substitution of ¢ to true is called the witness and should be specified
explicitly. As the proof obligations of the rule depend on the current formula,
allowing to delete constraints from the formula can actually strengthen this
proof rule [BT21]. While this rule does not preserve solutions with respect to
propositional logic, it preserves solutions with respect to overwrite logic, which
extends propositional logic with a so-called overwrite operator [RS18].

RAT can be generalized to the propagation redundancy (PR) rule [HKB17]%, where
the witness can be an arbitrary assignment. The idea for this rule is that adding
clause C could remove solution (if there are any) for F, but there should be at least
one solution to the formula that can be extended from the assignment p. Hence,
we have to show that CT, and for all D € F that D[, is implied by the formula F.
Hence, we can think of the witness as the way to repair any potential solution that
could have been removed. Formally, the clause C can be derived by the PR rule
from a formula F given a (partial) assignment p if

FA-CH (CUP)rp. 3)

The PR rule can be even more generalized to the substitution redundancy (SR)
rule [BT21] by allowing a substitution as the witness. Similar to PR rule the SR rule
uses the witness to repair any solution removed by the added clause C. Formally,
the clause C can be derived by the PR rule from a formula F given a substitution w
if

FA-Cr (CUF)y. )

Inspired by the SR rule, Rebola-Pardo [RP23] has extended overwrite logic to
mutation logic such that SR proofs preserve solutions in mutation logic. Through

3The property of asymmetric tautology (AT) is equivalent to RUP.
‘Redundancy in the SAT community means that adding a clause to or removing a clause from a
formula does not change the satisfiability of the formula.
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this formalization improvements to the SR rule became apparent which resulted
in the so-called weak substitution redundancy (WSR) rule. The key observation of
Rebola-Pardo is that SR rule can delete clauses that are no longer needed after
the WSR rule application. Hence, these clauses can be removed from the proof
obligations, but can still be used as premises for the proof obligations. Formally,
the WSR rule states that the clause C can be derived from a formula F given a
subformula G € F and a substitution w if

FA=Cr (CUG)|w. )

The resulting formula is G U C.

While it is possible to express very advanced reasoning techniques using WSR
with very short certificates that scale linear in the reasoning conducted by solvers,
there are some limitations for this proof system, which we will discuss in Section 3.

3 Related Work

Some related work has already been mentioned in Section 2.4.1 with the certification
formats for SAT like DRAT, propagation redundancy, and weak substitution
redundancy. However, these systems cannot efficiently certify all state-of-the-art
reasoning techniques. The best know approach to certify parity reasoning scales
cubic in the size of the formula [PR16], while our approach scales linear [GN22].
Even though it is possible to deal with simple symmetry breaking using these
systems, it is not known how to certify the full range of techniques in modern
symmetry breaking that our approach can certify [BGMN23].

The DSRUP system [TD20] has been proposed for handling symmetries in
SAT solvers with a focus on solvers that want to derive symmetric versions of
clauses derived by RUP with respect to known symmetries of the formula. Hence,
it is only possible to derive implied constraints with this system, which makes it
impossible to support pre- and inprocessing techniques. Especially, the technique
of symmetry breaking is not supported, as symmetry breaking constraints are not
implied, as they remove symmetric solutions.

While these systems have been designed to certify SAT solvers, they are
used in ad hoc methods to certify other problem by encoding a SAT formula
that proves a desired property about the problem instance and using a SAT
solver to certify that this property holds. For example, this approach is used
to certify solvers for hardware model checking [YBH21, FYBH24] and model
counting [CCS24, BNAH23]. The main issue with these certificates is that in order
to trust the certificate, we also have to trust the encoding of the property that we
are interested in into a SAT formula, which can be non-trivial. In most cases this
is fixed by having formally verified code with a small trust base to generate the
encoding. Another difference to our approach is that the certification is decoupled
from the solving. Hence, it is impossible to predict the scaling of the certificate
and an error in the certificate is not linked directly to reasoning in the solver.
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When it comes to the certification of MaxSAT solvers, there are other approaches
that have been studied before. MuaxSAT-Resolution [HLO06] is defined for the
MaxSAT formulation with soft and hard clauses. This system is extended with the
redundancy notion called inclusion redundancy [BBL24], which allows introducing
a clause C to a formula F if for a witness w satisfying C it holds that F[.c 2 F[,.
This rule is weaker than the redundancy notions discussed in Section 2.4.1, but
automatically preserves the optimal value of the problem. The downside with
MaxSAT-Resolution is that certification is only known for branch and bound
algorithms and preprocessing, and it is unlikely that this system is able to certify
core-guided solving [BBL24]. Furthermore, MaxSAT-Resolution has no practical
relevance, as no modern MaxSAT solver that implements certification based on
MaxSAT-Resolution.

There is also more straightforward extension of propagation redundancy for
MaxSAT called cost propagation redundancy, which was proposed by IThalainen
et al. [IBJ22]. This rule is similar to the redundance-based strengthening rule in
VERIPB, but additionally allows adding new variables to the objective function.
This behaviour can be simulated in the VErIPB system with a redundance-based
strengthening step followed by an objective update. The main downside of the
work by Thalainen et al. is that they were not able to figure out how the condition
on the objective function can be checked efficiently using only clausal reasoning.

Another commonly suggested idea for MaxSAT is to check that the optimal
solution satisfies all clauses and to certify optimality by running a SAT solver on
the clauses together with clauses encoding that only strictly better solutions are
allowed. This approach has been evaluated in Paper A, which shows that this
approach has unpredictable scaling behaviour and still requires certification of the
clausal encoding that only solution strictly better solutions are allowed.

To certify the correctness of mixed integer linear programming (MIP), the VIPR
system [CGS17] was developed. This certification system is focused on LP-based
branch and cut MIP solvers. Hence, the certificate format is very specialized and
does not really support any other solving technique. Additionally, VIPR does not
have any notion of redundancy as known for the certification of SAT solver, which
makes it impossible to certify advanced presolving techniques.

There has also been recent work that used the VErIPB system to provide certifi-
cation to different kinds of solvers. There are certifying constraint programming
solvers using VErIPB [MM23, MMN24, FSM*24, MM25] to certify reasoning with
a wide range of constraint propagators. However, it is still an open problem to
provide certification for all kinds of propagators used in a modern constraint
programming solver and provide formally verified encodings of constraint pro-
gramming problem into a pseudo-Boolean optimization problem. For optimal
classical planning, Dold et al. [DHN*25] proposed a theoretical framework that
uses the VERIPB system to certify the optimality of a plan. VErIPB has also been
used to certify the correctness of the Pareto front for multi objective MaxSAT
solvers [JBB]25].
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4 Pseudo-Boolean Certificates

This section focuses on the certification system studied in this thesis. We will first
motivate the design principles guiding our certification system for combinatorial
optimization. Then we will discuss our certification system in detail with a focus on
the contribution of this thesis. Finally, some algorithms and data structures used
in our reference implementation of a proof checker for our certification system.

4.1 Motivation

Our certification system is based on the cutting planes proof system. There are
theoretical advantage of using cutting planes that are motivated by proof complex-
ity, see Section 2.3. When comparing cutting planes to resolution, Haken [Hak85]
showed exponential lower bounds in the number of steps required to refute the
so-called pigeonhole principle formula, but cutting planes only requires polynomi-
ally many steps. Hence, using cutting planes can give exponentially shorter proofs
for a formula than using resolution. However, it is possible to simulate extended
resolution using DRAT [JHB12] and DRAT using extended resolution [KRH18].
Hence, DRAT is as strong as extended resolution as a proof system.

Our system can simulate DRAT and therefore also extended resolution, but
it is not immediately clear that it could be exponentially stronger. However, as
highlighted in Section 2.4, polynomial improvements in size of the certificate are
important for certifying algorithms to achieve linear sized certificates. Additionally,
Kotodziejczyk and Thapen [KT24] showed that the dominance-based strengthening
can simulate the proof system G1, which is above extended resolution and possibly
hints towards our system being stronger than extended resolution.

Besides the theoretical advantages of cutting planes, a proof system using
pseudo-Boolean constraints has the advantage that the constraints are more
expressive than clauses, when comparing to SAT based certification approaches.
Many problems and reasoning can be encoded more concisely. A trivial example is
an at-most-one constraint stating that at most one literal of a set of n literals is true,
which can be represented with one pseudo-Boolean constraint but requires 72 many
clauses. While it is possible to represent such constraints using fewer clauses, the
pseudo-Boolean constraint is still more concise and easier to grasp. It could even be
discussed to lift the restrictions imposed by pseudo-Boolean constraints and more
complex constraints. However, there is a trade-off between the expressiveness of
the constraints and the complexity of how to handle constraints inside a checker to
be sure that the checker handles them correctly.

We propose also that certification should be done in a unified multipurpose
system instead of a specialized system for each component of the algorithm. For
instance, image Having a certificate for preprocessing in one format and the
certificate for the main solver in another format. The problem with this approach
is that we need guarantees between the interplay between different certificates.
This could be achieved by having a checker that can deal with both formats, but
than the checker internally has to switch between different representation, e.g.,
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if one format reasons on a graph and the other uses pseudo-Boolean constraints.
This has the downside that it increases the complexity of the checker, which makes
it more difficult to trust the checker. Alternatively, an interface between proofs
could be defined, so that the different proofs can be checked by different checkers,
which keeps each checker simple. We are actually pioneering this approach with
the output section, where we can certify guarantees on a reformulated problem
that can be used as input to the next checker.

Another advantage of having one unified multipurpose system is that solver
authors can trust that the certification system is strong enough to certify new
reasoning techniques added to the solver. Moreover, new tool, like preprocessors
or symmetry breaking tools, can just be added to the solver without hassle if the
tool uses the same system as the solver.

Additionally, our philosophy is that the certification should follow the reasoning
of the solver as close as possible, which is contrast to just certifying the result
by possibly using an independent approach. There are several advantages to
this that we will discuss in the rest of this section. If the certification follows the
reasoning closely, then we can get upper bounds on the size of the certificate and
the additional time required to write the certificate. This is required to get efficient
certifying algorithms in the sense of McConnell et al. [MMNS11].

The fact that the certificate is written while the solver is running also enables
us to have certification for anytime solvers that can be interrupted and stopped
arbitrarily. For instance, a solver that generates the certificate after solving would
not generate any certificate if it were stopped suddenly. However, if a solver that is
generating a certificate while solving is stopped, then it can finish up the certificate
in the same routine that is printing the anytime result.

The closer the certificate follows the reasoning in the solver and the more detail
the certificate contains, the better it can be used for detecting bugs in the reasoning
of the solver. This approach can even detect bugs on instances where the solver
still returns the correct result but the reasoning that led to this result is erroneous.
Detecting bugs even if the returned result is correct and without even knowing
what the correct result should be makes software testing and the approach of
fuzzing [ZWCX22] for software testing extremely powerful. If a bug occurs, then a
detailed certificate can even help to find the cause of the issue by tracing back the
certificate.

A detailed certificate can also be used to deeper understand the reasoning
performed by the solver. In our approach it is even possible to annotate the
certificate with comments to see which parts of the certificate came from which
part of the solver. This approach could even be used to extract why the solver came
to this conclusion in a concise human-readable form, so that users can understand
the reasons for the returned result.

All of this should make it clear that there are advantages of having a unified
multipurpose certification systems that can closely follow the reasoning of the
solver. Even though we have seen advantages of using pseudo-Boolean constraints
to represent the reasoning, the specific format of the constraints can be debated and
more general constraints than pseudo-Boolean constraints might be advantageous.
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4.2 Our Pseudo-Boolean Proof System

The pseudo-Boolean proof system VErIPB was pioneered by Gocht et al. in the
course of several publications [EGMN20, GMN20, GMM*20, GN22, BGMN23,
Goc22]. We will first discuss some general design principles of the theoretical
proof system and the representation of the proof rules in file format. Then we
will review some prior work on the proof system before we will discuss the
contributions to the certification system made by this thesis in detail. In this section
we only focus that the system is correct and in Section 4.3 we will discuss efficient
algorithms for checking the correctness of rule applications.

Our system is based on the cutting planes proof system, which means that
the atoms of reasoning are pseudo-Boolean constraints. In the proof system we
always assume the constraints are stored and treated in normalized form while the
format allows stating non-normalized constraints, these are normalized directly
after parsing. Each constraint in the proof is assigned a consecutive 1D, starting
with the constraints in the original problem and continuing with the constraints
introduced by the proof.

The constraints known at any point in the proof are partitioned into a core set
and a derived set of constraints. The core set is initialized to the constraints of the
input problem. The idea of the core set is that we can have guarantees on how
these constraints relate to the input constraints, e.g., they are equisatisfiable. The
derived set is initialized to be empty. All constraints added by the proof rules are
added to the derived set. We do not have to guarantee anything for the constraints
in the derived set, except that they are derived by a valid rule application. Jarvisalo
et al. [JHB12] referred to the core set as the irredundant set and to the derived set
as the redundant set.

The completeness of our proof system follows from the completeness of the
cutting planes proof system and that any standard cutting planes proof is also
a proof in our system. To show the soundness of our proof system, especially
for the new rules, we use the same notations and definitions used in by Bogaerts
et al. [BGMN23], but extend it slightly to show the correctness of the new rules.
The proof system is a sequence of proof configurations (C, D, f*,0=,%z,8,u,0,s),
where

¢ ( is the core set of constraint

* 9D is the derived set of constraints

¢ f*is the current objective function

e O: is the currently active order

* Z is the vector of literals the active order is initialized over

® ¢ is a Boolean variable indicating stronger guarantees on the core set

* u is the best objective value recorded
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* v is the best objective value recorded while ¢ = T (incumbent value)
* 5 is a Boolean variable indicating if the strengthening-to-core mode is active.

The configuration closely resembles the global state maintained by the checker.
The initial proof configuration for an optimization problem with objective f and
set of constraints F is (F,0, f,0,0, T, 0, 00, L).

Definition 1 (cf. [BGMN23, Definition 1]). For an optimization problem with
objective f and set of constraints F the configuration is (C, D, f*, 0,2, ¢,u,v,s)
is (F, f)-valid if it holds that

1. Forevery u’ < u, itholds thatif FU {f < u’} is satisfiable, then CU {f* < u’}
is satisfiable.

2. For every total assignment p satisfying C, there exists a total assignment p’
satisfying C U D U {f*(p) > f*(p')} U O=(Z1p, Z1p).

3. If v < oo, then F U {f < v} is satisfiable.

4. For every v’ < v, itholds thatif C U {f* < v’} is satisfiable, then FU {f < v’}
is satisfiable.

5. If s = T, then any total assignment satisfying C also satisfies C U D.

All rules in our proof system preserve (F, f)-validity, which we will show later
in the thesis for the rules, where this does not follow from directly. The following
theorem combines two theorems by Bogaerts et al. and establishes the relationship
between (F, f)-validity and the soundness of the proof system. The theorem has
been adjusted slightly to incorporate the changes to the proof system in this thesis
compared to the one used by Bogaerts et al.

Theorem 1 (cf. [BGMN23, Theorem 2 and 3]). Let F be a set of pseudo-Boolean
constraints and f be a pseudo-Boolean objective. If (C,D, f*,0s,2,¢,u,0,s) is an
(F, f)-valid configuration, then the following holds:

i) If C U D contains the constraint 0 > 1 and u = oo, then F is unsatisfiable.
ii) If F is unsatisfiable, then v = oo.

iii) Let Ib < u. If C U D contains the constraint f* > Ib, then any solution p satisfying
F has objective value f(p) = Ib.

iv) If F is satisfiable, then there is a solution p satisfying F with objective value f(p) < v.

Proof. We prove the correctness of the theorem item by item. For Item i, assume
for contradiction that F is satisfiable. By Item 1 in Definition 1, the constraints
in C are satisfiable, as #’ < oo can be chosen large enough. Finally, by Item 2 in
Definition 1, C U D is also satisfiable, which contradicts that C U D contains the
constraint 0 > 1.
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For Item ii, assume for contradiction that v < co. By Item 3 in Definition 1,
FU{f < v} issatisfiable. Hence, F itself is also satisfiable, which is a contradiction
to F being unsatisfiable.

For Item iii, assume for contradiction that there is a solution p’ satisfying
F with f(p’) < Ib, hence p’ satisties FU {f < Ib—-1}. By Ib < u and Item 1 in
Definition 1, we have that C U {f* < Ib — 1} is satisfiable. Let p be a solution
satisfying C U {f* < Ib — 1}, then f*(p) < Ib and p also satisfies C. By Item 2 in
Definition 1, there exists a solution p that satisfies C U D and has an objective value
f*(p) < Ib, which is a contradiction to C U D containing the constraint f* > Ib, as
f* > Ibis falsified by p.

For Item iv, we consider two cases. If v = oo, then there is a solution satisfying
F, since F is satisfiable, and any solution p’ has objective value obj(p’) > co. If
v < oo, then F U {f < v} is satisfiable by Item 3 in Definition 1. This immediately
gives us that any solution p’ satisfying F U {f < v} satisfies F and has an objective
value f(p’) < v. i

Items 4 and 5 in Definition 1 is not required to prove Theorem 1, but is required
later to show that our proof rules preserve (F, f)-validity. The Items i and ii are
mainly relevant for decision instances, while Items iii and iv are only relevant for
optimization instances.

4.2.1 Rules from Previous Work

In this section we will discuss the rules that have remained unchanged compared
to Bogaerts et al. [BGMN23] and Gocht [Goc22]. If rules have been changed since
the work by Bogaerts et al., we will detail the updated rules in Section 4.2.2 and
omit it in this section.

Implicational Rules The first set of rules are the rules from the cutting planes
proof system and rules that are just syntactic sugar for cutting planes derivations.
Our proof system supports reverse unit propagations (RUP) similar to RUP in
Section 2.4 but using pseudo-Boolean unit propagation. Another rule is syntactic
implication, which check if a constraint C can be derived from another constraint
D by adding literal axioms, saturating with respect to the degree of D, and
adding more literal axioms. All of these rules have the effect that the configuration
changes from (C, D, f*,0s,%,g,u,v,s)to (C, DU{C}, f*,0s,Z, g, u, v, s) trivially
preserve (F, f)-validity, see [BGMN23, Section 3.1].

Sanity Check Rules There are also some rules for sanity checks that do not
modify the configuration, hence they are trivially sound. Their purpose is to check
if the configuration is as expected, so that if a discrepancy occurs between the
proof and the solver, the check immediately detects this. For a specific constraint
C and the configuration (C, D, f*, 05,2, ¢, u,v,s), we can check if a syntactically
equivalent or syntactically implied constraint to C is in C U D. If this is not the case,
the proof will fail.
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Move to Core A constraint C can be moved from the derived set to the core set,
but not vice versa. This changes the configuration from (C, D, f*,0x,2Z, ¢,u,0,s)
to (CU{C}, D\ {C}, f*,0,2,g,u,v,s). This preserves (F, f)-validity, since the
core set gets more constrained, which preserves the required guarantees.

Order Change We can change the order by specifying a possibly empty pseudo-
Boolean formula O (ii, 7) and a list of literals 2’ that should be compared, where i,
7, and Z have the same size. The formula O’ (ii, 7) has to be shown to be reflexive,
ie., 0 v O.(ii, ), and transitive, i.e., O (ii,7) U OL(3, @) + O. (i, @), by only using
implicational rules, where @ has the same size as . For this rule to be sound we
require that the derived set D is empty. Hence, we can change the configuration
from (C,0, f*,0+,2,¢,u,v,s) to (C,0, f*,0.,z’,¢,u,v,s). This rule is sound,
since all items except Item 2 in Definition 1 are trivial and Item 2 holds because
the derived set is empty and any satisfying assignment to C is also a satisfying
assignment to C U D.

Solution Logging The solution logging rule (or objective bound update rule
in [BGMN23]) can be used to update the best recorded objective values and
to derive a strict upper bounding constraint on the objective function. Given
a total assignment p that satisfies C, we can change the configuration from
(CrD/f*rOZrzrgrurvls) to (C U {f* < f*(P) - 1}/ Z)/f*/ OZfz/ g/f*(P)rf*(P)fS)
ifg=Tandto (CU{f* < f*(p)-1},D, f*,0+,2, 8, f*(p),v,s)if g = L. Thus, the
incumbent value v is only updated if g = T. If p is only a partial assignment, then
p is propagated with respect to C U D, and if the assignhment is then still not total,
then the proof is declared incorrect. As shown by [BGMN23], this rule preserves
(F, f)-validity, since Items 1, 2, 4, and 5 are trivial and Item 3 follows from Item 4.

Redundance-Based Strengthening We are now discussion two rules to add con-
straints that are not implied. These rules behave differently when the strengthening-
to-core mode s = T, which is explained in detail in Section 4.2.2. First, redundance-
based strengthening [GN21] is a generalization of substitution redundancy [BT21] to
pseudo-Boolean reasoning allowing arbitrary implicational proofs instead of just
unit propagation. For a constraint C, redundance-based strengthening changes the
configuration from (C, D, f*,05,2,g,u,v, L) to (C,DU{C}, f*,0>,2,¢,u,v, L)
given a witness substitution w and cutting planes proofs showing that

CUDU{-C}+(CUDU{CPHIo U{f" = fTo}VUO0:(Z,2ls) (6)

using only implicational rules. A proof that redundance-based strengthening
preserves (F, f)-validity can be found in [BGMN23, Proposition 7].

Dominance-Based Strengthening Second, the dominance-based strengthening
rule [BGMN23] generalizes redundance-based strengthening even more and
makes use of applying the witness iteratively to show its correctness. For a
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constraint CC, dominance-based strengthening changes the configuration from
C,D,f,0-,z,4,u,0,1) to (C,DU{C}, f,0:,Z,¢,u,v, L) given a witness
substitution w and cutting planes proofs showing that

CUDU{=C}+CloU{f 2 flo}UO:(Z,Z10) @)
CUDU{-C}UO=(Zlw,Z)F L ®)

using only implicational rules. Instead of (8) giving a cutting planes proof for
CUDU{-CU{fTo 2 fT}F L ©)

is also sufficient for a valid dominance-based strengthening step. A proof show-
ing that dominance-based strengthening preserves (F, f)-validity can be found
in [BGMN23, Proposition 14].

Deletion The rules discussed so far only allow us to add constraints, but for
the performance of the checker and the strength of the proof system, the system
also supports the deletion of constraints. If we delete a constraint C from the
derived set D, then the configuration changes from (C, D, f*,0x,%,g,u,v,s)
to (C,D \ {C}, f*,0+,%Z,¢,u,v,s) without any checks, as we do not guarantee
anything for O. If we delete a constraint C from the core set C, then we can either
use checked or unchecked deletion to remove C from C. For checked deletion, we
have to give a substitution witness @ and cutting planes proofs showing

(C\{CHU{=C}FClo U{f" 2 f T} VO=(Z,Z]0) (10)

using only implicational rules, i.e., C can be derived by redundance-based
strengthening for C \ {C}. Checked deletion changes the configuration from
C,D,f,0-,z,4,u,0,5)to (C\{C},D, f*,0~,Z,¢,u,v,s). For unchecked dele-
tion, we only need to check that if the Ox # 0, then D = 0, but we lose the stronger
guarantees g, setting ¢ = 1, and we need that strengthening-to-core s = L.
Thus, in terms of configurations, we transition from (C, 0, f*, 0,2, ¢, u,v, L) or
(C,D,f0,0,4,u,v,L1) to the configuration (C \ {C},0, f*,0>,Z, L,u,v, L) or
(C\{C},D, f*,0,0,L,u,v, L) respectively. More details about deletion and propo-
sitions showing that deletion preserves (F, f)-validity can be found in [BGMN23,
Section 3.4].

Convenience Rules To make it easier to keep track of deletions in branch and
bound algorithms, constraints can be assigned a level, which is a mapping from
constraints to non-negative integers. When wiping a level [vl, all constraints with
level Ivl or higher are deleted, which is just syntactic sugar for deleting all these
constraints after each other.

There is an additional rule for debugging which allows adding arbitrary
constraints to the derived set. However, this rule does not preserve the (F, f)-
validity and the proof checker will warn the user if this rule is used that the proof
is invalid.
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4.2.2 Extensions to the System by This Thesis

In the included papers the proof system has been extended with the following
rules. Some rules are also just extensions of already existing rules.

Objective Equivalence There is an additional rule for checking that the current
objective f* in the configuration (C, D, f*, 05,2, g, u,v, s) is syntactically equivalent
to the objective specified in the rule. This rule does not change the configuration
and trivially preserves (F, f)-validity.

Objective Update The main contribution of Paper IV to the proof system is the
objective update rule that allows to change the objective. Using the objective up-
date we can transition from (C, D, f*,0-,%z,g,u,v,s)to (C,D, f',0x,%Z,§,u,v,s)
given cutting planes proofs showing that

CH{f =2 fYu{f' =} (11)

using only implicational rules. This shows that f* = f’. While the objective update
is still sound if f* > f’ is derived from C U D, we require for simplicity that it
derived by C only. To keep the size of the proof as small as possible, there are two
ways to specify the new objective. The first way is to directly specify the updated
objective f’. The second way is to specify the difference between the updated
objective f” and the current objective f, i.e., the linear form f’ — f*. Proposition 2
argues that the objective update preserves (F, f)-validity.

Proposition 2. If (C, D, f*,0x,%Z,g,u,v,s) is (F, f)-valid, and we use the objective
update rule, then (C, D, f',0x,Z, g, u,v,s) is also (F, f)-valid after applying the rule.

Proof. Items 3 and 5 in Definition 1 is trivially preserved, as it not affected by the
objective update. Item 1 in Definition 1 is satisfied, as (C, D, f*,0x,2, g, u,v,s) is
(F, f)-valid and f* = f’. Thus, since C U {f* < u’} is satisfiable, CU {f’ < u’} is
also satisfiable. Similarly, Item 4 in Definition 1 is also satisfied, since CU {f* < v’}
is satisfiable exactly when C U {f” < v’} is satisfiable. For any total assignment p,
f* = f’ guarantees that f*(p) = f'(p). Hence, Item 2 in Definition 1 is satisfied, since

(C D, f,0:,%,8,u,v,5)is (F, f)-valid and f'(p) = f*(p) = f*(p") = f'(p’)- O

Proof Output We have introduced support in the certification system to state
the results certified by the proof in a proof footer. This improves on the ad-hoc
certification of optimizations problems in [BGMN23] by checking if the optimal
value obtained by the solver matches the optimal value certified by the proof.
The first part of the footer states the output of the proof and its guarantees.
Let (C, D, f*,0s,%,4,u,v,s) be the configuration at the end of the proof. The
output can be given externally, e.g., in form of an additional file, or is implicitly
defined as the core set C. If the output is given externally with the objective f”
and constraints F’, then we check that f* = f* for each constraint C’ € F’ thatis a
constraint C € C such that C’ = C and vice versa. The most trivial guarantee is
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derivable and just states that the output formula with objective f” and constraints
F’ can be derived from the original formula with objective f and constraints
F using the proof system preserving (F, f)-validity. The stronger guarantees
are equisatisfiable and equioptimal, which are used for decision and optimization
problems, respectively. The guarantee equisatisfiable guarantees that the output
constraints F’ are satisfiable if and only if the original constraints F are satisfiable.
The guarantee equioptimal guarantees that the output problem with objective f’
and constraint F’ has the same optimal value as the input problem with objective
f and constraint F. The guarantees equisatisfiable and equioptimal can only be
used if s = T. This makes it possible to have a standalone certificate for problem
reformulations. It is also possible to specify that the proof has no output.

Proof Conclusion The second part of the footer is the conclusion of the proof. Four
types of conclusion are supported, which also includes that there is no conclusion.
Let (C, D, f*,0,2,¢,u,0,s) be the configuration at the end of the proof. If we
are just interested in deciding the satisfiability a problem with constraints F, then
the conclusion can either be satisfiable or unsatisfiable. If we conclude with
unsatisfiable, then it is checked if L € CUD. To use the conclusion satisfiable, it must
hold that either v < oo or that a solution specified together with the conclusion
satisfies F. For optimization instances we are able to conclude with bounds on the
optimal value of the objective function f, which can also be specified to be co. For
the lower bound /0, it is checked that the lower bounding constraint f > Ib € CUD.
For the upper bound ub, it is checked whether v < ub or that a solution p specified
together with the conclusion satisfies F and f(p) < ub.

Hinted Reverse Unit Propagation Similar to the LRAT format [CHH*17], reverse
unit propagation now supports hints pointing towards the constraints that have
to be propagated to derive the contradiction. This can significantly speed up the
checker, as it only has to look at a subset of the database to detect the propagations.
Additionally, it is also supported that only some RUP steps are annotated with
hints and the other RUP steps do not have any hints to make the format more
flexible, which is similar to the FRAT format [BCH21].

Strengthening-to-Core mode Finally, in Paper III the strengthening-to-core mode
is introduced. This mode is disabled by default and can be turned on and off in
the proof. The strengthening-to-core mode can be activated if the derived set D
is empty, hence it can change the configuration from (C, 0, f*,0x,z, g,u,v, L) to
(C,0,f*,0-,%z,g,u,0v,T). The strengthening-to-core mode can be disabled at any
time transitioning from (C, D, f*,0s,Z,¢,u,v,T) to (C,D, f*,05,2Z,8,u,v, L).
The idea of this mode is that constraints derived by strengthening rules are added
immediately to the core set, which guarantees that any solution satisfying C also
satisfies O. Enabling strengthening-to-core preserves (F, f)-validity, since Items 1
to 4 in Definition 1 are not affected. Item 5 in Definition 1 is preserved, since D = 0,
so that any satisfying assignment to C also satisfies C U D.
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To maintain that the proof system is sound while the strengthening-to-core
is enabled, we need to be careful when deleting constraints from the core set C.
When using checked deletion, then the substitution witness w used for (10) has to
be trivial, which means validity of rule requires an implicational cutting planes
proof showing that

Ce\{cHu{-Ci+C. (12)

When using unchecked deletions from the core set, then the derived set D
must be empty. This means we transition from (C,0, f*,0x,%Z,g,u,v,T) to
(c\{C},0,f,0=,Z,L,u,v,1).

The reasons for this restriction of deletion is that otherwise it would be possible
to derive contradiction from any satisfiable formula F. To see that this is possible,
we consider that the strengthening-to-core mode is enabled. For a variable y that
is not used in F, we derive y > 1 using redundance-based strengthening with
the witness {y +— 1}, which is added to C. Using a cutting planes derivation we
can derive y > 1, which is added to the derived set. Without the restrictions, we
can delete y > 1 from C by either checked deletion using the witness {y + 1} or
unchecked deletion. Then we derive ¥ > 1 by redundance-based strengthening
using the witness {y + 0}. Finally, we derive the contradiction 0 > 1 using cutting
planes by adding v > 1, which is still in the derived set, and v > 1.

If strengthening-to-core is enabled, then the redundance-based strengthening
rule deriving constraint C transitions from (C, D, f*,0s,%,g,u,v,T) to (C U
{C},D, f*,0,2,g,u,v, T). This requires that we are given a substitution witness
w and cutting planes proofs showing that

CUDU{-C}+(CU{CHIoU{f 2 fla}VUO=(Z,Z]w) (13)

using only implicational rules. The advantage of (13) compared to (6) is that we
no longer have to derive D[,,. Proposition 3 shows that this updated rule still
preserves (F, f)-validity.

Proposition 3. If (C, D, f*,0s,%,g,u,v, T)is (F, f)-valid, we can use the redundance-
based strengthening rule to transition to (CU{C}, D, f*, 05,2, ¢, u,v, T), which is also
(F, f)-valid.

Proof. We assume that (C, D, f*,0s,2,g,u,v,T) is (F, f)-valid. For Item 1 in
Definition 1, we can modify the proof by Bogaerts et al. [BGMN23, Proposition 7].
We know that for every u’ < u, thatif FU {f < u’} is satisfiable, then C U {f* < u’}
is also satisfiable. We now show that C U {f* < u’} U {C} is also satisfiable by
constructing assignments p’ satisfying C U {f* < u’} U {C}. Let p be a total
assignment satisfying C U {f* < u’}. If p also satisfies C U {f* < u’} U {C}, then
we use p’ = p.

Otherwise, we know that p satisfies =C. Since p satisfies C, p also satisfies
C U D by Item 5 in Definition 1. Therefore, p satisfies CUD U {=C}. By (13), p also
satisfies (C U {C})1o U{f* = f*1o} UO=(Z,Z1). Using p’ = p o w, it holds that
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(CU{CHT)p = (CU{CHTpow, ie., p’ satisfies C U {C}. Finally, p’ also satisfies
f* = u’, since p satisfies f* > f*I, and f* Iy = f*Tpow < f*Tp S 0.

Items 2, 4, and 5 in Definition 1 is trivially preserved, as any assignment
satisfying C U {C} also satisfies C. Item 3 in Definition 1 is preserved, as it does
not depend on C. O

For dominance-based strengthening with strengthening-to-core, we transition
from (C,D, f*,0s,2Z,¢,u,v, T)to (CU{C}, D, f*,0,2, g, u,v, T). This requires
that we are given a substitution witness w and proofs showing that (7) and either
(8) or (9) hold. Since the derived constraint is added to the core set instead of the
derived set, the proof showing that dominance-based strengthening preserves
(F, f)-validity also shows that the rule preserves (F, f)-validity if strengthening-
to-core is enabled.

Kernel Proof Format Finally, to make efficient formally verified proof checkers
feasible for Papers V and VI, we have defined two variants of the proof format.
The augmented format contains all the rules, whereas the kernel format only contains
a subset of the rules in the VErIPB format. In the kernel format all RUP steps must
be annotated with hints, syntactic implication is not allowed, all solutions logged
must be total assignments, and constraints required for the conclusion must be
referenced explicitly.

4.3 Pseudo-Boolean Proof Checking Tool

For the discussion of implementation details, we will focus on the algorithms and
data structures used in the reference implementation VeriPB, which also supports
the elaboration of proofs.> The other major implementation of a checker for the
VERIPB system is the formally verified proof checker CAKePB.®

The proof checker VErIPB uses many specialized data structures to improve
the running time for checking proof, e.g., specialized data structures to do unit
propagation for different kinds of constraints [Dev20b].

The main contribution of Paper V is the elaboration of an augmented proof to a
kernel proof that the formally verified proof checker CAkePB can handle. This can
basically be thought of as certification for the reasoning performed by VErIPB in a
format that CAxePB can check.

5The source code of VEerIPB is available at https://gitlab.com/MIAOresearch/software/
VeriPB.

6The source code and correctness proofs of CAkePB are available at https://github. com/CakeML/
cakeml/tree/master/examples/pseudo_bool, and precompiled binaries of CAxePB are available at
https://gitlab.com/MIAOresearch/software/cakepb.
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5 Main Results of This Thesis

In this section an overview of the papers included in this thesis is given to highlight
the contribution of this thesis to the field. The contributions of each paper are
detailed, but some papers have overlapping topics.

There are several ways to group the included papers together. The Papers I
to IV do not use formal verification, hence the results obtained from the verification
process do not have any formal guarantee. Papers V and VI use the formally
verified proof checker CaxePB. Papers 11, III, and VI are about solving MaxSAT.
Papers I and IV are about solving pseudo-Boolean problems. Papers IV and VI are
both about presolving and preprocessing techniques that are used in combinatorial
optimization.

5.1 Summary of PaperI

Stephan Gocht, Jakob Nordstrém, Ruben Martins, and Andy Oertel. “Certified
CNF Translations for Pseudo-Boolean Solving”. Accepted for publication in
Journal of Artificial Intelligence Research. Preliminary version in Proceedings of the
25th International Conference on Theory and Applications of Satisfiability Testing
(SAT "22), volume 236 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 16:1-16:25, August 2022.

Some MaxSAT and all pseudo-Boolean solvers that are based on SAT solvers encode
pseudo-Boolean constraint into clauses [ES06, MML14, SN15, PRB18]. Additionally,
for modelling it can be easier to state a pseudo-Boolean optimization problem and
then use a tool to encode the pseudo-Boolean constraints into CNF [PS15]. While
certification for the SAT solvers is well-established [Heu21], it has remained out of
reach to certify encoding pseudo-Boolean constraints into CNF.

In this paper, we show how algorithms for encoding pseudo-Boolean constraints
into CNF can be made certifying. We provide a general framework that can be
used to certify the correctness for different encodings. The framework provides a
skeleton algorithm, which only requires filling in the details for each component
specific to the encoding. To illustrate how this framework can be used, we provide
certifying algorithms for sequential counter [Sin05], binary adder network [ES06],
totalizer [BB03], and generalized totalizer [[MM15] encodings.

By concatenating the certificate for the correctness of the encoding and a
DRAT certificate [WHH14] from a SAT solver, which is syntactically modified
to be compatible with VErIPB, we can get a certificate showing that the original
pseudo-Boolean constraints are unsatisfiable. The certificate for satisfiability is a
solution satisfying all pseudo-Boolean constraints.

We further demonstrate how certifying PB to CNF encodings can be used to
certify the correctness of the optimal value f* obtained by MaxSAT solvers. This is
done checking that the optimal solution x* provided by the MaxSAT solver satisfies
all clauses F and checking that the reported optimal value f* matches the objective
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value of the optimal solution. Then we encode the pseudo-Boolean constraint
f < f* that the objective function f should be strictly smaller than the optimal
value f* into clause F*. If the SAT solver returns unsatisfiable on the formula
F U F*, then we get a certificate showing that there is no feasible solution with a
better objective value than the optimal value. However, this certificate gives no
guarantee that the reasoning in the MaxSAT solver is correct for this instance.

We implemented the certification inside an encodings library and changed
the SAT solver Kissat [BFF*24] to output proofs in the VErIPB format. Our
experimental evaluation on the benchmark instances of the pseudo-Boolean
competition 2016 [Psel6] showed that our approach can be used in practice, even
though there is still room for improvements. We also evaluated the certification of
optimal values returned by MaxSAT solvers and verified that the optimal values
obtained in the MaxSAT Evaluation 2022 [Max22] are correct.

5.2 Summary of Paper II

Jeremias Berg, Bart Bogaerts, Jakob Nordstrom, Andy Oertel, and Dieter
Vandesande. “Certified Core-Guided MaxSAT Solving”. In Proceedings of the 29th
International Conference on Automated Deduction (CADE-29), volume 14132 of Lecture
Notes in Computer Science, pages 1-22. Springer, July 2023.

Core-guided MaxSAT solving is one of the state-of-the-art approaches to solve the
MaxSAT problem. In this paper for the first time we show how to add certification
to core-guided MaxSAT solvers with all advanced techniques used in these solvers.

The certification of the calls to the SAT solver can be used out of the box by
syntactically changing the output to the VErIPB format. Since the core clause
returned by the SAT solver is learnt by conflict analysis, it can be derived by a
RUP step. We show that the objective reformulation in the OLL algorithm can
be certified using the VERIPB system. This can easily be done, as new variables
introduced by reification can be represented as two pseudo-Boolean constraints
per variable. For the encoding of the reification constraints into CNF, we build
on our prior work in Paper I and in [VDB22]. To transfer a lower bound /b on the
reformulated objective f,,s > Ib to the original objective fyg > Ib, we maintain the
pseudo-Boolean constraint forig > frf. As other core-guided algorithms are very
similar to the OLL algorithm, it should be straightforward to adapt our approach
to any core-guided MaxSAT algorithm.

We also provide certification for improvements to the standard OLL algorithm.
Specifically, we explain how core exhaustion [ABGL12], core minimization [Mar10],
hardening [ABGL12], intrinsic at-most-one constraints [IMM19], lazy variable
encodings [MJML14], stratification [ABGL12, MAGL11], structure sharing [IB]21],
upper bound estimation [[IMM19], and weight-aware core extraction [B]J17] can be
made certifying.

We implemented our certification approach into the state-of-the-art core guided
MaxSAT solver CGSS [IB]21] that uses all the aforementioned techniques. We
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experimentally evaluated our approach on the benchmark instances of the MaxSAT
Evaluation 2022 [Max22]. During these experiments, we detected a bug in the
reasoning of CGSS, which it inherited from its predecessor RC2 [IMM19]. This bug
would not have been discovered by just checking the optimal solution returned by
the solver. This shows that our certification approach can be successfully used to
detect bugs in established tools.

After fixing this bug, we were able to confirm that our approach is usable in
practice. The overhead for generating the certificate while solving the instance is
very low, except for some outliers due to interfacing between Python and C++.
The performance for checking the certificate was sufficient, but could be improved
by further engineering the VErIPB proof checker to be more efficient.

5.3 Summary of Paper III

Jeremias Berg, Bart Bogaerts, Jakob Nordstrom, Andy Oertel, Tobias Paxian, and
Dieter Vandesand. “Certifying Without Loss of Generality Reasoning in
Solution-Improving Maximum Satisfiability”. In Proceedings of the 30th
International Conference on Principles and Practice of Constraint Programming (CP '24),
volume 307 of Leibniz International Proceedings in Informatics (LIPIcs), pages
4:1-4:28, September 2024.

Vandesande et al. [VDB22] showed how to certify the correctness of solution-
improving search (SIS) MaxSAT solvers with VEriIPB. However, they implemented
certification for the solver QMaxSAT [KZFH12], which is no longer state-of-the-art.
For instance, the modern SIS MaxSAT solver Pacose [PRB18] uses the structure
of the dynamic generalized polynomial watchdog (DGPW) encoding to perform
advanced without loss of generality reasoning.

While it is possible to certify the correctness of the encoding using the framework
in Paper I or the work by Vandesande et al., the advanced reasoning performed
using the encoding remains out of reach. To solve this issue, we introduce the
idea to construct a shadow circuit over a new set of variables that mimics the
circuit that is used for the DGPW encoding. Then any without loss of generality
reasoning performed by the solver is certified using a shadow circuit that has the
same structure except for the variables that are without loss of generality assumed
to some value. Reasoning performed on the shadow circuit is transferred back to
the original circuit by redundance-based strengthening mapping each original
variable to its shadow variable and the assumed variables to their assumed value.

This idea requires that the variables introduced by the original encoding
only appear in encoding constraints, as this trivializes all redundance-based
strengthening proofgoals from core and derived set. However, the SAT solver
might learn new clauses over these variables that are important for the SAT solver
reasoning and have no shadow circuit counterpart. To mitigate this issue, we
introduce the strengthening-to-core mode. With this mode enabled, all proofgoals
from the clauses learnt by the SAT solver can be ignored, as they end up in the
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derived set of constraints. The strengthening-to-core mode basically enables us to
use the shadow circuit approach in a complex system with many components.
Modern SIS MaxSAT solvers also employ a wide range of additional techniques
to improve performance. In this paper, we also provide certifying algorithms for
all techniques used in the solver Pacose. Specifically, these techniques are adder
caching [BBR09, PRB18], cone-of-influence encoding [PRB18], generalized boolean
multilevel optimization (GBMO) [ALMO09, PRB21], and TrimMaxSAT [PRB21].
We also discuss in detail why the alternative certification approach of running
the MaxSAT solver without certification, checking the solution, and creating a
certificate using a SAT solver is not feasible in practice. The main reasons are:

(i) the encoding of the solution-improving constraint still need to be certified;
(ii) the running time of SAT solver and certificate size are unpredictable; and
(iii) anytime solving cannot be certified this way.

We implemented our certification approach into the MaxSAT solver Pacose For
GBMO, two different approaches are used, but during preliminary experiments
we noticed that only one approach is used in practice. We only implemented
certification for the one approach that is actually used, but explain certification
for both in the paper. The correctness and performance of our approach is
experimentally evaluated on the MaxSAT Evaluation 2023 [Max23] benchmarks.
The experiments show that our approach is correct, but the performance for
generating the certificate is a bit slower than what would be desirable for practical
usage. We identified that some overhead in generating the certificate was due to
the shadow circuits. However, some overhead seems to be due to inefficient data
structures, which could be improved by further engineering effort.

5.4 Summary of Paper IV

Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordstrém.
“Certifying MIP-Based Presolve Reductions for 0-1 Integer Linear Programs”. In
Proceedings of the 21st International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research (CPAIOR '24), volume
14742 of Lecture Notes in Computer Science, pages 310-328. Springer, May 2024.

Presolving is an important technique for the performance of MIP solving [ABG*20].
However, the VIPR certification system [CGS17] developed to certify MIP solving
is not able to certify advanced presolving techniques. The main issue with VIPR is
that it cannot certify reasoning that removes feasible solutions as long as at least
one optimal solution is preserved.

Since 0-1 ILP is a specialization of MIP, our idea is that we can pioneer
how presolving can be certified for 0-1 ILP to pave the way for certification of
presolving for MIP in the future. This allows us to use the VERIPB system to
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certify the correctness of the presolving techniques, as VErRIPB can reason with 0-1
ILPs and has the redundance-based strengthening to deal with techniques that
remove feasible solutions. In this paper, we present certification for all presolving
techniques applied to 0-1 ILPs by the state-of-the-art presolver PAPILO [GGH22],
which are most of the techniques implemented in PaAPILO.

To enable certification for all the technique, we extend the VErIPB system with
the objective update rule. This rule is required to keep the redundance-based
strengthening steps as simple as possible. Changing the objective helps with that,
since redundance-based strengthening requires showing that for an objective f
and a substitution @ the constraint f > f[, can be derived. Additionally, the
objective update rule makes it possible for the certificate to follow the reasoning
performed by presolvers more closely.

We show two ways to specify the objective change. The first approach is by
stating the new objective, which is efficient when the new objective is small. The
second approach is by stating the difference between the new and old objective,
which is efficient for small changes to the objective.

We implemented our certification approach in PAPILO and checked the proofs
using VErIPB. To evaluate our approach, we conducted experiments on MIPLIB
instances converted to 0-1 ILPs [Dev20a] and the instances of the pseudo-Boolean
competition 2016 [Psel6]. We experimentally verified that our approach is correct
and that the overhead for generating the proof is negligible. The performance
for checking the certificate could be improved. A reason for the poor checking
performance is that the presolver writes preconstructed proof artefacts to the
certificate, whereas the checker actually has to check the correctness of these
steps. For techniques relying on propagation with compare certification using
RUP against cutting planes reasoning concluding that RUP should be preferred
due to smaller certificates.

5.5 Summary of PaperV

Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordstrém, Andy
Oertel, and Yong Kiam Tan. “End-to-End Verification for Subgraph Solving”. In
Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI '24), pages
8038-8047, Febuary 2024.

Certifying algorithms move the trust that the implementation is correct from the
solver to the checker. For complex systems like DRAT or VeriPB, correctness is
not trivial to guarantee. The common way to address this issue is with a formally
verified checker, as this reduces trust base significantly. For instance, for checking
SAT solver certificates there are cake_rLpr [THM23] and Grarcuk [Lam20]. This
paper introduces the first formally verified checker for VErIPB certificates.

We introduce the formally verified checker CakePB, which is verified in
the CakeML ecosystem [MO14, GMKN17]. Using the CAkeEML ecosystem the
things that we have to trust are minimized and are either easy to check or
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extensively validated. This gives us the highest assurance standard for binary code
extraction [KMTM18].

To assure that the certificate is certifying the correct problem, the formally
verified checker must be able to parse and understand the original problem given to
the solver and not just a pseudo-Boolean encoding of it. Thus, if the checker accepts
the certificate, we can be sure that the answer given by the solver is correct with
respect to the input problem. However, we still maintain that the checker is flexible
and easily extensible to check certificates for different problems. This is achieved
by separating the checker in a frontend that encodes the original problem into a
pseudo-Boolean optimization problem and a backend that performs reasoning
based on the pseudo-Boolean encoding. The final conclusion obtained at the end,
i.e., what the certificate certified, is also translated back by the frontend to the
original problem domain.

Due to the poor performance of formally verified propagation algorithms, we
elaborate the proof before it is checked by CakePB, which is commonly used for
SAT solving certificates [CHH*17]. The elaboration is done by VeriPB, which adds
antecedents to RUP steps and syntactic implication is changed to a cutting planes
derivation. We even show that elaboration can be used to synchronize slightly
different encodings used in the solver and the formally verified checker.

To demonstrate that our approach works in practice, we implemented formally
verified checkers for the problems of subgraph isomorphism, clique, and maximum
common (connected) induced subgraph supporting all rules in the VErIPB system
described in [BGMN23]. For the purpose of this thesis, the details for the specific
graph problems are omitted and a detailed description of the problems can be
found in [GMN20, GMM™*20]. All checkers use the same backend as described
above. The certifying algorithm to solve the graph problems [GMN20, GMM™*20]
are slightly modified to enable syncing up the different encodings. Additionally,
checked deletion [BGMN23] has been fully implemented into VerIPB.

We conducted experiments on the same benchmark used in [GMN20, GMM*20].
We experimentally validated that our approach and the implementation are correct.
The running time to check and elaborate the proof is slightly larger than just
checking the proof. Checking the elaborated proof with CakePB is a few times
faster than VErIPB, as the elaborated proof contains a lot of details that speed up
the running time of the checker.
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5.6 Summary of Paper VI

Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Jarvisalo,
Magnus O. Myreen, and Jakob Nordstrom. “Certified MaxSAT Preprocessing”. In
Proceedings of the 12th International Joint Conference on Automated Reasoning

(IJCAR "24), volume 14739 of Lecture Notes in Computer Science, pages 396-418.
Springer, July 2024.

Preprocessing is an important technique for modern MaxSAT solving [KBSJ17,
IBJ22]. In this paper, we present certifying algorithms using the VErIPB system for
all preprocessing techniques in the dedicated MaxSAT preprocessor MaxPre [IB]22].
By using VErIPB we have the advantage that it is possible to integrate certification
for additional techniques, like advanced symmetry breaking, in the future.

To certify standalone problem reformulation tools, like preprocessors, we
extended the VErIPB system to support an output section. Hence, we certify that
the problem resulting from the core constraints together with the objective at the
end of the proof has the same optimal value as the original problem. Additionally,
the checker verifies that the core constraints and the objective at the end of the
proof match the output problem returned by the standalone reformulation tool.
This is done by checking equivalence of the objective and that for every constraint
in the core set there is a constraint in the output problem.

We extended the formally verified checker CaxePB with support for the output
section and added a frontend for MaxSAT problems. For MaxSAT preprocessing
certificates, this means that we get formal guarantee that the original problem
given in MaxSAT format has the same optimal value as the reformulated problem
returned by the preprocessor in MaxSAT format.

We implemented certification into the MaxSAT preprocessor MaxPre. The
correctness of our approach is experimentally verified using the benchmarks from
the MaxSAT Evaluation 2023 [Max23]. The overhead for generating the certificate
is a bit slower than desired, but a lot of time is spent on renaming variables required
to match the MaxSAT format, which could be improved by adding a new rule.
Most of the time for checking the proof is spent in VEriPB. Hence, we propose that
the performance of the toolchain could be improved if the preprocessor would
already produce RUP steps with hints.

5.7 Further Contributions Outside Included Papers

Especially with respect to VErIPB, there have been contributions that have not
ended up in any publications included in the thesis. These contributions are not
published in any peer-reviewed document.

First and foremost, there has been some work to make the checker ready to be
used in the SAT competition and the pseudo-Boolean competition, which require
a toolchain that checks the proof against a formally verified checker. For the
SAT competition 2023 [BHI"23], we pioneered the formal verification toolchain
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for decision instances, which was later published in Paper V. To improve the
performance of the toolchain for the SAT competition 2024 [HI]S24], we developed
RUP steps with hints similar to the hints in RUP in the LRAT format [CHH*17]
and added more autoproving techniques in CAkePB to reduce the amount of detail
added in the elaboration. For the pseudo-Boolean competition 2024 [Pse24], we
added elaboration for the advanced autoproving technique of substituted database
implication, which was required by some pseudo-Boolean solver.

To avoid the synchronization of the encoding between CaxePB and the checker
for more elaborate encoding and to simplify the implication of certification for
classical optimal planning algorithms [DHN*25], constraint labels were added to
the VErIPB system.

6 Conclusions and Future Work

This thesis shows how pseudo-Boolean reasoning can be used to get efficient
certifying algorithms for different combinatorial optimization paradigms. Most
notably, we demonstrate how to certify state-of-the-art MaxSAT algorithms that
use solution-improving and core-guided search in Papers I to III. Specifically,
Paper I introduces a general approach to certify CNF encodings of pseudo-Boolean
constraints used everywhere in MaxSAT solving to handle the pseudo-Boolean
objective function.

We also present certification for state-of-the-art preprocessing (aka. presolving)
techniques, which are crucial for the performance modern combinatorial optimiza-
tion solvers. The certification approach is demonstrated for all MIP presolving
techniques that preserve the variable domain {0,1} (see Paper IV) and for all
techniques used in MaxSAT preprocessing (see Paper VI).

To guarantee that certificates generated in our VErIPB format can be trusted,
we developed a formally verified proof checker in Papers V and VI that has full
support for our proof system. With the approach of formal verification, the amount
of code that has to be trusted is minimized and parts of the code are audited
independently. However, the performance of formally verified software can not
compete with untrusted software, which makes it impossible to implement some
syntactic sugar rules that the untrusted checker supports. To bridge this gap, the
untrusted checker has been extended with elaboration to translate the syntactic
sugar to other rules that the formally verified checker supports.

6.1 Short Term Future Work

This thesis introduction is concluded with a discussion of future work on certifying
combinatorial optimization based on pseudo-Boolean reasoning. We start with a
discussion of short term future work that I might work on during the rest of my
PhD.

First and foremost, as mentioned multiple times in the summary of the included
papers, the performance of the unverified proof checker VErIPB and pipeline with
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the formally verified checker CakePB could be improved. Some performance
issues can be resolved by spending more time on engineering the checker and
using better known algorithms. For instance, the proof checker VerIPB is currently
implemented in Python and C++, where Python is used for the high-level structure
and C++ for low-level performance implementation improvements. However, it
was observed multiple times that the use of Python and the interfacing between
both languages causes a loss in performance. Therefore, the performance of the
proof checker VErIPB could be improved greatly if it were implemented in one
language that allows low-level implementation improvements. There has also
been some research on more efficient algorithms for checking some rules, e.g., for
unit propagation [NORZ24], that could be implemented for the VeriPB.

However, there are also open problems for algorithms to improve the per-
formance of the checker and investigate how proof can be efficiently elaborated
to a proof that can be checked by a formally verified checker. Specifically, the
elaboration algorithm to generate the hints for reverse unit propagation is currently
very naive, which makes VEerIPB fast, but fewer hints might be sufficient, which
might improve the performance of CakePB. It is unclear if spending more time
on elaboration can improve the running time of the formally verified checking
pipeline as a whole.

While it was shown by [BGMN23] that certification for fully general symmetry
breaking is possible using VerIPB, it was recently discovered that their certification
approach has a linear factor overhead compared to the best algorithms for logging.
It should also be possible to get rid of this linear factor overhead when checking
symmetry breaking certificates. The main issue is the definition of the order used
for dominance-based strengthening, which requires quadratically many bits to
encode. However, by using additional variables that are exclusive to the order
definition, it should be possible to encode the order with linearly many bits.

To demonstrate that our proof logging approach is general, it should be possible
certify incremental solving. Incremental solvers use information derived from
previous calls to the solving engine to speed up subsequent calls, where it is
not trivial which derivations can be reused. While there has been previous
work on certifying incremental SAT solvers [FPFB24], incremental MaxSAT and
pseudo-Boolean solvers are getting popular and are not certifying.

Another combinatorial problem that could be certified using pseudo-Boolean
reasoning, is model (solution) enumeration and counting. The goal of model
enumeration is to find all feasible solutions with respect to a set of constraints.
However, in model counting we are only interested in the number of feasible
solutions. There are several competing proof systems and certification approaches
for counting the number of solutions satisfying a SAT formula [Cap19, FHR22,
BHS23, BNAH23, CCS24]. The ideas from these systems could be generalized to
certify model counting over pseudo-Boolean constraints. For model enumeration,
it is still unclear what should be certified. The natural idea would be to check
that the solutions satisfy all constraints and are disjoint. This would then be
accompanied by a proof that shows that all solutions have been enumerated.
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To improve the performance of SAT proof checkers, proofs are checked starting
with the conclusion and only the steps required to show the conclusion are
checked [WHH14], which can significantly reduce the number of rules that have to
be checked. The checker can then also produce a trimmed proof that only contains
the steps required to show the conclusion. However, implementing this idea for
our proof system is a non-trivial task due to the redundance-based strengthening
rules and its proof obligations.

The idea of weak substitution redundancy could be added to the redundance-
based strengthening rule to enable more expressive reasoning to achieve shorter
proofs.

6.2 Long Term Future Work

Finally, we discuss some future long term directions that research in certifying
algorithms can take.

The current proof system operates with pseudo-Boolean constraint, but it should
be possible to generalize the rules to constraints that use rational coefficients and
use integer or even rational variables. There already exists preliminary work
for such an extension of the proof system [DEGH23], but there are still unclear
how efficient logging and checking can be implemented for this theoretical proof
system.

While parallel and distributed combinatorial solvers are becoming more and
more mainstream [SRB25], almost all checkers are currently completely sequential.
There are several ways to divide the checking between different cores and machines.
For distributed checking the proof could be divided into consecutive parts and
each part is checked independently on one machine, but this requires knowing the
database at the start of each part. Another idea that is more viable in a parallel
setting is checking each rule in parallel. This would require that the database can
be accessed asynchronously.

As proof checking becomes comparable to the performance of solvers [PFB23,
Lam?24], it becomes viable to run a proof checker in parallel to a solver. This
would reduce the time to receive a trusted result for the problem and the solver
immediately fails when its reasoning is incorrect. To reduce the overhead for
reading and writing the proof, the data structure for each rule could directly be
constructed by the solver and then send to the checker through an application
programming interface.

To make it as easy as possible to make certification mainstream and imple-
mented in more and more solvers, it might help to have a library that implements
certification for common reasoning techniques. This should be very helpful, as we
observed that similar reasoning is used in all kinds of solvers. Alternatively, the
proof format could also be made extensible so that new rules can be defined in
terms of existing rules, which makes it possible to replace these new rules with
standard VEeriPB rules in the elaboration phase.

VERIPB currently only has one fixed mode for checking the proof on how strict
it is with the claimed reasoning being correct. However, different applications
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might require different modes. If we are only interested in knowing that the result
is correct, we could use a permissive mode that tries to fix up the proof if the
reasoning is slightly wrong. The other extreme could be a strict mode where
VERIPB enforces that all reasoning in the proof is correct without any ambiguities,
which can be helpful for debugging and finding bugs as fast as possible.

The permissive mode and the autoproving performed by VErIPB in general
could be made even more powerful by integrating a pseudo-Boolean solver, e.g.,
RounpinGSat. The idea would be to call a pseudo-Boolean solver on the formula and
the negation of the constraint that we want to derive. We consider this approach
to be successful if the solver derives contradiction. This can be compared to
SLepGeHAMMER [BN10] for the higher-order logic proof assistant IsaBeLLe [NWP02].
However, allowing a pseudo-Boolean solver to check the correctness of a rule
breaks the guarantee each proof rule is checkable in polynomial time.

For developing and prototyping it might be beneficial to have an interactive
mode in the checker. This could mean that the proof checker runs until a specified
point in the proof and then a user can interact with the checker using the rules of
the proof system. Similar to a debugger the user might also be able to explore the
current state of the checker by viewing the constraints available at the given point
in the proof.

Finally, proofs can also be used to analyse the reasoning performed by solvers
to better understand which techniques and heuristics are beneficial for making
progress to the result. This might also unveil performance bugs due to suboptimal
reasoning, e.g., a derived contradiction has a slack that is larger than one with
respect to the empty assignment. The analysis can also be used to explain why the
solver came to its result in a format that is understandable to humans.
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Certified CNF Translations for
Pseudo-Boolean Solving

Abstract

The dramatic improvements in Boolean satisfiability (SAT) solving since the turn
of the millennium have made it possible to leverage state-of-the-art conflict-driven
clause learning (CDCL) solvers for many combinatorial problems in academia and
industry, and the use of proof logging has played a crucial role in increasing the
confidence that the results these solvers produce are correct. However, the fact
that SAT proof logging is performed in conjunctive normal form (CNF) clausal
format means that it has not been possible to extend guarantees of correctness to
the use of SAT solvers for more expressive combinatorial paradigms, where the
first step is an unverified translation of the input to CNF.

In this work, we show how cutting-planes-based reasoning can provide proof
logging for solvers that translate pseudo-Boolean (a.k.a. 0-1 integer linear) decision
problems to CNF and then run CDCL. To support a wide range of encodings,
we provide a uniform and easily extensible framework for proof logging of CNF
translations. We are hopeful that this is just a first step towards providing a unified
proof logging approach that will also extend to maximum satisfiability (MaxSAT)
solving and pseudo-Boolean optimization in general.

1 Introduction

Boolean satisfiability (SAT) solving has witnessed striking improvements over the
last couple of decades, starting with the introduction of conflict-driven clause learning
(CDCL) SAT solvers [MS99, MMZ*01], and this has led to a wide range of applica-
tions including large-scale problems in both academia and industry [BHvMW21].
The conflict-driven paradigm has also been successfully exported to other areas such

Stephan Gocht, Jakob Nordstrom, Ruben Martins, and Andy Oertel. “Certified CNF Translations for
Pseudo-Boolean Solving”. Accepted for publication in Journal of Artificial Intelligence Research.
Preliminary version in Proceedings of the 25th International Conference on Theory and Applications of
Satisfiability Testing (SAT '22), volume 236 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 16:1-16:25, August 2022.
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as maximum satisfiability (MaxSAT), pseudo-Boolean (PB) solving, constraint program-
ming (CP), and mixed integer linear programming (MIP). As modern combinatorial
solvers are used to attack ever more challenging problems, and employ ever more
sophisticated heuristics and optimizations to do so, the question arises whether we
can trust the results they produce. Sadly, it is well documented that state-of-the-art
CP and MIP solvers can return incorrect solutions [AGJ*t18, CKSW13, GSD19].
For SAT solvers, however, analogous problems [BLB10] have been successfully
addressed by the introduction of proof logging, requiring that solvers should be
certifying [MMNSI11] in the sense that they output machine-verifiable proofs of
their claims that can be verified by a stand-alone proof checker.

A number of different proof logging formats have been developed for SAT solv-
ing, including RUP [GNO03, Van08], TraceCheck [Bie06], DRAT [HHW13a, HHW13b,
WHH14], GRIT [CEMSSK17], and LRAT [CFHH*17]. Since 2013, the SAT com-
petitions [BBH]13] require solvers to be certifying, with DRAT established as the
standard format. It would be highly desirable to have such proof logging also for
stronger combinatorial solving paradigms, but while methods such as DRAT are
extremely powerful in theory, the limitation to a clausal format makes it hard to
capture more advanced forms of reasoning in a succinct way. A more fundamental
concern is that it is not clear how these proof logging methods should deal with
input that is not presented in conjunctive normal form (CNF). One way to address
this problem could be to allow extensions to the DRAT format [BCH21]. However,
we focus on another approach pursued in recent years to develop stronger proof
logging methods based on more expressive formalisms such as binary decision
diagrams [BB21], algebraic reasoning [KBBN22, KB21, KFB20, RBK*18], pseudo-
Boolean reasoning [EGMN20, GMM*20, GMN20, GN21, BGMN22, GMN22], and
integer linear programming [CGS517, EG21].

Our Contribution In this work, we consider the use of CDCL for pseudo-Boolean
solving, where the pseudo-Boolean input (i.e., a 0-1 integer linear program) is
translated to CNF and passed to a SAT solver, as pioneered in MiNiSar+ [ES06].
The two solvers NaPS [SN15] and Open-WBO [MML14] using this approach were
among the top performers in the latest pseudo-Boolean evaluation in 2016. While
DRAT proof logging can certify unsatisfiability of the translated formula, it cannot
prove correctness of the translation, not only since there is no known method of
carrying out PB reasoning efficiently in DRAT (except for constraints with small
coefficients [BBH22]), but also, and more fundamentally, because the input is not
in CNF.

We demonstrate how to instead use the cutting planes proof method [CCT87],
enhanced with a rule for introducing extension variables [GN21], to show that
the CNF formula resulting from the translation can be derived from the original
pseudo-Boolean constraints. Since this method is a strict extension of DRAT,
we can combine the proof for the translation with the SAT solver DRAT proof
log (with appropriate syntactic modifications). In this way we achieve end-to-
end verification of the pseudo-Boolean solving process using the proof checker
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: PB to CNF : } result:
PB formula translation SAT solver SAT / UNSAT

pseudo-Boolean DRAT proof /
proof solution

verifier : verification
(VeriPB) of answer
Figure 1: Proof logging workflow for pseudo-Boolean solving with our contribution

highlighted in blue boldface.

VErIPB [GN21, BGMN22] as illustrated in Figure 1. We note that verifying the
correctness of the pseudo-Boolean encoding for the problem is beyond the scope
of this paper.

One challenge when certifying PB-to-CNF translations is that there are many
different ways of encoding pseudo-Boolean constraints into CNF (as catalogued
in, e.g., [PS15]), and it is time-consuming (and error-prone) to code up proof
logging for every single encoding. However, many of the encodings can be
understood as first designing a circuit to evaluate whether the PB constraint is
satisfied, and then writing down a CNF formula enforcing the computation of
this circuit. An important part of our contribution is that we develop a general
proof logging method for a wide class of such circuits. The pseudo-Boolean format
used for proof logging makes it easy to derive 0-1 linear inequalities describing
the circuit computations, and once this has been done the desired clauses in
the CNF translation can simply be obtained by so-called reverse unit propagation
(RUP) [GNO03, Van08], obviating the need for complicated syntactic proofs. We
apply this method to the sequential counter [Sin05], totalizer [BBO3], generalized
totalizer [[MM15] and binary adder network [ES06, War98] encodings, and report
results from an empirical evaluation of the efficiency of proof generation and
verification. As an additional application, we show how our certified PB-to-CNF
translations can be combined with SAT proof logging to certify, for the first time,
the correctness of claimed optimal values for instances in the MaxSAT Evaluation
2022.

We note that a stronger result than certifying that the CNF translation can
be derived from the pseudo-Boolean input would be to certify equivalence of the
original pseudo-Boolean formula F and the translated CNF formula F’, in the sense
that (a) any satisfying assignment a to F could be extended to an assignment o’
also to the new variables introduced during translation that would satisfy F’, and
that (b) any satisfying assignment &’ to F’ also has to satisfiy F. The tools we
develop can reach this more ambitious goal in principle, but since some additional
technical problems arise along the way we have to leave this as future work.

Outline of This Paper After discussing preliminaries in Section 2, we illustrate
our method for the sequential counter encoding in Section 3. Section 4 presents
the general framework, and we discuss how to apply it to adder networks in
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Section 5 and (generalized) totalizer encoding in Section 6. We report data from
our experimental evaluation in Section 7 and conclude with a discussion of some
directions for future research in Section 8.

2 Preliminaries

Let us start with a review of some standard material that can also be found in,
e.g., [BN21, GN21]. A literal ¢ over a Boolean variable x is x itself or its negation X,
where variables can be assigned values 0 (false) or 1 (true), so that x = 1 — x. For

notational convenience, we define ¥ = x (where we use = to denote syntactic
equality). We write [n] = {1,2,...,n} to denote the n first positive integers, and
sometimes write X = {x; | i € [n]} to denote a set of variables, where the size n
of the set is understood from context (or is not important). A pseudo-Boolean (PB)
constraint is a 0-1 linear inequality

C = Yai4i>A, 1)

which without loss of generality we always assume to be in normalized form [Bar95];
i.e., all literals ¢; are over distinct variables and the coefficients a; and the degree (of
falsity) A are non-negative integers. The normalized form of the negation of C in (1)
is the constraint B

-C = Yaili > Y4 —A+1 2)

(encoding that the sum of the coefficients of falsified literals in C is so large that
coefficients of satisfied literals can contribute at most A —1). We use equality
constraints

C=Xali=A (3a)
as syntactic sugar for the pair of inequalities
C™ =Yl >A (3b)
and
CT=Yi-aili=-A (30)

(with the latter converted to normalized form). We write }};a;¢; > A for we {>
, <, =} for constraints that are either inequalities or equalities. A pseudo-Boolean
formula is a conjunction F = A ; C; of PB constraints. A cardinality constraint is a PB
constraint with all coefficients equal to 1. If the degree is also 1, then the constraint

O+ -+ >1 (4a)
is equivalent to the (disjunctive) clause

OV Vi, (4b)
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and so CNF formulas are just special cases of pseudo-Boolean formulas.

A (partial) assignment p is a (partial) function from variables to {0, 1}, which
we extend to literals by respecting the meaning of negation. Applying p to a
constraint C as in (1) yields the constraint C [, obtained by substituting values
for all assigned variables, shifting constants to the right-hand side, and adjusting
the degree appropriately, and for a formula F we define F [,= A;Cjl,. The
constraint C is satisfied by p if X,,)=14i = A (or, equivalently, if the restricted
constraint C [, has a non-positive degree and is thus trivial). An assignment p
satisfies F = /\; C; if it satisfies all Cj, in which case F is satisfiable. A formula
without satisfying assignments is unsatisfiable. Two formulas are equisatisfiable if
they are both satisfiable or both unsatisfiable.

Cutting planes as defined in [CCT87] is a method for iteratively deriving new
constraints C implied by a PB formula F. If C and D are previously derived
constraints, or are axiom constraints in F, then any positive integer linear combination
of these constraints can be derived. (By a linear combination of two equality
constraints C and D, we mean the identical linear combinations of C= and D= and
of C= and D, respectively.) We can also add literal axioms {; > 0 to a previously
derived constraint. For a constraint }}; a; - {; > A in normalized form, we can
use division by a positive integer d to derive }; [a;/d|{; > [A/d], dividing and
rounding up the degree and coefficients, and it is sometimes convenient to also
include a saturation rule deriving >}, min{a;, A} - {; > A from }};a; - {; > A. We
remark that the soundness of the division and saturation rules as stated depends
on the constraints being presented in normalized form.

For PB formulas F, F’ and constraints C, C’, we say that F implies or models C,
denoted F |= C, if any assignment satisfying F must also satisfy C, and we write
FE Fif F|= C’ forall C’ € F'. Itis clear that any collection of constraints F’
derived (iteratively) from F by cutting planes are implied in this sense, and cutting
planes is an implicationally complete method in the sense that any implied constraint
can also be derived syntactically.

A constraint C is said to unit propagate the literal { under p if C|, cannot be
satisfied unless ¢ is set to true. During unit propagation on F under p, we extend p
iteratively by assignments to any propagated literals until an assignment p’ is
reached under which no constraint C € F is propagating, or under which some
constraint C propagates a literal that has already been assigned to the opposite
value. The latter scenario is called a conflict, since p’ violates the constraint C in this
case. We say that F implies C by reverse unit propagation (RUP), and that C is a RUP
constraint with respect to F, if F A =C unit propagates to conflict under the empty
assignment. It is not hard to see that F |= C holds if C is a RUP constraint, but the
opposite direction is not necessarily true.

For introducing new variables, we will use the reification rule saying that we
can introduce the reified constraints

z=yaili>2A = Az+ Y0l > A (5a)
zeYaili>2A = (Sai-A+1) z+ a6 > Y0 -A+1 (5b)
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Figure 2: Circuit representation of the sequential counter encoding.

provided that z is a fresh variable that is not in the formula and has not appeared
previously in the derivation. A moment of thought reveals that the constraint (5a)
says that if z is true, then }};a;¢; > A has to hold, and this explains the notation
z = );aif; > A introduced for this constraint. In an analogous fashion, the
constraint (5b) says that if };a;{; > A holds, then z has to be true. We will write
z & Y;a;l; > A for the conjunction of the constraints (5a) and (5b). Adding such
reification constraints preserves equisatisfiability, since any satisfying assignment
to F can be extended by setting the fresh variable z as required to satisfy the
implications. The reification rule is a special case of the redundance rule in [GN21],
where we can add any redundant constraint C with the property that F and F A D
are equisatisfiable.

3 Certified CNF Translation Using the Sequential
Counter Encoding

To give a concrete illustration of our approach for proving the correctness of
translations of pseudo-Boolean constraints, in this section we consider how to
convert cardinality constraints )7, {; > k to CNF using the sequential counter
encoding [Sin05]. This encoding is based on a circuit summing up the input bits
one by one, with intermediate variables s; ; for i € [n] and j € [i] evaluating to

true if and only if Zi:l {; > j holds. The variables s; ; can be computed inductively
as in Figure 2a by the formula

si,j & ((6 Asiz1,j-1) V siz1f) (6)

saying that s; ; is true either if the first i — 1 literals add up to j — 1 and the ith literal
is true, or if already the first i — 1 literals add up to j. The circuit constructed in
this way, shown in Figure 2b, can be partitioned into 7 blocks, where the ith block
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computes the variables s; ; for j € [i] from the ith input bit {; and the variables s;_1,;
in the previous block. Identifying such blocks in the circuit is a key component in
our method for proving that the CNF translation is correct.

For the sequential counter circuit, we obtain the CNF encoding of the constraint
2.4 i = k by translating each component in Figure 2a (as described by Equation (6))
to the clausal constraints

(71' + §i_1,]'_1 + 55 >1 (7a)
Si-1,j+sij =1 (7b)

U+ Si-1,j + S_i,]' >1 (7¢)
8i-1,j-1 + §in >1 (7d)

fori € [n] and j € [i]. For all i we set s; 9 = 1 and simplify, so that constraint (7a)
turns into ¢; +s;; > 1 and constraint (7d) is satisfied and disappears. We also set
si-1,;i = 0, so that (7c) becomes ¢; + 5;; > 1 and (7b) is satisfied and disappears.

Once clauses (7a)-(7d) have been generated for all circuit components, we
obtain a greater-than-or-equal-to-k constraint by adding the unit clause s, , > 1.
Analogously, a less-than-or-equal-to-k constraint is enforced using the clause
Snk+1 = 1. A common optimization, known as k-simplification, is to omit clauses
corresponding to the computation of variables s; ; for j > k + 1, as such variables
are not relevant for deciding whether the cardinality constraint is true or not.

As a preparation for our proof logging discussions, let us study the variables
s;,; in more detail, ignoring k-simplification for now. Since s; ; is true if and only if
Zizl ¢, > j holds, for all i € [n] we should be able to deduce

Zi:lff = Zézlsi,j . 8

However, the sequential counter circuit computes the variables s; ; in the ith block
using only the variables s;_1 ; from the previous block and the literal ¢;, and so if
we only reason locally about the ith block what we can derive is the equality

b+ iyi-1,) = NieSij - ©)

If we look at the variables on wires entering and exiting the ith block of the circuit,
we see that Equation (9) specifies that the sum of the inputs is equal to the sum of
the outputs. If we represent the circuit in Figure 2b as a graph with every block
contracted into a single node and the literals ¢; in the cardinality constraint collected
into another separate node, then every ith block node has an incoming edge from
the literals node and (for i > 1) another edge from the (i — 1)th block node, and an
outgoing edge to the (i + 1)th block node (or, for i = n, to a special sink node that
we can also introduce). If we label the incoming edges by ¢; and Zj-j si-1,j and the
outgoing edge by 25'21 si,j, as shown in Figure 3a, then we can view (9) as saying
that for all vertices in the graph the sum of the labels of input edges should be
equal to the sum of the output edge. We will refer to this as a preservation equality.
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Figure 3: Graph representation of the sequential counter encoding.

What is not at all obvious from this particular example, but what we will show in
later sections, is that many CNF translations of pseudo-Boolean constraints can
be represented as graphs with preservation equalities in a similar way, though
sometimes with larger coefficients in the linear combinations of the literals. And,
jumping ahead a bit, our main contribution in this paper is a generic proof logging
method that will certify correctness for any CNF encoding that can be represented
in this graph framework with preservation equalities.

Using the graph representation we can easily see that the telescoping sum of
the preservation equalities for all nodes derives (8). From this, in turn, it is clear
that a constraint on the input variables Z]’;l& > k implies the same constraint on
the output variables, and formally this can be obtained by one final telescoping
sum step combining 27=1 {; > k and Z?:lfi = Z;’zlsn,]- to get

Z]’-l:lsn,j ba k. (10)

Another important property of the variables s; ; is that they do not just take any
values satisfying (9), but are ordered—since s; ; encodes 3;_; ¢; > j, it follows that
si,;j cannot be true unless also s; ;7 is true for all j* < j. This can be expressed by
ordering constraints

Sij = Sij+l ie(n],jeli-1], (11)

which are semantically implied by the circuit encoding.

Taking this view of the circuit encoding, the task of certifying the correctness
of the CNF translation becomes surprisingly simple. If we can derive the pseudo-
Boolean constraints (9)—(11), then it can be verified that the clauses of the sequential
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counter encoding (i.e., (7a)-(7d) plus 5, x+1 = 1 and/or s, > 1) all follow by
reverse unit propagation. This is so since when asserting the clauses to false, the
ordering constraints (11) will propagate enough variables s; ; for (9) to be falsified.
To see how to obtain the constraints (9)—(11), note that we already discussed
above how to derive (10) by a telescoping sum over constraints (9), which is
straightforward to do with standard cutting planes rules. To get constraints on
the form (9), we can use reification to define the meaning of the variables s; ; by

constraints }
sij & b+ Z};%Si—l,j >j (12)

(with notation as introduced in (5a)—(5b) in Section 2). If we do this in increasing
order for i and j, then s; ; is fresh in (12) and so these are valid derivation steps.
From the constraints (12) we can then derive (9) and (11) as illustrated in the
next example. To show the concrete syntax used in the proof file, the example is
interleaved with according proof file snippets and concatenating all the snippets
would result in a full proof that can be checked using the pseudo-Boolean proof
checker VeriPB [EGMN20, GN21, GMN20].

Example 1. Every constraint in the proof format is assigned a unique identifier (ID)
and constraints that are derived in the proof are annotated in this example by their
corresponding identifier.

Let us consider the constraint

(io: 1) X1+Xx22 (13)

to be encoded with the sequential counter encoding. To use this constraint as input
for VErIPB, the constraint is written in the OPB format [RM16], which is extended
to offer, among other thing, a greater flexibility for variable names. The input file
would contain the following two lines.

* #ivariables= 2 #constraints= 1
+1 x1 +1 ~xX2 >= 2 ;

The proof file for this instance starts with the header

pseudo-Boolean proof version 2.0
f1

to tell the checker which version of the proof format is used and to load the formula
that should contain one constraint.
The proof starts with deriving the preservation equality

X1 =511 (14)

for the first block of the sequential counter encoding. The fresh counter variable
51,1 is introduced by reification resulting in the constraints

(mp: 2) S11+x1>1 (15a)
(ip: 3) s;1+x1>1 (15b)
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to be added. In the proof log the reified constraints can be added using the
redundance-based strengthening rule with the according witness.

red +1 ~s11 +1 x1 >= 1 ; s11 -> 0
red +1 s11 +1 ~x1 >= 1 ; s11 -> 1

The constraints in (15) together represent the desired preservation equality (14).
For the second block the preservation equality

X2 +511 =521 +522 (16)

needs to be derived. The variables s, 1 and sy, are defined by the reification
constraints

(p: 4) S21+X24+511 =1 (17a)
(ip: B) 2500+ X2+511 =2 (17b)
(D: 6) 2591 +X24+511 =2 (17¢)
(ip: 7) S22 +x2+511 21 (17d)

These constraints are again introduced by redundance-based strengthening in the
proof file.

red +1 ~s21 +1 ~x2 +1 s11 >= 1 ; s21 -> 0
red +2 ~s22 +1 ~x2 +1 sl11 >= 2 ; s22 -> 0
red +2 s21 +1 x2 +1 ~s11 >= 2 ; s21 -> 1
red +1 s22 +1 x2 +1 ~s11 >= 1 ; s22 -> 1

This time some additional steps are required to derive the preservation equality.
Adding (17a) and (17b) together yields 551 + 252 + 2X2 + 2511 > 3 and dividing
by 2 results in

(D: 8) 5_2,1 + S_2,2 + X + s11>2. (18)

Adding (17c) and (17d) yields 2s; 1 + 522 + 2x2 +251,1 > 3 and dividing by 2 results
in

(IDZ 9) S21+ Sz +Xp + §1,1 >2. (19)

These cutting planes derivations are written to the proof log in reverse polish
notation using the identifiers for the constraints. The first line derives (18) and the
second line derives (19).

pol 4 5 + 2 d
pol 6 7 + 2 d

The constraints (18) and (19) together represent the desired preservation equal-
ity (16).
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The next step is to sum the preservation equalities together with the input
constraint (13). The sum of the constraints (15b) and (19) is X1 + x2 + 52,1 + S22 > 2
and adding (13) yields

(mp: 10) 52,1+ 522> 2. (20)
This cutting planes derivation is written to the proof log as the following line.

pol 3 9 + 1 +

The next step is to derive the clauses

(mo: 11) X1+s1,1>1 (21a)
(p: 12) x1+511>1 (21b)
(1p: 13) X2 +521 21 (21¢)
(mo: 14) S511+5212>1 (21d)
(mo: 15) Xp+5s11+ 5_2,1 >1 (21e)
(1D 16) Xo+511+S2221 (211)
(ip: 17) Xo+52221 (21g)
(1p: 18) S11+5222>1 (21h)

that encode the sequential counter as introduced in (7). The clauses in (21) can be
derived by RUP, which is specified in the proof log by the following lines.

rup +1 ~x1 +1 s11 >= 1 ;
rup +1 x1 +1 ~s11 >= 1 ;
rup +1 x2 +1 s21 >=1 ;
rup +1 ~sl1 +1 s21 >=1 ;
rup +1 ~x2 +1 s11 +1 ~s21 >= 1 ;
rup +1 x2 +1 ~s11 +1 s22 >= 1 ;
rup +1 ~x2 +1 ~s22 >= 1 ;
rup +1 sl11 +1 ~s22 >=1 ;

To see that these clauses follow by reverse unit propagation, we detail the
RUP step for (21c) and the RUP step for the other clauses is similar. The negation
of (21c) is X2 + 52,1 > 2, which propagates x; and s; 1 to false. This falsifies (17c),
hence (21c) is implied.

The last step is to enforce the comparison with the degree of the constraint. As
X1 + Xp > 2 is satisfied if s, 5 is true, the constraint

(io: 19) S2p0>1 (22)

has to be derived to enforce the comparison. This can be done using RUP, which is
also written to the proof log.

rup +1 s22 >= 1 ;
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This concludes our example.

To obtain the encoding with k-simplification, the most naive approach would be
to simply omit the clauses enforcing correct values for the variables s; ; that are not
used. However, this could incur a significant overhead in the proof logging when k
is small, as we would always introduce ©(n?) intermediate variables instead of
the ©(kn) variables actually used in the final encoding. To avoid this overhead,
we can introduce “overflow variables” s; x.» that do not encode that the first 7 bits
sum to k + 2 but instead ensure that the equality

kel k42
0+ Z]-;H Si-1,) = Z]L Sij (23)

holds. To maintain the equality of sums over incoming and outgoing edges in our

graph representation, we label the edge to the next block by Shtls, j instead of

j=1
Z;:l si,j, and introduce an additional edge going directly to the sink with the label
si k+2 (see Figure 3b). Note that without the additional variable s; ;4> we could not
guarantee equality, as we would have k + 2 literals on the left-hand side and only

k +1 variables on the right-hand side.

Example 2. To apply k-simplification for k = 1 to Figure 3a, the output from block 3
to block 4 should only contain the sum of the two variables s31 + 53 5. To preserve
equality of the sums of inputs and outputs, we add an edge from block 3 to the
sink labelled s3 3 as in Figure 3b.

When using k-simplification, we can derive an analogue of (8) by a tele-

scoping sum of all preservation equalities (23) yielding ;" , (f,' + Z;‘:ll Si—l,j) =

k+2 . . - g k+1
iy (ijl si,]-), which simplifies to 2.7, & = X7, Si k2 + 221 Sn,j-

4 A General Framework for Certifying CNF Transla-
tions

As discussed in the introduction, there is a rich selection of encodings of pseudo-
Boolean constraints in CNF. In this section, we develop a unified framework to
provide proof logging for a wide range of different translations. Our approach is
to represent encodings as directed graphs with preservation equalities between
the incoming and outgoing edges of each node, as in our example in Figure 3, so
that all clauses in the encoding can be obtained by reverse unit propagation from
(telescoping sums over) these equalities. In this way, the whole proof logging task
is reduced to considering a few generic ways of deriving preservation equalities.
Let us start with a formal definition of the graph representation.

We will describe how the proof logging works by first introducing concrete
methods that provide proof logging for different low-level steps, and then showing
how these methods can be composed to certify correctness of translations from
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pseudo-Boolean constraints to CNF. Recall that every constraint is assigned a
unique identifier. A cutting planes derivation is specified by add (C, D) to add
C and D together, mult (C, k) to multiply C by k and div (C, k) to divide C by k
and round up. E.g., given the previously derived constraints C and D, calling
add (div (C, 2), mult (D, 3)) divides C by 2 (and rounds up), multiplies D by 3, adds
the two constraints obtained in this way together, returns the resulting constraint,
and writes the corresponding derivations to the proof file in reverse polish notation
and using the identifiers for the constraints. A reverse unit propagation constraint
C can be added using rup (C). The syntax we use for deriving a constraint by
reificationisred (z = C,{z — 0})andred (z & C, {z — 1}) (where this somewhat
cryptic notation is due to the fact that reification is a special case of the redundance
rule in [GN21]). We use » to denote comments in the pseudocode.

Definition 1 (Arithmetic Graph). Let a;, c; be integers, ¢; Boolean literals, and o;
Boolean variables. An arithmetic graph with input }}; a;¢; and output }}; cio; is a
directed multi-graph G = (V, E) that satisfies the following conditions:

1. Every edge e € E has a label of the form }}; b{y? for each edge e € E, where
b{ are integers and y; Boolean variables.

2. Thereis a unique source node s that has only outgoing edges, and these edges
are labelled by input literals ¢; in such a way that >; aili = X5 y)=ecr 22 b7 V5 -

3. There is a unique sink ¢ that has only incoming edges, and these edges are
labelled by output variables o; in such a way that 3’; ¢i0i = 3y )=ccr 22 D Y5 -

4. For all other nodes v, which we refer to as inner nodes, the preservation

equality
P EEDIIPI @9

(u,v)=e€E i (v,w)=e€E i

has to hold. This is saying that the sum of incoming edges equals the sum of
outgoing edges, which can be derived using cutting planes with reification
over the variables on outgoing edges from v.

The arithmetic graph does not necessarily have to be acyclic, but an acyclic
graph simplifies the arguments for correctness of the generated proof.

The rest of this section will be devoted to discussing how preservation equali-
ties (24) can be derived for different types of pseudo-Boolean expressions. Before
doing so, let us just note for the record that if we have an arithmetic graph for an
encoding of a pseudo-Boolean constraint, then by a telescoping argument as in
Section 3 we can derive that the same constraint applies to the output of the graph.

Proposition 1. Given an arithmetic graph with input }; a;{; and output ) ; c;0; and
a PB constraint }; a;{; > k for e {>, <, =}, we can derive }; c;0; > k using cutting
planes.
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Algorithm 4: General algorithm for translating PB constraints to CNF
with proof logging.

1 translate_and_certify(C,f,G,F)
> input: pseudo-Boolean constraint C of the form )7, a;{; = k, with
€ {>, <, =}
> input: arithmetic graph G = (V, E) with input };; a;{; and output
2 Ci0j
> input: function f that takes a node and derives its preservation
equality
> input: set of clauses F with CNF encoding to be derived
2 sum constraints f(v) for v € V in topological order to obtain
2 aili = X ¢i0i;
combine }; a;{; = }}; c;o; and C to obtain }; cjo; > k;
derive each clause in the CNF encoding F with reverse unit
propagation (RUP);

Proof. By item 4 in Definition 1, we can derive preservation equalities (24) for all
inner nodes in the graph. By summing the preservation equalities for all inner nodes
together (i.e., adding up separately all greater-than-or-equal constraints and all less-
than-or-equal constraints, as explained in Section 2), we obtain }}; a;{; = }; cjo;,
and combining this with }}; a;¢; »< k yields }}; c;o; »< k as desired. O

Once the bound on the input literals is translated to a bound on the output
variables, all clauses of the CNF encoding will follow by reverse unit propagation.
This results in the general proof logging method shown in Algorithm 4. Note that
the nodes of the graph should be traversed in topological order when deriving the
preservation equalities—this is so that the variables used in the reification steps
are all fresh.

Let us now discuss three different ways of representing values of natural
numbers that are used in preservation equality for inner nodes. Perhaps the most
straightforward way to encode a number j with domain A = {0,1,...,m} C Ny
with Boolean variables is to write j in unary with variables z; so that j = X Zi-
In such an encoding we can also require, using constraints z; > z;41, that the
variables z; are ordered so that z; is true if and only if j > i. This means that
listing the variables in reverse order z,,, zy-1, . . ., z1 yields the number j written
in unary (after a prefix of zeros). This is known as the order encoding, and this type
of representation is used in the sequential counter [Sin05] and totalizer [BB03]
encodings. We can certify the correctness of this encoding as stated in the next
proposition.
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Algorithm 5: Deriving a unary sum over fresh variables z;.

1 derive_unary_sum(C’)

> input: C’ of the form }.,{; = 2.7, z; and describing the constraint
to be derived

> the z; variables need to be fresh, the left-hand side is the sum to be
encoded

2 forj=1,...,kdo
> Step 5.1: introduce variables

L Dj=>,D]€= —reify(z; & X7 1-4 > j);

> Step 5.2: derive ),/ 6 > X7z

4 C™ «derive_sum(D?,D3,...,D;7);
> Step 5.3: derive )1 6 < X1z
5 ce <—deriveisum(D;l:,Df_l,...,Diz),'

6 fori=1,...,k—1do
> Step 5.4: derive z; > zj41, i € [n — 1]
derive_ordering(D{~, D7));

8 return C=,C<;

Algorithm 6: Reify )7 a;{; > j using the fresh variable z;.

1 reify(z; © Z?:laifi >7)
>z = Y qail >
2 C= «red (Z?zlaifi + jZ_]' >, {Z]' — 0}),’
> Zj &= Z?:laiei Zj
3 C< « red (Z?zlaif,- +(Xiai—j+ Dz > Y ai—j+1,{z; = 1});

4 return C=,C<;

Proposition 2 (Unary Sum). For literals {; and fresh variables z;, i € [n], the constraints

Yl = Xz (25a)
Yl < Xz (25b)
Zi 2 Zi4l i€n-1] (25¢)

can be derived in O(n) steps in cutting planes with reification. Thus, the variable z; is
defined to be true if and only if at least i literals are true.

Proof. The unary sum constraints in (25) can be derived using Algorithm 5. We will
show the correctness of Algorithm 5 first and then that the derivation following
this algorithm requires O(n) steps in cutting planes with reification.
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Algorithm 7: Derive sum of reification variables.

1 derive_sum(D1,...,Dy)
> input: Dj is of the form X\, ¢; +jz; > j
2 C«<020;
3 for j from1ton do
4 C « div (add (mult(C,j - 1),Dj),j);
> Invariant: C: ¥/ 6+ X)) Zi >

5 return C;

Algorithm 8: Deriving an ordering constraint z4 > zp from the reification
constraints.

1 derive_ordering(C, D)
> input: C is of the form z4 = [ a;(; > A
> input: D is of the form zg < Y} ja;{; > B
2 divisor < Y,!, aj;
> derivezy > zpif A< B
3 div (add (C, D), divisor);

Algorithm 5 is split into four major steps. Step 5.1 is to introduce the fresh vari-
ables z; as reifications of the constraints Y4 > j, which is shown in Algorithm 6
for the more general case of arbitrary positive coefficients.

In Step 5.2 the lower bound (25a) is derived using Algorithm 7 maintaining
the invariant Y/, ¢; + 25:1 z; > j after each iteration. For the base case j =1,
the invariant is equivalent to the reification constraint z; = Z;’Zl ¢; > 1, which in
normalized formis ;" ;¢; +2z1 > 1 and hence this case is covered. For the inductive
step, to go from j — 1 to j we multiply the invariant )7, ¢; + Z{j zj2j—-1by
j —1and add the reification constraint z; = !, ¢; > j, which is }\i_, 6 + jz; > |
. . , . 1= | = 0 . .
in normalized form, to get j >,/ ¢; + G-1) 25:1 Zi +jzj > j* — j + 1. Division by j
and rounding up yields )", {; + Z§:1 Zj+zj > j,ie, the invariant for j. For j = n
the invariant is the normalized form of (25a).

In Step 5.3 the upper bound (25b) is again derived using Algorithm 7, except
that the constraints are processed in reverse order (just as in Example 1 on page 69).

In Step 5.4 the ordering constraint is derived using Algorithm 8, using the
reification constraints. Algorithm 8 handles the general case of deriving the
ordering constraint z; > z;;1 from any reification constraints z;,; = Zleai&- >
j+1landz; < 3/ a;{; > j. For the sequential counter encoding the coefficients a;
are all 1. In normalized form these two constraints are (j + 1)zj41 + Xi_qa;6; > j+1
and (m—j+1)z;+ Z?zlaiz,' > m—j+1,wherem = Y7, a;. Adding both constraints
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together yields (m — j + 1)z; + (j + 1)zj41 > 2 and we get the desired ordering
constraint after division by a large enough number, such as m.

Now that the correctness of Algorithm 5 is established, all that remains is to
verify that this algorithm uses O(n) steps in cutting planes with reification. Step 5.1
uses n reification steps, Step 5.2 and 5.3 uses 3(n — 1) cutting planes steps each and
Step 5.4 uses 2(n — 1) cutting planes steps in the worst case. Thus, in total O(n)
steps in cutting planes with reification are used. o

A concrete illustration of how these derivations can be done was given
in Example 1 (with &, sp1, and sp» playing the roles of the literals ¢; and
s3,j, j € [3], being the fresh variables).

When encoding the value of a number j that can only take a small number of
values in a large range, it is wasteful to introduce variables for all values in the
range. For example, if j € {0,50,75}, then the first 50 variables in a full unary
representation are either all true or all false, but will never take different values.
In such cases we can instead use what we will refer to as a sparse unary encoding,
where in our example j € {0,50,75} would be represented as 50 - z59 + 25 - z75,
where we enforce zsg > z75. More formally, for a (finite) domain A € Ny and
variables Z = {z; | i € AU {c0}} we define

sparse(Z,A) = Yicay(o(i - pred(i, A) - zi, (26a)
where pred(i, A) = max{j € AU {0} | < i}, and we also use constraints
Zi 2 Zsuce(i,A) ieA \ {max (A)} (26b)

to enforce that the variables z; are ordered, where succ(i, A) = min{j € AU
{00} |j > i}isthe successor of i in A. This representation is used in the sequential
weight counter [HMS12] and generalized totalizer [[MM15] encodings, and we
can certify correctness for it as stated next.

Proposition 3 (Sparse Unary Sum). Let A, B € Ny be given with sparse encodings
sparse(X, A) and sparse(i/, B) as in (26a)—(26b). Then for E={i+j|i € A,j € B}
and fresh variables Z we can derive

sparse(¥, A) + sparse(i/, B) = sparse(z, E) (27a)
Zi 2 Zsucc(i,E) i € E\ {max(E)} (27b)

in cutting planes with reification using O(|A| - |B|) steps.

Proof. The proposition is proven by presenting and analyzing Algorithm 9, which
given two numbers in sparse unary representation derives their sum. Just as for
the unary sum, we start in Step 9.1 by introducing the required fresh variables via
reification. However, we only need to introduce the variables with index in E. If
k-simplification is used, then also variables with index bigger than k need to be
introduced, as without them equality cannot be derived. The ordering constraints
can be derived as before using Algorithm 8.
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Algorithm 9: Deriving a sparse unary sum over fresh variables Z.

1 derive_sparse_unary_sum(C’)

> input: C’ of the form sparse(X, A) + sparse(i/, B) = sparse(z, E) and
describing the constraint to be derived such that A, B C N,
E={i+jlicA,jeB}

> Step 9.1: Introduce variables as reification and derive ordering

2 forj e E\ {0} do

3 L Df,D].c  reify(zj & sparse(X, A) + sparse(y/, B) > j);

4 fori € E\ {0, max (E)} do

. . = = . 1 .
5 L derive_ordering (D7, Dsucc(i,E)) ; > derive z; > Zgycc(i )

> Step 9.2: : reify constraint to be derived

6 C=, _ « reify(zg, © sparse(¥, A) + sparse(yj, B) > sparse(Z, E));
7 C=, _ « reify(z;,; & sparse(X, A) + sparse(i/, B) < sparse(Z, E));
8 reify(zeg © Zgeg + Zieg = 2);

> Step 9.3: derive that z,; > 1

9 try_all_values(sparse(X, A), sparse(y, B), z¢);

> Step 9.4: derive constraint to be derived from its reification

10 M « max(E); » choose M equal to coefficient of reification variables
11 D «— rup (zgeq > 1);

12 C= « add (C=, mult (D, M));

13 D « rup (zq = 1);

14 CE « add (C<, mult (D, M));

15 return C=,C<;

In Step 9.2 we introduce a variable z,; which is true if and only if the equality
to be derived is true. Since an equality is actually two inequalities, we need to
introduce separate variables zgq, zj; for each inequality and then combine them
into ze;.

In Step 9.3 we derive z,; > 1 by checking all combinations of values in A and B,
which requires O(|A| - | B]) steps.

In Step 9.4 we use that z,; > 1 and hence zg; = zj,y = 1, which allows us to
derive sparse(X, A) + sparse(y/, B) > sparse(Z, E) and sparse(¥, A) + sparse(i/, B) <
sparse(z, E) by removing Zgeq and zje; from the constraints introduced in Step 9.2.

Since Step 9.1 and 9.3 require O(|A| - |B|) steps each and the number of steps
for Step 9.2 and 9.4 is in O(1), the total number of cutting planes with reification
steps is O(|A| - |B]). Asymptotically, this is the same number of steps required
to compute which elements are in E, so this is still linear in the time needed to
construct the encoding. O

As in the case of the unary sum in Proposition 2, adding the constraints
(27a)—(27b) maintains equisatisfiability, because the fresh variables Z are free to
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Algorithm 10: Given a reified sparse unary sum, derive that the reification
variable is true.

> helper function:

1 fix(sparse(¥,A),a)

2 L return X, + Xgyce(a,A) ; > replace xo by 1 and x by 0
> main function:
try_all_values(sparse(¥, A), sparse(y, B), z)

3
4 Couter < rup (0 > 0);
5 fori e Ado
6 Cinner < rup (0 = 0);
7 forj € Bdo
> a (respectively b) is the value encoded by sparse(x, A)
(sparse(y/, B))
> encodethat (a =i Ab =) = zq4
8 D « rup (fix(sparse(X, A), i)
9 + fix(sparse(y, B),j) +zeg 2 1) ;
10 L Cinner < add (Cinper, D);
1n | Couter < add (Couter, div (Cipner, | B]));
12 Couter < AV (Couter, |Al);
13 | return Couter ; > Couter IS NOW Z¢y > 1

take values so that the constraints are satisfied. The general idea is again to
introduce Z via reification, but the rest of the proof of Proposition 3 gets a bit more
complicated—we have to perform a brute-force search on the possible combinations
of values for A and B, showing that the equality holds in all cases, and provide a
proof log for the correctness of this backtracking search.

To illustrate how the derivation in Algorithm 9 works, let us consider an
example.

Example 3. Let the set of possible values for the left child node be A = {0,2} and
the corresponding set for the right child node be B = {0, 2,4}. Hence, the set of
possible output values is E = {0,2,4, 6}. Step 9.1 derives the reified constraints

Zp & 2x +2Yp +2y4 = 2 (28a)
Z4 © 2X2 +2y2 +2y4 2 4 (28b)
Z6 © 2X2+2Yp + 2y 2 6 (28¢)

and the ordering constraints z > z4 and z4 > z.
Then Step 9.2 uses reification to derive the constraints

6Z_geq +2x0 +2yp +2ys + 229 + 224 + 226 > 6 (29a)
6Zjeg + 2X2 + 2y, + 2y, + 222 + 224 + 226 2 6 (29b)
Zeq © Zgeq + Zleg = 2. (29¢)
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Then Step 9.3 derives z,; > 1 using Algorithm 10 by checking all combinations
of values in A and B. After the first iteration of the outer loop in Algorithm 10 the
clauses

X2+ Yo+ Zeg 2 1 (30a)
Xo+ Yo+ Yst+zyg21 (30b)
Xy + Yyt zeg 21 (30c)

have been derived. Deriving (30a) by RUP sets x2 = y» = z¢; = 0. This causes the
ordering constraints to propagate all variables in X and jj. As all ¥ and jj variables
are set, the reification constraints introduced in Step 9.1 will cause all Z variables
to propagate. As the constraints reified in Step 9.2 are satisfied, zgey = zjey = 1 is
propagated and hence z.; should be 1. However, RUP already set z,; to 0, which
is a contradiction showing that (30a) can be derived. Deriving the other clauses
works analogously. Adding all clauses in (30) together results in 3x, + 3z, > 1,
which is divided by 3 to obtain

X2+ 2zeg 2 1. (31)

Analogously, in the second iteration we derive the constraints

Xo+ Y2+ Zeg 21 (32a)
Ot Upt+ Yat zeg > 1 (32b)
X2+ Yyt+zeg 21 (32¢)
using RUP and then
X2+ 2zgg 21 (33)

by adding all the constraints in (32) together and dividing the result by 3. Adding
the constraints (31) and (33) together yields 2z,; > 1 and dividing by 2 results in
Zeq > 1.

! Step 9.4 first computes the coefficient of zg,; and zj,y, which is M = 6. Then the
constraints zg,; > 1 and zj,; > 1 are derived using RUP by setting either zg,; = 0
or zj; = 0. Then z,; > 1 propagates z,; = 1. However, (29¢) propagates z¢; = 0,
which is a contradiction. Then zg,; > 1 and z,; > 1 are multiplied by 6 and added
to (29a) and (29b), respectively. This yields constraints

2x7 + 2y + 2y4 + 27y +274 +22Z¢ > 6 (34a)
2X2 + 2y, + 2y, + 220 + 224 + 226 2 6, (34b)

which together represent the preservation equality for the sparse unary sum.

If we perform sums repeatedly as in Proposition 3, then the size of the domain
can double in every step in the worst case, leading to an exponential explosion
(this happens, for instance, if all values in the domains are distinct powers of 2).
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Algorithm 11: Proof logging for the encoding of a single full adder.

1 full_adder(x,Vy,z)
2 Drys Déyy < reify(c © x +y +2z 2 2);
3 | Dgus D < reify(s © x +y +z +2¢ = 3);

sumr’ sum

s | D= <div (add (mult (D;;,y,z) ,D;;m) ,3) ;

5 | D= div (add (mult (D;;,.y,z) ,D;jm) ,3) ;

> D is the preservation equality of the full adder
6 return D~ ,D<,¢,s;

The third encoding we consider addresses this worst-case scenario by using a
binary encoding j = ZL%gZ(m)J 2' - z;. To compute the binary representation, it is
sufficient—as we will discuss next in Section 5—to compose multiple full adders,
which compute the sum of up to three input bits, using a binary adder circuit as

described in [ES06].
Proposition 4. For literals {1, {>, {3 and fresh variables c, s, we can derive the equality
Hh+b+0=2c+s (35)

in cutting planes with reification using O(1) steps.

Proof. Algorithm 11 can be used to derive the constraints that represent the
preservation equality (35) for a single binary full adder.
Algorithm 11 first derives

col+b+>2 (36a)
soh+h+l+25>3 (36b)

using reification, since ¢ and s are fresh variables, and then multiplies (36a)
by 2, add (36b), and divides the result by 3. To show how this works for the
=-direction of the reification, 2 times (36a) is 4c + 2{; + 26, + 203 > 4, adding
35+ + b +€3+2c > 3asin (36b) yields 6¢ + 35 + 341 + 36, + 363 > 7, and dividing
by 3 gives us 2¢ + 5 + {1 + > + 3 > 3 as desired. The other direction is equivalent.
We refer the reader to [GN21] for more details.

This algorithm uses 2 reification steps and 6 cutting planes steps. Thus, the
number of cutting planes with reification steps is in O(1). ]

Again, it should be clear that this maintains equisatisfiability, since the carry-out
bit c and sum bit s can be set appropriately.
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Algorithm 12: Construction of adder network [ES06]. Procedure
full_adder adds full adder to network.

1 adder_network (b)
> input: vector of buckets b
for i from 0 to b.size() do
while b;.size() > 2 do
if b;.size() = 2 then
(x,y) « b;.dequeue();
(c,s) « full_adder(x, y, 0);
else
(x,y,z) « b;.dequeue();
L (c,s) « full_adder(x, y, z);

© ® N o Gy kR W N

10 b;.enqueue(s);
11 bi1.enqueue(c);

5 Certifying the Binary Adder Network Encoding

Now that this general framework has been introduced, we show how it can
be applied to implement proof logging for some specific pseudo-Boolean to
CNF encodings. In this section, we will consider the so-called binary adder
encoding [ES06].

The idea behind the binary adder encoding is to use an adder network to com-
pute the value of }; a;{; as a binary number Z?ﬁé 2/0;, where bits = Llogz(zi ai)J
is the required bit width, and then compare this to the right-hand side constant in
the constraint }}; a;{; < k.

To recapitulate the algorithm for adder network construction in [ES06], let
us say that a 2"-bit is a literal representing the numerical value 2™ and that a
2"-bucket is a queue of 2™-bits. We use [m], to denote the binary representation of
a natural number m. The algorithm starts by initializing each 2"-bucket with all
literals ¢; in ); a;{; < k such that the 2"-bit of [ai] ,is 1. Then for m in increasing
order we repeat the following procedure: while there are at least 2 elements in
the 2"-bucket, dequeue three bits x, y, z, or set z = 0 if there are exactly 2 bits
left. Use x, vy, and z as input for a new full adder with fresh variables ¢ and s
as output (these are just placeholder names), and insert s in the 2" -bucket and
¢ in the 2"*!-bucket (possibly creating a new bucket). See Algorithm 12 for the
pseudocode to generate this encoding.

The arithmetic graph is obtained from the adder network by representing each
full adder by a node. Each inner node constructed from a 2"-bucket has 3 input
edges with labels 2" - x, 2™ - y, and 2" - z and 2 output edges with labels 2 - s and
2"*Lc. Anexample for the PB expression 5x1 +4x2 + X3+ X4+ X5 is shown in Figure 4.
The preservation equality can be derived using Proposition 4 and multiplying the
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Figure 4: Layout of arithmetic graph for adder network encoding of 5x1+4x2+x3+x4+x5.

resulting equality x +y+z = 2c+s by 2™ to obtain 27 x + 2"y +2M.z = 2M+l.c 4 2M.g,
When the construction algorithm ends, each 2" -bucket has at most one 2™ -bit left,
and we connect the corresponding edges to the sink, resulting in an output of the
form Z?ﬁg 2i - 0;. If the 2i-bucket is empty, o; is fixed to 0.

Each full adder of the network is encoded to CNF using clauses

X+y+z+s2>1

x+y+z+s521

y+z+c=1 X+y+z+s=>1 y+z+c>1 x+y+z+s>1 37)
X+z+c21 X+y+z+s=1 x+z+c21 X+y+z+s521
X+y+c21 xX+y+z+s=1 x+y+c=>1 X+y+z+521

which are all RUP with respect to the preservation equality x + y +z = 2c +s.

To compare the constant k in the PB constraint with the output of the circuit, we
encode a bitwise comparison X > ¥ for bit vectors X and i, where X = 0pjss - - - 0100
and § = [k], or vice versa, depending on whether we want to encode Y./, a;¢; > k
or Y., ail; < k, respectively. The following encoding is standard and can also be
found in [ES06]. For }."_; a;f; = k, comparisons for both directions are performed.
If the sizes of the two vectors are different, the shorter vector is padded with 0,
after which the constraints

Xi+ i+ S Xy Ty 2 1 i=0,1,...,bits (38)
are added to the CNF encoding. Since either X or j is a vector of constant bits,
the constraints (38) are indeed clauses. Basically, the encoding compares the
two numbers from the most-significant bit to the least-significant bit. It is only
required to check the biggest first index i, where x; and y; are different. Then the
corresponding clause (38) for index i is only satisfied if x; > y;. The clauses (38)
are RUP with respect to the constraint zﬁ?ﬁg 2i . 0; >« k, which we obtain from
the arithmetic graph using Proposition 1. To see this, note that asserting (38) to

false will set all 2/-bits for j > i equal but the 2/-bits to opposite values, which

immediately falsifies 3% 27 - 0; b« k.



84 Certified CNF Translations for Pseudo-Boolean Solving
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Figure 5: Layout of the arithmetic graph for the generalized totalizer encoding of x1 + x2 +
X3 + X4 + 2x5 + 2x6 + 2x7 + 2xg < 2. Edges introduced for k-simplification are colored
cyan.

6 Certifying the Totalizer and Generalized Totalizer
Encodings

To show that the framework developed in Section 4 can be applied to many
different pseudo-Boolean to CNF encodings, we detail in this section how our
framework can be applied to add certification to the totalizer [BB03] and generalized
totalizer [[MM15] encoding.

The totalizer and generalized totalizer encodings accumulate the input in the
form of a balanced binary tree. The totalizer encodes cardinality constraints and
uses the order encoding to represent values, while the generalized totalizer encodes
general pseudo-Boolean constraints and uses a sparse representation. An example
of an arithmetic graph for the generalized totalizer encoding is shown in Figure 5.
The nodes are combined in form of a binary tree, where we ensure that the value is
preserved for each inner node. To perform k-simplification, the arithmetic graph
has additional edges that go directly to the sink node. The formal definition of the
arithmetic graph for the (generalized) totalizer encoding is as follows.

Definition 2 (Arithmetic graph for the generalized totalizer encoding). Given
a linear sum }}; a;{; over n variables, let G be a binary tree with edges directed
towards the root r, leaves s; for i € [n] and an additional sink node ¢ with
an edge (r,t). The edge (s;,v) is labelled with a;¢;. For an inner node v with
two incoming edges labelled sparse(¥, A) and sparse(/, B), the outgoing edge is
labelled sparse(Z, E), where Z are fresh variablesand E = {i+j | i € A,j € B}.
All s; are combined into a single source node. For k-simplification we split

sparse(z, E) = }eg aiz; into Zigsucc(k,E) aizj and Zi>succ(k,E) aici.

To see that this graph is an arithmetic graph, we only need to check that we
can derive the preservation equality for each inner node. We can use Proposition 3
to derive the required preservation equality. Proposition 3 also requires to have
ordering constraints on the input literals. However, it is easy to see by an inductive
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argument that the ordering constraints on the literals can also be derived as we
process the nodes in topological order. For the base case, edges from source nodes
only contain a single literal, which is vacuously ordered. For inner nodes we get the
ordering constraints by applying Proposition 3. If E contains all integers between
0 and max(E), we can use Proposition 2 to derive the preservation equality, which
requires O(|E|) steps instead of O(|A| - |B]) steps and hence reduces overhead.

For each inner node in the graph with incoming edge labels sparse(X, A) and
sparse(/, B), the (generalized) totalizer encoding contains the clauses

Ti+ g +zis 21 icA,jeB (39a)
Xsucc(i,A) T Ysuce(j,B) T Z_succ(i+j,E) >1 i€A,jeB (39b)

for succ(i,A) = min{j|j € AU {co},j > i} and for xg, yo replaced by 1 and
Xoo, Yoo, Zoo DY 0, with ensuing simplification.

For the proof logging of the CNF encoding we can simply add all clauses
using reverse unit propagation. A RUP check of (39a) will assign x; = y; = 1
and z;;; = 0. The ordering constraints on ¥, j will propagate variables in ¥, i
to true so that sparse(x, A) + sparse(y, B) has a value of at least i + j, while the
ordering constraints on Z will propagate variables in Z to false so that sparse(z, E)
can only take a value strictly less than i + j. This will violate the preservation
equality sparse(z, E) = sparse(x, A) + sparse(y, B), showing that (39a) is indeed a
RUP clause. Deriving the clause (39b) works analogously.

To enforce a pseudo-Boolean constraint };; a;¢; >« k, we first derive a bound on
the output of the arithmetic graph }}; c;o; > k, using Proposition 1. Then we can
derive unit clauses on the output via reverse unit propagation.

Toencode }’; a;l; > k or }; a;{; < k the unit clause zgyce(k-1,F) = 1 0T Zgyec(k,E) =
1 is added, respectively. This clause is RUP, as the derived sum }; c;0; has a value
of at most k — 1 or at least k + 1 and thus the constraint }’; c;0; > k or }}; cjo; < kis
falsified, respectively. To encode }}; a;¢; = k both unit clauses are added.

7 Experimental Evaluation

To evaluate the proof logging methods developed in this paper, we have imple-
mented certified translations to CNF for the sequential counter [Sin05], adder
network [ES06], totalizer [BB03], and generalized totalizer [[MM15] encodings in
the tool VeriTasPBL1B which is publicly available at https: //github. com/forge-
lab/VeritasPBLib. This tool takes a pseudo-Boolean formula in OPB for-
mat [RM16] and returns a CNF translation with a proof logging certificate. We
have employed the verifier VEriPB! [GN21, BGMN22] to check the certificate
returned by VEritasPBLiB, and have used the SAT solver Kissar? [BFFH20], in a
lightly modified version outputting DRAT proofs in pseudo-Boolean format,® to

1VERIPB is available at https://gitlab.com/MIAOresearch/software/VeriPB.

2The original version of Kissat is available at https://fmv. jku.at/kissat/.

30ur modified version of Kissar with pseudo-Boolean proof logging is available at ht tps: //gitlab.
com/MIAOresearch/tools-and-utilities/kissat_fork.
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solve the CNF formula. Finally, we have conjoined the certificates from the CNF
translation and the SAT solving and verified the end-to-end pipeline with VErIPB.
See [GMNO22] for source code and experimental data.

The experiments were conducted on Amazon EC2 r5.1arge instances (2 vCPU)
with Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz CPUs, 16 GB of memory,
and gp2 volumes. We ran one process on each instance with a memory limit of 15
GB and a time limit of 7,200 seconds for verifying the proof with VeriPB, and a
time limit of 1,800 seconds for CNF translation with VerirasPBLis and SAT solving
with Kissat. We gave additional time for verification, which tends to be slower
than solving the problem.

Our evaluation aimed to answer the following questions:

1. Can we use our end-to-end framework to verify the results of SAT-based
pseudo-Boolean solving, and how efficient is the verification?

2. How long does the verification of the proof log take when compared to the
translation of the pseudo-Boolean formula to CNF?

3. How does a verified SAT-based pseudo-Boolean approach compare against
other pseudo-Boolean solvers?

4. Can we use our end-to-end framework to certify the optimal solutions of
optimization problems, such as Maximum Satisfiability?

7.1 Benchmarks

To evaluate VeritasPBL1B, we collected 1,803 pseudo-Boolean formulas from the
PB Evaluation 2016.# These instances can be partitioned into formulas with
(1) only clauses (279 instances), (2) clauses and cardinality constraints (772 in-
stances) referred to as Card in what follows, (3) clauses and general PB constraints
(444 instances) called PB, and (4) clauses, cardinality and general PB constraints
(308 instances) called Card+PB. Since this work targets the verification of formulas
with non-clausal constraints, we excluded the 279 pure CNF formula instances, as
those can already be certified with existing techniques.

Table 1 shows some properties of the benchmarks used in the experimental
results, namely, the average number of constraints, the average number of literals
in each constraint, and the average size of coefficients associated with each literal.
For each average value (avg), we also show the respective standard deviation
(std) and denote it by avg + std. This information is shown for both cardinality
constraints and PB constraints. Since the benchmark set is composed of instances
from multiple domains, there is a large variation of values between instances. For
example, the number of cardinality constraints for instances in the Card benchmark
set ranges from 1 to 2,720, whereas the number of PB constraints for instances in
the PB benchmark set ranges from 1 to 18,798. In the Card+PB benchmark set, we

“The benchmarks from the Pseudo-Boolean Evaluation 2016 are available at http://www.cril.
univ-artois.fr/PB16/.
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Table 1: Properties of the pseudo-Boolean formulas used in the experiments.

Card PB Card+PB

#Inst. 772 442 308

Avg. # 107.01+£252.57 0.00 1,154.43+5,881.78
Card Avg. #Lits 36.45+47.43  0.00 16.96+26.57

Avg. Coeff. Size 1.00+0.00 0.00 1.00+0.00

Avg. # 0.00 1,020.73+2,294.43 33,379.31+18,3229.66
PB  Avg. #Lits 0.00 24.95+27.60 105.21+109.99

Avg. Coeff. Size 0.00 204.93+1,118.74  10.79+50.42

Table 2: Number of translated, solved and verified instances for each encoding.

Translation Solving
. . #Solved #Verified
Category #Inst Encoding #CNF #Veri SAT UNGAT SAT UNGAT
Sequential 772 772 139 480 133 479
Card 772 Totalizer 772 772 139 475 130 474
PB 444 Adder 444 444 179 167 178 165
GTE 425 414 164 162 150 151
Card+PB 308 Seq+Adder 306 296 134 152 128 151

have an even larger dispersion with instances with 1 to 2,378,901 PB constraints
and 1 to 75,582 cardinality constraints.

7.2 End-to-End Solving and Verification

Table 2 shows how VErirasPBLi5 can be used to generate a CNF formula that can be
solved by Kissar and verified by VeriPB. For instances with cardinality constraints
(Card), we use the sequential counter and totalizer encodings to translate those
constraints to CNF. For instances with general PB constraints (PB), our translations
use the adder network and generalized totalizer (GTE) encodings. Finally, for
instances with both cardinality and general PB constraints (Card+PB), we use the
sequential counter encoding for cardinality constraints and the adder network
encoding for PB constraints, henceforth denoted by Seq+Adder. Even though other
combinations of cardinality and PB encodings could be explored, the goal of this
work is not to find the best-performing encoding but to show that we can verify
the final result for a variety of encodings.

The column #CNF shows for how many instances VerirasPBL18 successfully
generated the CNF translation, which is almost all. The exceptions are 19 instances
using GTE and 2 instances using the Seg+Adder encoding. In those cases, the
number of clauses generated is too large and exceeds the resource limits used in
our evaluation.
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The column #Veri under Translation shows results for VErRIPB verification of
the translation certificate from VeritasPBLiB. Except for a few instances for GTE
and Seq+Adder yielding large proofs, VErRIPB is successful. If the translation check
passes, then this guarantees that the CNF encoding does not remove any solutions
of the pseudo-Boolean formula.

The columns #Solved and #Verified under Solving show how many instances can
be solved by Kissat, and from those, how many can be verified by VeriPB. If a
satisfiable formula is verified, then all clauses learned by Kissar are also valid for
the original pseudo-Boolean formula, as is the satisfying assignment found. If an
unsatisfiable formula is verified, then a correct proof of unsatisfiability for the PB
formula has been produced.

We can verify 99% of the solved unsatisfiable instances, which shows that the
current proof-of-concept approach is already practical in this setting. VErIPB proof
logs can also be produced for satisfiable instances. These proof logs contain the
derivations of all pseudo-Boolean constraints used in the solvers reasoning until a
solution is found. Hence, it is possible to verify that the reasoning of the solver
is sound, even if the instance is satisfiable. For satisfiable formulas we can verify
that the reasoning was correct for 95% of the solved instances. However, even
when VErRIPB does not terminate within the time limit, we can still certify that
the satisfying assignment found by the SAT solver is valid for the original PB
formula. We note that there is still ample room for performance improvements in
VERIPB—in particular, when it comes to verifying the DRAT proofs produced by
the SAT solver, which do not even use pseudo-Boolean reasoning, but are simply
clausal proofs syntactically rewritten in pseudo-Boolean format. Implementing
backwards checking [GN03] and some minor engineering should get VEriPB close
to the performance of DRAT-rrim [WHH14] on DRAT proofs. Hence, there is no
fundamental difficulty is improving the performance of VeriPB, but such work is
mostly a matter of engineering and is fairly orthogonal to the contributions of this
paper.

Figures 6 and 7 present the relationship between the end-to-end solving time
(encoding the pseudo-Boolean formula to CNF and solving the resulting formula
using Kissat) and the time to check the resulting proof log for the end-to-end
solving using VERIPB. It can be seen that even though we can verify most instances,
verification is often considerably slower than solving. The time to verify an instance
in proportion to solving it varies significantly. This is due to the verification of the
proof generated by the SAT solver, since VErRIPB has not been optimized to check
such proofs.

Figure 6 compares end-to-end solving and verification time for formulas with
only cardinality constraints and Figure 7 does the same comparison for formulas
with general pseudo-Boolean constraints. We split the benchmarks between
satisfiable and unsatisfiable instances to analyze if the satisfiability of the formula
affects the overhead of verification.

For the sequential counter encoding, verification of the proof for satisfiable
instances takes on average 11.27 + 6.98 times longer than solving and for un-
satisfiable instances 18.30 + 22.12 times longer. Even though verification times
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Figure 6: Comparing end-to-end solving and verification time for cardinality formulas.
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Figure 7: Comparing end-to-end solving and verification time for pseudo-Boolean formulas.

vary significantly for unsatisfiable instances, in the median satisfiable instances
are checked within 8.45 times the solving time while unsatisfiable instances are
checked within 5.16 times the solving time. The overhead for satisfiable instances
may seem large, but note that VeriIPB also checks if the derivations in the proof log
of these instances are sound and not just the correctness of the result, which is the
case in many occasions, e.g., the SAT competition.

We observe a similar behavior with the fotalizer encoding, where verifying
the proof takes on average 11.30 + 8.38 times longer than solving for satisfiable
instances and 14.83 + 14.54 times longer than solving for unsatisfiable instances.
Similarly, there are quite different verification times for unsatisfiable instances,
in the median there is an 8.62 times overhead for satisfiable instances while only
having an overhead of 5.17 times for unsatisfiable instances.
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Figure 8: Comparison between CNF translation and verification of proof logging.

For the general pseudo-Boolean formulas, we observe a higher verification
overhead with respect to solving time. In particular, GTE has an average overhead
of 54.67 + 61.85 times for unsatisfiable instances and 89.88 + 134.77 times for
satisfiable instances, with a median overhead of 36.71 times for unsatisfiable
instances and 18.68 times for satisfiable instances. A similar scenario applies with
the Adder encoding with an average 29.69 + 28.41 times overhead for unsatisfiable
instances and 54.00 + 99.29 times for satisfiable instances, with a median overhead
of 28.42 times for unsatisfiable instances and 5.44 times for satisfiable instances.
Verifying the results reported by the SAT solver are harder for formulas containing
PB constraints than for formulas containing cardinality constraints.

When considering formulas with both cardinality and pseudo-Boolean con-
straints, the observed overhead is smaller than for the other formulas with an
average overhead of 7.89 + 9.44 times for unsatisfiable instances and 13.11 + 19.39
times for satisfiable instances, with a median overhead of 4.33 times for unsatisfiable
instances and 5.21 times for satisfiable instances.

7.3 Translation and Verification

For a more detailed discussion of our results, let us first turn to the certified
translation. Figure 8 compares the time for VerirasPBLis to generate the CNF
translation and VEerIPB to verify it. The verification overhead is far from negligible,
but is not unreasonable. Over all encodings, for 75% of benchmarks verification
takes at most 49 times longer than translation, and for 98% of benchmarks at
most 100 times longer. While some overhead is natural, since the translation
algorithm can just output a claimed proof while the verifier needs to perform the
calculations to actually check it, our experiments do show that there is room for
further improvements in efficiency both for the verifier and for the proof logging
methods.



7. Experimental Evaluation 91

memout memout

104 T T T 104 d . POV
| timeout __ _______________.____ A N timeowt | ||| | __| |
10° b 10% [ F
|
p 10°f Cl e 102f .
= I B=] |
o0 1] [ o0 1L I
g -~ : g 1 :
T 100F ., ‘ T 100 ‘
% e sequential % m  adder
= 1071 * totalizer = 1071 A 4 gte
= . ; = seq-+adder
B o2} . 102 T
X ! ) |
1073 1 P 1073 - e
! I
! —4 | | | | | | Ly
104 | | | | | | L 10 P — o I 2 - "
10741073 10-2 10-! 10° 10' 102 103 10% 107107 10 '10 10° 10 . 10 10° 10
without proof logging without proof logging
(a) Cardinality formulas. (b) General pseudo-Boolean formulas.

Figure 9: Comparison of running times for CNF translation with and without proof
logging.

7.4 Overhead of Proof Logging

Figure 9 shows the overhead of proof logging when translating the pseudo-
Boolean formulas to CNF. For the majority of the instances, the overhead is not too
significant, and formulas with just cardinality constraints can still be translated
under 10 seconds, while formulas with PB constraints can be translated under 100
seconds. The average overhead in running time for proof logging is a factor of 2-3
for all encodings except GTE, which incurs around a factor 5 in overhead. However,
since translation is fast for the majority of instances, the additional overhead of
proof logging is not an issue when translating the pseudo-Boolean formulas to
CNFE

The proof logging overhead can be explained by the proofs being larger than
the generated CNF formulas, as shown in Figure 10. For most instances the
proof size seems to be within a constant factor of the CNF formula size, but for
a collection of crafted vertex cover problems [EGNV18] the sequential counter
encoding turns out to require proofs of super-linear size. These instances contain a
cardinality constraint enforcing a constant fraction of the variables in the formula
to be false, which is a worst-case scenario for the sequential counter encoding.
While the number of clauses in the CNF translation and the number of proof steps
are quadratic in the number of literals in the constraint, each reification step in
the unary sum derivation in Proposition 2 introduces a constraint of linear size,
making the total proof size cubic while the size of the CNF encoding remains
quadratic. It would be desirable to find a more efficient derivation that only
requires quadratic proof size in the number of literals in the constraint.

Additionally, there were 6 instances where VerirasPBL18 had memory outs, as
the whole proof for the translation is stored in memory. This could be improved in
the future by only storing the proof for one constraint at a time in VerirasPBLis.
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Figure 10: Comparison between CNF file size and proof logging file size in KiB.

7.5 Comparison with PB Solvers

In Table 3, we report results on how VeritasPBLiB together with Kissat used as a
pseudo-Boolean solver using the sequential counter and adder encodings compares
to state-of-the-art PB solvers, namely, MiniSat+ [ES06], Gurosr [Opt22] (version
9.5.1), NaPS [SN15] (version 1.02b), OreNn-WBO [MML14], RounpinGSar [EN18]
(commit b5de84d), and Sar4y [LP10] (version v20220212). All solvers were run
with their respective default configurations.

The approach of VerirasPBL1B+Kissat to transform a PB formula into CNF and
using a CDCL SAT solver to solve the resulting formula is also made by other PB
solvers such as MiniSat+, NaPS, and Open-WBO. However, the encodings used
in these solvers differ, and VeritasPBLIB uses a more recent SAT solver (KissaT).
For this benchmark set, VEritasPBL1B+KissaT outperforms other PB solvers in the
Card+PB and PB categories while being third in the Card category. Note that for
Sat4j, we ran the default version, which has native support for PB constraints and
does not translate them to CNF but still uses a SAT solver to solve the resulting
formula.> However, since Sat4j is written in Java and the underlying SAT solver is
not as powerful as the other solvers, its performance is worse when compared to
the other solvers.

Instead of using resolution like the SAT-based approaches, ROUNDINGSAT
uses stronger pseudo-Boolean reasoning in the form of cutting planes. For this
benchmark set, RounpINGSAT performed better than SAT-based solvers for the Card
category but worse for the Card+PB and PB categories.

Figure 11 shows a cumulative plot with the runtime comparison of pseudo-
Boolean solvers. We can observe that a majority of the instances are solved after

5Sat4j best-performing version for PB formulas is to run a cutting-planes-based solver with a
resolution solver in parallel. We did not present results for this version since we only run single-
threaded solvers, and this is not the default configuration of Sar4;. However, even with this version
Sar4j consistently performs worse than other cutting-planes-based solvers like RounbinGSat [EN18].
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Table 3: Number of solved instances by each PB solver

Solver Card Card+PB PB Total
MiNISAT+ 490 269 323 1,082
GUROBI 610 256 230 1,096
NaPS 555 265 283 1,103
Oren-WBO 600 275 316 1,191
RoOUNDINGSAT 663 270 273 1,206
Satdy 455 265 275 995
VErITASPBLIB+KissaT 619 286 346 1,251

a few seconds. Overall, VeritasPBL1B+KissaT not only provides certificates that
can be checked by VErIPB, but is also one of the best approaches to solving
pseudo-Boolean decision problems.

7.6 Certifying MaxSAT Optimal Values

Maximum Satisfiability (MaxSAT) [BJM21] is the optimization counterpart of SAT,
where the goal is to maximize the number of satisfied clauses. The MaxSAT
problem can be generalized to have hard and soft clauses, where hard clauses must
be satisfied and soft clauses may or may not be satisfied. Each soft clause has a
weight associated with it that corresponds to the cost of falsifying that soft clause.
For the general MaxSAT problem, the optimization goal becomes to maximize
the sum of the weights of the satisfied soft clauses. This optimization problem
can also be viewed as minimizing the sum of the weights of falsified soft clauses.
An optimal value of a MaxSAT formula corresponds to the minimal sum of the
weights of the falsified soft clauses.

The annual MaxSAT Evaluation® focus on evaluating the current state-of-the-art
in MaxSAT solvers. It has two main categories: (1) unweighted, where all soft
clauses have a weight of 1, and (2) weighted, where soft clauses have a weight
between 1 and 2. In contrast to the SAT competition, the results of MaxSAT
solvers are not verified since there is no verification tool for MaxSAT. Instead,
the optimal solution claimed by the solvers is checked to be a valid solution (i.e.,
satisfies all hard clauses, and the optimal value corresponds to the sum of the
weights of the falsified soft clauses), and any of the competing solvers found
no solution with a smaller value. However, this procedure does not give any
correctness guarantees. It has occurred in previous years that a single solver found
a (claimed) optimal solution for an instance, but this solution was later found not
to be optimal.”

Even though VEerirasPBL1s+Kissar cannot be used to show the correctness of
the solving procedure of a MaxSAT solver, it may be used to certify that the optimal
value of a given instance is correct. Given a MaxSAT formula F and its respective

®https://maxsat-evaluations.github.io/
’http://www.maxsat.udl.cat/15/results/index.html
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Figure 11: Cumulative plot with runtime comparison of PB solvers.

optimal value k, we turn the task of proving optimality of a MaxSAT instance F
into solving a PB decision instance Fpp that encodes that no smaller optimal value
exists for F. Let F = Fj, U F; be a MaxSAT formula, where Fj, represents h hard
clauses and F; represents s soft clauses. Let the weight associated with each soft
clause D; € F; be aj and k the optimal value of F. We construct Fpp as follows.

e Eachclause C = ({1 V...V {,) € Fj, is added in pseudo-Boolean form to Fpp:
bh+...+0,>1;

* Foreach clause D; = (4 V...V €y,) € Fs, we introduce a fresh variable b; and
add the clause in pseudo-Boolean form to Fpp: &1 +...+ €, +b; 2 1;

¢ Add a PB constraint to Fpp that restricts the sum of the weights of falsifying
soft clauses to be at most k — 1: a1b1 + ...+ asbs < k —1.

We can use VEerirasPBLiB to translate Fpg to CNF, use KissaT to solve the
resulting formula, and then verify the results with VeEriPB. If the formula is
unsatisfiable, we can certify that there is no solution with an objective value smaller
than k. The solution that results in the optimal value k has already been tested to
be a valid solution. Therefore, if we prove that no better solution exists, we can
show that the optimal value returned by the MaxSAT solver is correct.
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Table 4: Number of translated, solved and verified instances for each encoding when
certifying the results from the MaxSAT Evaluation 2022.

Translation Solving
Category #Inst Encoding #CNF #Verified #Solved #Verified
. Sequential 411 333 329 265
Unweighted 468 1 lizer 448 408 358 307
. Adder 455 346 193 139
Weighted 473 GrE 262 186 21 169

To evaluate how effective VErirasPBLis+Kissar is to certify the results of the
MaxSAT Evaluation 2022, we used the instances for which at least one solver
found an optimal solution, namely, 468 unweighted instances and 473 weighted
instances. Similarly to the previous experiments, we used a memory limit of 15
GB, a time limit of 7,200 seconds for verifying the proof with VeriPB, and a time
limit of 1,800 seconds for CNF translation with VeritasPBLib. We increase the
SAT solving time for Kissar to 3,600 seconds to match the time limit used in the
MaxSAT Evaluation.

Table 4 shows the number of instances for which VeritasPBLiB+Kissar could
verify the optimal value. The information is split into Translation and Solving. The
column #CNF presents the number of instances where VeritasPBL1B successfully
generated a CNF formula from the pseudo-Boolean formula Fpg. Note that all Fpg
are unsatisfiable, and each of them only contains either a single cardinality constraint
(in the case of unweighted) or a single PB constraint (in the case of weighted), with
the remaining constraints being clauses. The column Verified under Translation
shows how many instances were verified by VeriPB for the proof logging certificate
generated by VeritasPBL1s when translating each Fpg to CNF. The columns #Solved
and #Verified under Solving present how many instances were solved by Kissart,
and from those, how many were verified by VeriPB.

For the unweighted category, we can observe that 20 instances cannot be
translated to CNF with the totalizer encoding, which shows the blowup in the
CNF encoding when translating a single cardinality constraint to CNF. Overall,
KissaT can solve 358 out of 468 instances (76%) using this approach. Even though
this is a large percentage of instances, it does not match the performance of the
best MaxSAT solvers, since they are able to prove optimality by solving a different
CNF formula that is equivalent but simpler than the one we are solving with our
approach. Nevertheless, by using VeritasPBLis+Kissat, we can certify 307 out of
358 instances (86%), which shows the positive result that if we can solve the formula
with Kissat, we are likely able to certify the results. We can observe a similar
behavior with the sequential counter encoding, albeit with worse performance,
since this encoding is not as efficient for solving instances with a single large
cardinality constraint.

Shttps://maxsat-evaluations.github.io/2022/
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Figure 12: Comparison between end-to-end solving and verification time for the MaxSAT
Evaluation 2022 instances that can be solved by VERITASPBLIB+KISSAT.

For the weighted category, when using the GTE encoding, we can translate 262
out of 473 instances (55%) to CNF and when using the adder network encoding,
we can translate 455 out of 473 instances (96%). This large difference is due to the
exponential growth of the GTE encoding concerning the size of the weights, while
the adder network encoding only grows linearly. However, despite this significant
difference, Kissat can solve more instances with the GTE encoding than with the
adder network encoding since the GTE encoding is arc consistent [Gen02] and the
adder network encoding is not. When the formula can be translated to CNF using
the GTE encoding, then Kissar can solve it in 221 out of 262 cases (84%). Overall,
using VEritasPBLi1B+Kissat, we can certify 169 out of 221 instances (76%) when
using the GTE encoding and 139 out of 193 instances (72%) when using the adder
network encoding. If we consider instances that can be solved or certified by either
using the adder network encoding or the GTE encoding, then Kissar can solve 247
instances, and VErIPB can certify 199 of those. This shows that the adder network
encoding and GTE encoding are complementary and using both encoding can
increase the number of certified instances.

Figure 12 compares the end-to-end time between translation plus solving with
VEriTasPBL1B+Kissat and verifying the proof using VeriPB. As in Section 7.2, we
can observe that although we can verify most instances that the SAT solver solves,
verification is often considerably slower than solving the problem.

8 Concluding Remarks

In this work, we develop a general framework for certified translations of linear
pseudo-Boolean constraints into CNF using cutting-planes-based proof logging.
Since our method is a strict extension of the DRAT proof logging method used by
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conflict-driven clause learning (CDCL) SAT solvers, the proof for the PB-to-CNF
translation can be combined with a SAT solver DRAT proof log to provide, for the
first time, end-to-end verification for SAT-based pseudo-Boolean solvers. Our use
of the cutting planes method is not only crucial to deal with the pseudo-Boolean
format of the input, but the expressivity of the 0-1 linear constraints also allows us
to certify the correctness of the translation to CNF in a concise and elegant way.

While there is still room for performance improvements in proof logging and
verification, the experimental evaluation shows that our approach is feasible in
practice. We believe that the generality of our method, which expresses the proof
logging steps in terms of simple operations on a graph representation of the
PB-to-CNF translation, is an important aspect of our work. To demonstrate this
generality of our framework we show how to do proof logging for the sequential
counter, binary adder and (generalized) totalizer encodings. We are optimistic that
our framework can also be used for the watchdog encoding [BBR09], which builds
on top of the totalizer encoding. It is less clear whether the graph representation
can also be used in an elegant way to capture some of the sorting networks encodings
found to be particularly efficient in [ES06], such as the odd-even merge sorters [Bat68]
used in MiniSat+, or BDD-based encodings [Bry86, ES06], or whether more ad-hoc
pseudo-Boolean proof logging methods would be needed for such encodings.

As discussed already in the introduction, our paper does not quite reach the
goal of certifying equivalence of the original pseudo-Boolean formula F and the
CNF translation F’. In one direction, it is clear that as long as F’ is derived from
F using cutting planes with reification, any satisfying assignment « to F yields a
unique extended assignment a’ 2 « satisfying F’ by giving all newly introduced
variables the values determined by the reification rules (5a)—(5b). In the other
direction, however, we do not formally establish that the CNF translation F’ is as
strong as the original pseudo-Boolean formula F in the sense that any satisfying
assignment «’ for F’ is guaranteed to also satisfy F. As a quick technical detour,
one way of achieving such guarantees would be, after having derived all clauses
in F’, to erase all constraints in F using the “checked deletion” rule in [BGMN22].
This is certainly doable in principle, but we currently know of no clean and simple
way to formalize this in our graph-based translation framework. This is therefore
another problem that we have to leave as future research.

Our work on proof logging for PB-to-CNF translations has also uncovered
some technical questions that, to the best of our knowledge, have not been studied
in the literature before, but would seem to merit further investigations. A common
theme is that these questions revolve around possible trade-offs between encoding
strength and encoding size, as explained below.

In our proofs of correctness for the order encoding, the derivation of binary
clauses enforcing z; > z;11 play a key role in the derivations, but are not included
in the final CNF translation. This is a little bit surprising, since it would seem
that such clauses would improve propagation and hence potentially help the SAT
solver discover more facts. On the other hand, it is not clear how the presence of
such clauses in the solver trail would affect the conflict analysis. Thus it would be
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interesting to study whether including such clauses in the PB-to-CNF translation
would affect the SAT solving process in any systematic way.

Another question concerns the translation of cardinality constraints. When
given a constraint )7, a;¢; > k such that 37" a; —k < k, the PB-to-CNF translation

instead uses the equivalent constraint 2?21 a ,'l’_i < 21’»’21 a; — k because it introduces
fewer auxiliary variables. On the other hand, it seems that the presence of auxiliary
variables encoding partial information about constraints is precisely what allows
SAT-based pseudo-Boolean solvers to compete with, and not seldom outperform,
cutting-planes-based solvers [EGNV18]. And perhaps there could be a reason
why the problem at hand was encoded with a greater-than-or-equal constraint
rather than less-than-or-equal. It would seem relevant to investigate if there is a
trade-off here between propagation strength (potentially leading to more efficient
SAT solver search) and encoding size (potentially slowing down the solver due to
the increased number of auxiliary variables).

A final question regarding CNF translation of circuits is whether it is better to
encode propagations in both directions or only in one direction. If a circuit encodes
the evaluation of a PB constraint }; a;¢; > A, then one direction of propagation is
that any assignment to the literals {; making the constraint true should make the
output gate of the circuit evaluate to true. The other direction of propagation is
that any literal assignment violating the constraint should make the output gate of
the circuit evaluate to false. In our proofs of correctness we generate constraints
encoding both types of propagation, but it seems that in the final CNF translation
it is most common to include only clauses enforcing one of the directions. This
cuts the encoding size in half, but at the price of losing propagation power of
the encoding. It would be quite interesting to investigate how enforcing two-way
propagation or only one-way propagation affects the efficiency of the SAT solver
search.

Concluding this section, we wish to emphasize that we view certified trans-
lations to CNF of pseudo-Boolean decision problems as only a first step. In the
conference version of this paper, we expressed optimism that the techniques
developed in this work should also be possible to extend to core-guided MaxSAT
solving [FM06, MHL*13], including proof logging support for derivation of clauses
added during core extraction and objective function reformulation, and such
results have very recently been announced in [BBN*23]. While designing efficient
proof logging for other MaxSAT approaches such as implicit hitting sets (IHS) [DB11]
and abstract cores [BBP20] seems more challenging, we are hopeful that our work
could lead to a unified proof logging method for all modern MaxSAT solving
techniques, and also for pseudo-Boolean optimization using cutting-planes-based
reasoning as in [DGN21, DGD*21, EN18, LP10, SB]21, SB]22].
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Certified Core-Guided MaxSAT
Solving

Abstract

In the last couple of decades, developments in SAT-based optimization have led to
highly efficient maximum satisfiability (MaxSAT) solvers, but in contrast to the SAT
solvers on which MaxSAT solving rests, there has been little parallel development
of techniques to prove the correctness of MaxSAT results. We show how pseudo-
Boolean proof logging can be used to certify state-of-the-art core-guided MaxSAT
solving, including advanced techniques like structure sharing, weight-aware core
extraction and hardening. Our experimental evaluation demonstrates that this
approach is viable in practice. We are hopeful that this is the first step towards
general proof logging techniques for MaxSAT solvers.

1 Introduction

Combinatorial optimization is one of the most impressive, and most intriguing,
success stories in computer science. This area deals with computationally very
challenging problems, which are widely believed to require exponential time in
the worst case [IP01, CIP09]. In spite of this, during the last couple of decades
astonishing progress has been made on so-called combinatorial solvers for a
number of different algorithmic paradigms such as Boolean satisfiability (SAT)
solving and optimization [BHvMW?21], constraint programming (CP) [RvBW06],
and mixed integer programming (MIP) [AW13, BR07]. Today, such solvers are
routinely used to solve real-world problems with hundreds of thousands or even
millions of variables.

While the performance of modern combinatorial solvers is truly impressive,
one negative aspect is that they are highly complex pieces of software, and it is
well documented that even mature state-of-the-art solvers sometimes give wrong

Jeremias Berg, Bart Bogaerts, Jakob Nordstrom, Andy Oertel, and Dieter Vandesande. “Certified
Core-Guided MaxSAT Solving”. In Proceedings of the 29th International Conference on Automated Deduction
(CADE-29), volume 14132 of Lecture Notes in Computer Science, pages 1-22. Springer, July 2023.
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results [CKSW13, AGJ*18, GSD19, BMN22]. This can be fatal for applications
where correctness is a non-negotiable demand. Perhaps the most successful
approach for addressing this problem so far is the requirement in the SAT solving
community that solvers should be certifying [ABM*11, MMNS11], meaning that
when given a formula a solver should output not only a verdict whether the
formula is satisfiable or unsatisfiable, but also an efficiently machine-verifiable
proof log establishing that this verdict is guaranteed to be correct. One can then
feed the input formula, the verdict, and the proof log to a special, dedicated proof
checker, and accept the result if the proof checker agrees that the proof log shows
that the solver computation is valid. Over the years, different proof formats such as
RUP [GNO3], TraceCheck [Bie06], DRAT [HHW13a, HHW13b], GRIT [CMS17], and
LRAT [CHH*17] have been developed, and for almost a decade DRAT prooflogging
has been compulsory in the (main track of the) SAT competition. However, there
has been very limited progress in designing analogous proof logging techniques
for more powerful algorithmic paradigms.

Our focus in this work is on the optimization paradigm that is arguably closest
to SAT solving, namely maximum satisfiability or MaxSAT solving [BJM21, LM21],
and the challenge of developing proof logging techniques for MaxSAT solvers.

1.1 Previous Work

Since essentially all modern MaxSAT solvers are based on repeated invocations
of SAT solvers, a first question is why SAT proof logging techniques are not
sufficient. While DRAT is a very powerful proof system, it seems that the
overhead of generating proofs of correctness for the rewriting steps in between
SAT solver calls in MaxSAT solvers is too large to be tolerable for practical
purposes. Another, related, problem is that for optimization problems one needs
to reason about the objective function, which DRAT struggles to do since its
language is limited to disjunctive clauses. But perhaps the biggest challenge is
that while modern SAT solving is completely dominated by the conflict-driven
clause learning (CDCL) method [BS97, MS99, MMZ*01], for MaxSAT there is
a rich variety of approaches including linear SAT-UNSAT (or model-improving
search) [ES06, LP10, PRB18], core-guided search [FM06, NB14, ADR15, AG17], implicit
hitting set (IHS) search [DB13a, DB13b], and some recent work on branch-and-
bound methods [LXC*22] (where we stress that the lists of references are far from
exhaustive).

One tempting solution to circumvent this heterogeneity of solving approaches
is to treat the MaxSAT solver as a black box and use a single call to a certifying SAT
solver to prove optimality of the final solution found. However, there are several
problems with this proposal. Firstly, we would still need proof logging to ensure
that the input to the SAT solver is a correct encoding of a claim of optimality for the
correct problem instance. Secondly, such a SAT call could be extremely expensive,
running counter to the goal of proof logging with low (and predictable) overhead.
Finally, even if the SAT-call approach could be made to work efficiently, this would
just certify the final result, and would not help validate the correctness of the
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reasoning of the solver. For these reasons, our goal is to provide proof logging for
the actual computations of the MaxSAT algorithm.

While some proof systems and tools have been developed specifically for
MaxSAT [BLMO07, LNOR11, MM11, MIB*19, FMSV20, PCH20, PCH21, PCH22,
IBJ22], none of them comes close to providing general-purpose proof logging,
because they apply only for very specific algorithm implementations and/or
fail to capture the full range of reasoning used in an algorithmic approach. A
recent work [VDB22] by two co-authors on the current paper instead leverages
the pseudo-Boolean proof logging system VErIPB [Ver] to certify correctness of
the unweighted linear SAT-UNSAT solver QMAXSAT. VEriPB is similar in spirit
to DRAT, but operates with more general 0-1 linear inequalities rather than
just clauses. This simplifies reasoning about optimization problems, and also
makes it possible to capture the powerful MaxSAT solver inferences in a more
concise way. VERIPB has previously been used for proof logging of enhanced SAT
solving techniques [GN21, BGMN22] and pseudo-Boolean solving [GMNQO22], as
well as for providing proof-of-concept tools for a nontrivial range of techniques
in constraint programming [EGMN20, GMN22] and subgraph solving [GMNZ20,
GMM™*20].

1.2 Our Contributions

In this work, we use VERIPB to provide, to the best of our knowledge for the first
time, efficient proof logging for the full range of techniques in a cutting-edge
MaxSAT solver. We consider the state-of-the-art core-guided solver CGSS [IB]21],
based on RC2 [IMM19], and show how to enhance CGSS to output proofs of
correctness of its reasoning, including sophisticated techniques such as stratifi-
cation [ABGL12, MAGL11], intrinsic-at-most-one constraints [IMM19], harden-
ing [ABGL12], weight-aware core-extraction [BJ17], and structure sharing [IB]J21].
We find that the overhead for such proof logging is perfectly manageable, and
although there is certainly room to improve the proof verification time, our experi-
ments demonstrate that already a first proof-of-concept implementation of this
approach is practically feasible.

It has been shown previously [EG21, GMM*20, KM21] that proof logging can
also serve as a powerful debugging tool. This is because faulty reasoning is likely
to lead to unsound proofs, which can be detected even if the solver produces
correct output for all test cases. We exhibit yet another example of this—some
proofs for which we struggled to make the verification work turned out to reveal
two well-hidden bugs in RC2 and CGSS that earlier extensive testing had failed to
uncover.

Although it still remains to provide proof logging for other MaxSAT approaches
such as (general, weighted) linear SAT-UNSAT and implicit hitting set (IHS) search,
we are optimistic that our work could serve as an important step towards general
adoption of proof logging techniques for MaxSAT solvers.
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1.3 Outline of This Paper

After reviewing preliminaries for pseudo-Boolean reasoning and core-guided
MaxSAT solving in Sections 2 and 3, we explain how core-guided MaxSAT solvers
can be equipped with proof logging methods in Section 4. In Section 5 we present
our experimental evaluation, after which some concluding remarks and directions
for future research are given in Section 6.

2 Preliminaries

We start by a review of some standard material which can be found, e.g., in [BN21,
GN21, GMNO22]. A literal { over a Boolean variable x (taking values in {0, 1},
which we identify with false and true, respectively) is x itself or its negation X,
where X =1 — x. A pseudo-Boolean (PB) constraint is a 0-1 integer linear inequality
C = 3 ;ail; > A (wWhere = denotes syntactic equality). When convenient, we can
assume without loss of generality that PB constraints are in normalized form [Bar95];
i.e., all literals ¢; are over distinct variables and the coefficients a; and the degree (of
falsity) A are non-negative integers. The set of literals in C is denoted lits(C). The
negation of C is =C = }; a;{; < A — 1 (rewritten in normalized form when needed).
A pseudo-Boolean formula is a conjunction F = A ; C; of PB constraints. Note that a
disjunctive clause can be viewed as a PB constraint with all coefficients and the
degree equal to 1, and so formulas in conjunctive normal form (CNF) are special
cases of PB formulas.

A (partial) assignment p is a (partial) function from variables to {0, 1}, which we
extend to literals by respecting the meaning of negation. Applying p to a constraint
C yields CT, by substituting the variables assigned in p by their values, and for
aformula F = A\; Cj we define F[,= A\; C;I,. The constraint C is satisfied by p if
> p(6)=11i = A, and p satisfies F if it satisfies all C € F, in which case F is satisfiable.
A formula lacking satisfying assignments is unsatisfiable. We say that F implies C,
denoted F |= C, if any assignment satisfying F also satisfies C.

Anobjective O = }; w;{; + M is an affine function over literals ¢; to be minimized
by (total) assignments « satisfying F. The value (or cost) of an objective O under
such an a, which we refer to as a solution, is O(a) = ¥ =1 wi + M. We write
coeff (O, £;) to denote the coefficient w; of a literal ¢; € lits(O).

The foundation of the pseudo-Boolean proof logging in this paper is the
cutting planes proof system [CCT87], which is a method to iteratively derive new
constraints implied by a pseudo-Boolean formula F. If C and D have been derived
before or are axiom constraints in F, then any positive linear combination of these
constraints can be derived. Literal axioms ¢ > 0 can also be added to any previously
derived constraints. For a constraint }}; a;{; > A in normalized form, division by a
positive integer d derives ) ; [a;/d¢; > [A/d], and we also add a saturation rule
that derives }; min{a;, A} - {; > A (where the soundness of these rules crucially
depends on the normalized form). It is well known that any PB constraint implied
by F can be derived using these rules.
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A constraint C is said to unit propagate the literal ¢ to true under an assignment
p if CT, cannot be satisfied unless ¢ is true. During unit propagation on F under p,
we extend p iteratively by any propagated literals until an assignment p’ is reached
under which no constraint C € F is propagating or some constraint C wants to
propagate a literal that has already been assigned to the opposite value. The latter
case is called a conflict, since C is violated by p’. We say that F implies C by reverse
unit propagation (RUP), and that C is a RUP constraint with respect to F, if F A =C
unit propagates to conflict under the empty assignment. It is not hard to see that
F |= C holds if C is a RUP constraint, and as a convenient shorthand we will add a
RUP rule for deriving new constraints.

In addition to deriving constraints that are implied by a formula F, we also
allow deriving so-called redundant constraints C that are nof implied by F as long
as some optimal solution is guaranteed to be preserved. This is done by extending
the proof system with a redundance-based strengthening rule [GN21, BGMN22]. We
will only need the special case of this rule saying that for a fresh variable z and for
any constraint D = }}; a;{; > A we can introduce the reified constraints

C2,(z,D) = AZ+ Y, 0t 2 A (1a)

CS(z,D) = Qiai—A+1)z+Y;a;>Y,a,-A+1 (1b)

reif

encoding the implications z = D and z < D, respectively. We refer to z as the
reification variable, and when D is clear from context, we will sometimes write just
Cr2(z) for (1a) and C(z) for (1b).

The maximum satisfiability (MaxSAT) problem can be described conveniently as a
special case of pseudo-Boolean optimization. A discussion on the equivalence of
the following and the—more classical—clause-centric definition can be found in,
for instance, [LB]20, BJM21]. An instance (F, O) of the (weighted partial) MaxSAT
problem consists of a CNF formula F and an objective function O written as a
non-negative affine combination of literals. The goal is to find a solution « that
satisfies F and minimizes O(a). We say that such a solution « is optimal for the
instance and that the optimal cost of the instance (F, O) is O().

3 The OLL Algorithm for Core-Guided MaxSAT Solv-
ing

We now proceed to discuss the core-guided MaxSAT solving in CGSS, which is
based on the OLL algorithm [AKMS12, MDM14], and describe the main heuristics
used in efficient implementations of this algorithm. Given a MaxSAT instance
(Forig, Orig), OLL takes an optimistic view and attempts to find an assignment
satisfying Foig in which O,yig equals its constant term (i.e., all literals in lits(Opyig)
are false). If such a solution exists, it is clearly optimal. Otherwise, the solver will
extract a core K, which is a clause such that (i) K only contains objective literals, i.e.,
lits(K) C lits(Oprig), and (ii) Forig implies K, which means that any solution to Foig
has to set at least one literal in lits(K) to true. The cost w(K, O) = min{coeff (O, {) :
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{ € lits(K)} of a core K is the smallest coefficient in the objective O of any literal
in K. The core K is used to (conceptually) reformulate the instance into (Fyef, Orf)
which has the same minimal-cost solutions. The constant term LB in O is a lower
bound on the optimal cost of the instance, and the reformulation is done in such a
way that the lower bound increases (exactly) with the cost of the core K as defined
above.

In more detail, the algorithm maintains a reformulated objective Oy (initialized
to Oprig) such that the (non-normalized) pseudo-Boolean constraint

Owig = O = > coeff(Quig/b) - b > > coeff(Ops, ) - b’ + LB (2)
belits(Ourig) b €lits(Orf)

is satisfied by all solutions of Fs. Note that the constraint (2), which we refer to
as an objective reformulation constraint, implies that the constant term LB is a lower
bound on the optimal cost.

In each iteration, a SAT solver is queried for a solution a to Fy,f with Oyer(a) = LB.
If such an « exists, the constraint (2) yields that Oyig(a) = LB, and so a is a minimal-
cost solution to (Porig, O(m-g). Otherwise, the solver returns a new core K that requires
at least one literal in [its(Oyf) to be set to 1. This implies that the optimal cost is
strictly larger than LB, and the core K is used for a new reformulation step.

The objective reformulation step adds new clauses to F,, encoding the con-
straints Yk k < Xpeisk) b = k for k =2,...,|K|. The new variables yk  are added
to O,,r with coefficient w(K, O,r) equalling the cost of K, and the coefficient in O, of
each literal in K is decreased by the same amount. Finally, the lower bound LB—the
constant term of O,,;—is also increased by w(K, Oyf). Since yk « encodes that at

least k literals in K are true, we have the equality >\pisx) 0 = 1+ ZLKZIZ YKk, Where
the additive 1 comes from the fact that at least one literal in K has to be true,
and the reformulation step is just applying this equality multiplied by w(K, O,)
to O,r. Notice that the variables added during objective reformulation can later be
discovered in other cores. In practice, all implementations of OLL we are aware of
encode the semantics of counting variables incrementally [MJML14]. This means
that initially only the variable yk > is defined, and the variable y ;41 is introduced
only after yk ; is found in a core.

Implementations of OLL for MaxSAT—including the CGSS solver that we
enhance with proof logging in this work—extend the algorithm with a number
of heuristics such as stratification [ABGL12, MAGL11], hardening [ABGL12], the
intrinsic-at-most-ones technique [IMM19], weight-aware core extraction [BJ17],
and structure sharing [IB]J21].

Stratification extracts cores not over all literals in O,,s but only over those whose
coefficient is above some bound w;,. This steers search toward cores containing
literals with high coefficients, resulting in larger increases of LB. Once no more
cores over such variables can be found, the algorithm lowers w4, terminating
only after no more cores can be found with w4+ = 1. The fact that no more cores
containing only variables with coefficients above wg;; exist is detected by the SAT
solver returning a (possibly non-optimal) solution a. The minimal cost O,ig(a) of
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all such solutions gives an upper bound UB on the optimal cost of the instance,
allowing OLL to terminate as soon as LB = UB.

Hardening fixes literals in Oy to 0 based on information provided by the
current upper and lower bounds UB and LB. If for any b € lits(O,) it holds that
coeff (Orgf, b) + LB > UB, then any solution a with b = 1 would have higher cost
than the current best solution known, and would thus not be optimal.

The intrinsic-at-most-one technique identifies subsets S C lits(O,) of objective

literals such that ¥,.g b < 1 is implied, i.e., any solution can assign at most one
literal in S to 0. This is used both to increase the lower bound and to reformulate
the objective. If we let wy,;, = min{coeff (O, b) : b € S}, then S implies a lower
bound increase of LBs = (|S| — 1) - wyn. Additionally, we define a new variable {g
by the clause {s + },,cs b > 1 to indicate if in fact all literals in S are true, and
introduce it in the reformulated objective with coefficient w,,;,. This means that we
remove the already known lower bound LB from O, and transfer the possible
additional cost wy,;, from S to the variable /g.

Weight-aware core extraction (WCE) delays objective reformulation, and the
accompanying increase in new variables and clauses, for as long as possible. When
a new core K is extracted by a solver that uses WCE, initially only the coefficient
of each b € lits(K) is lowered and the lower bound LB is increased by w(K, Oyf).
Then the SAT solver is invoked again with the literals, that still have coefficients
above Wy In Oref/ set to 0. When the SAT solver finds a satisfying assignment
extending the assumptions, all objective reformulations steps are then performed
at once. This is correct since the final effect is the same as if the core would have
been discovered one by one and immediately followed by objective reformulation.
Notice that this core extraction loop is guaranteed to terminate since the coefficient
of at least one variable is decreased to 0 for each new core. Structure sharing is a
recent extension to weight-aware core extraction that makes use of the potential
overlap in cores detected in order to achieve more compact encodings of counting
variable semantics.

4 Proof Logging for the OLL Algorithm for MaxSAT

We have now reached a point where we can describe the contribution of this work,
namely how to add proof logging to an OLL-based core-guided MaxSAT solver,
including all the state-of-the-art techniques described in Section 3.

In our proof logging routines we maintain the invariants described next. The
reformulated objective Oy is already implicitly tracked by the solver and at all
times it is possible to derive that Oy > O, as in (2). We also keep track of the
current upper bound UB on O,ig and best solution &y, found so far. All cores that
have been found and processed are in the set K.

SAT Solver Calls. The CDCL SAT solvers used in core-guided MaxSAT algorithms
can support DRAT proof logging, and since the proof format used by VeriPB is a
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strict extension of DRAT (modulo small and purely syntactical modifications) it is
straightforward to provide proof logging for the part of the reasoning done in SAT
solver calls, and to add all learned clauses to the proof checker database.

Each invocation of the SAT solver returns either a new solution « or a new
core K. When a solution a with Oorig(a) < UB is obtained, it is logged in the proof,
which adds the objective-improving constraint

Owig < UB -1 (3a)
(which is
Zcoeﬁ‘(omg, b)-b > 1+ Zcoeﬁ‘(omg,b) ~UB (3b)
belits(Ourig) belits(Oprig)

in normalized form). A technical side remark is that later solutions with cost
greater than UB cannot successfully be logged, since they violate the constraint (3a)
added to the proof checker database, and so the proof logging routines make sure
to only log solutions that improve the current upper bound.

If the SAT solver instead returns a new core K, this clause is guaranteed to be a
reverse unit propagation (RUP) clause with respect to the set of clauses currently in
the solver database, and so we can use the RUP rule to add K to the proof checker
database (which contains a superset of the clauses known by the solver). For our
book-keeping, we also add K to the set K. A special case is that K could be the
contradictory empty clause, corresponding to the pseudo-Boolean constraint 0 > 1.
This means that there are no solutions to the formula.

To optimize the efficiency of proof verification, constraints should be deleted
from the proof when they are no longer needed. Since SAT solver proofs are only
used to prove unsatisfiability this does not cause any issues, but when certifying
optimality we have to be careful in order not to create better-than-optimal solutions
(which could happen if, e.g., constraints in the input formula are removed). The
checked deletion rule [BGMN22] ensuring this in VErIPB does not have any analogue
in DRAT, so some care is needed here when translating SAT solver proofs into the
VERIPB format.

Incremental Totalizer with Structure Sharing. Different implementations of
OLL for MaxSAT differ in which encoding is used for the counting variables
introduced during objective reformulation [KP18, KP19, BB03]. The two solvers
we consider use totalizers [BB03], so we start by explaining this encoding and then
show how to provide proof logging for the clauses added to the proof checker
database.

The totalizer encoding for a set I = {f;, ..., {,} of literals is a CNF formula 7~
that defines counting variables y; ; for j = 1, ..., n such that for any assignment that
satisfies 7~ the variable y; ; is true if and only if })7_, ¢; > j. The structure of 7~ can
be viewed as a binary tree, with literals in I at the leaves and with each internal
node 7 associated with variables counting the true leaf literals in the subtree rooted
at 7. The variables y; ; are associated with the root of the tree.
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More formally, given a set of literals I, we construct a binary tree with leaves
labelled by the literals in I. For every node n of 77, let lits(n) denote the leaves
in the subtree rooted at 17; where it is convenient, we will overload I to also refer
to the root note. For each internal node 7, the totalizer encoding introduces the
counting variables S, = {1, - - -, Yy jiits(y) }, the meaning of which can be encoded
recursively in terms of the variables S;, and S, for the children n; and 1, of 17 by
the (pseudo-Boolean form of the) clauses

Cnﬁ(a’ﬁfo-) = yﬂ/f’+yr[1,a+yr]2,ﬁ Z 1 (4a)
C?(&,ﬂ, O) = yy],a+1 + y‘flllﬁé"'1 + y’]z/ﬁ‘*l =1 (4b)

for all integers a, B, 0 such that a + f = 0 and 0 < a < |lits(n1)], 0 < B < |lits(n2)],
and 0 < ¢ < |lits(n)|. We use the notational conventions in (4a)—(4b) that y,1 = ¢
for all leaves ¢, and that y,0 = 1 and y,) jiits(p|+1 = 0 for all nodes 7 (so that clauses
containing ;0 O Yy |iits(p)|+1 can be simplified to binary clauses or be omitted when
they are satisfied). The clauses Cq:} (a, B, 0) in (4b) are not necessarily added to the
clause database of the MaxSAT solver, but are sometimes included for improved
propagation.

We now turn to the question of how to derive the clauses (4a)—(4b) encoding
the meaning of the counting variables y; ; in the proof. This is a two-step process.
First, reified pseudo-Boolean (and, in general, non-clausal) constraints C:if(yfbi)
and C (v, j) as in (1a)~(1b), encoding that y, ; holds if and only if 3 cjits() € = J,
are derived by redundance-based strengthening. Then the clauses added to the
MaxSAT solver are derived from these pseudo-Boolean constraints. Although we
omit the details due to space constraints, it is not hard to show that for any internal
node ) with children 7y and 12, the clauses C;~(a, §, 0) and C;”(a, B, 0) in (4a)—(4b)
ca<r:1 be derived from the constraints C;:eif(y,],o), sz(yn,g),.Cfeif(ym,a),.C:if(ym,a),
Crait(Ynap), and C (v, p) by standard cutting planes derivations as in [VDB22].
In particular, the certification of these totalizers can be done incrementally: clauses
in the encoding can be derived as the corresponding counter variables are lazily
introduced in the OLL algorithm.

This approach is also compatible with structure sharing, where subtrees of
a previously constructed totalizer tree can be reused (to avoid doing the same
work twice). The only constraints from a subtree rooted at 1* that are needed
when generating another totalizer encoding at a higher level are the constraints
C (Y ,0) and C (v o) defining the counter variables in the subtree root n*.

To decrease the memory usage of the proof checker, it can be useful to delete
reification constraints from the proof once we know that they will no longer be
needed. Without structure sharing, for an internal node 7, once all clauses that
mention y; ; are created, the constraints C;_(y;,;) and C_(y,, ;) will not be used
anymore and can thus be deleted. On the other hand, structure sharing reuses as
many counting variables as possible, even over multiple iterations of weight-aware
core extraction. This means that C (y,,;) and C7(y;,;) need to be retained, even

rei
after all clauses in the totalizer encoding for all parents of node 1 have been created.



116 Certified Core-Guided MaxSAT Solving

Objective Reformulation. If counting variables yx ; fori = 2,...,sx have been
introduced for the core K, then the objective reformulation with respect to K is
derived with the help of the constraint

Dbz1+) ks (52)

beK =2
(or
sK
INEDNIIEL (5b)
beK i=2

in normalized form). The constraint (5b) can in turn be obtained from the core
clause K and the reified constraints C_(yxj)- Itis clear that this should be possible,
since the latter constraints define the variables yk ; precisely so that (5b) should
hold, and we refer to Algorithm 5 in [GMNO22] for the details. Also, each time a
new counting variable y ; is introduced for a core K, we add it to (5b) to maintain
this constraint as an invariant.

To illustrate how this update works, suppose we havea core K = Y7 b; > 1
for which 37, b + ¥, ;1 Yx ; = sk — 1 has already been derived. The next counting
variable yk 5 is introduced by the reification s - yy , + Xii_; bi > sk. The previous
constraint is multiplied by sy — 1 and added to the new reified constraint, yielding
Sk 2 b+ (sk—1)- ngl Ytk Ygg = (sc —1) - sx + 1. Dividing this last
constraint by sg results in }\7_; b + X%, Yx; = sk, which is the desired updated
constraint.

For a set of extracted cores K, we can derive the objective reformulation
constraint Oyig > O, by multiplying (5b) for each K € K by the cost w(K, O)
of K and summing up all these multiplied constraints. The fact that we have
an inequality Oy > O rather than an equality is due to the incremental use
of totalizers. More specifically, if sx = |lits(K)| would hold for every K € K, it
would be possible to derive Oyig = Oy instead. Here we would like to stress one
subtlety for developing proof logging for OLL: as the algorithm progresses and
more output variables of totalizers are introduced (i.e., the counters sk increase),
the reformulated objective potentially also increases—because of added counted

. . . . ld .
variables when s increases we have the inequality O,y > Oy’e“;w > Or‘; g For this

reason, the old constraint Oyig > Oroe}d cannot be used to derive Oyig > Oy’éiw after

objective reformulation. Instead, we have to derive Oyig > Oy from scratch each
time the solver argues with the reformulated objective. For doing this we need to
have access to the entire set K of cores.

Proving Optimality. When the solver has found an optimal solution and estab-
lished a matching lower bound, optimality is certified in the proof log using a proof
by contradiction from the objective reformulation constraint Opig > O in (2) and
the (normalized form of the) objective-improving constraint O,; < UB — 1 in (3b).
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If we add these two constraints and cancel like terms, we get

> coeff (Oup, ') - b >1-UB+LB+ > coeff (Oup, ). (6)
b7 €lits(Opr) b €lits(Orf)

Since we have UB = LB when the optimal solution has been found, and since

— . ’
Zb’elits(Omf) coeff (O, b’) - b cannot possibly exceed Zb’elits(on,f) coeff (O, b’), the
constraint (6) can be simplified to contradiction 0 > 1.

Intrinsic At-Most-One Constraints. Certifying intrinsic at-most-one constraints
for a set S C lits(Oyy) of literals requires deriving (i) the at-most-one constraint
stating that at most one b € S is assigned to 0 by any solution and (ii) constraints
defining the variable {s. Such sets S are detected by unit propagation that
implicitly derives implications b; = b; in the form of binary clauses b; + b; > 1
for every pair of variables in S. In the proof log, all these binary clauses can be
obtained by RUP steps, after which the at-most-one constraint > ;. g b < 1 (which
is Ypes b = |S| — 1 in normalized form) is derived by a standard cutting planes
derivation (see, e.g., [CCT87]).

The reified constraints {5 & Ycqb > |S| and bs = Ypesb = |S| defining
the variable {s (which are {s + Y ,cgb = 1 and ls + Ypes b = |S|, respectively, in
normalized form) are derived by redundance-based strengthening. Note that the
latter constraint does not exist in the MaxSAT solver, but we need it in the proof in
order to derive the objective reformulation for the at-most-one constraint.

Hardening. Formally, hardening corresponds to deriving b > 1 in the proof
for some literal b € lits(Oyy) for which UB < LB + coeff (Oygf, b) holds. Such an

inequality b > 1 is implied by RUP if we first derive the constraint (6), since
assigning b = 1 results in (6) being contradicting.

Upper Bound Estimation. A final technical proof logging detail is that some
implementations of the OLL algorithm for MaxSAT—including the Python-based
version of CGS5S5—do not use the actual cost of the solution found by the SAT solver
as the upper bound UB when hardening. In order to avoid the overhead in Python
of extracting the solution from the SAT solver, an upper bound estimate UB,; is
computed instead based on the initial assignment passed to the SAT solver in
the call. Since any valid estimate is at least the cost of the solution found (i.e.,
UB,+ > UB), hardening steps based on UB,; can be justified by first deriving
Ovrig < UByst — 1, which follows from the latest objective-improving constraint (3a).
However, in order to handle solutions correctly in the proof, the proof logging
routines need to extract the solution found by the solver and compute the actual
cost, which means that a Python-based solver will not be able to avoid this overhead
when running with proof logging.
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Table 1: Example proof produced by a certified OLL solver.

id Pseudo-Boolean constraint | Justification
1 bi+x2>1 input

2) by+x>1 input

(3) bs+bs>1 input

() 5by +5by + b3 + by 2 6 | log solution a;
(5) b1 +b;>1 | RUP

(6) by + by + YK 2 =1 reification

7) 2Yx, 2+ b1 +by =2 reification

(8) 5b1 +5b2 + 5y, , 210 | (((5)+(7))/2)-5
9) b3 +bs+5yy, , 26 | (4)+(8)

(10) Vk,»21 | RUP

(11) bs+bs>1 | RUP

(12) 53 + 1;4 + YK, 2 21 reification

(13) 2Yy,» +b3+bs =2 | reification

(14) bs+bs+yy,,>2 | ((11)+(13))/2
(15) 5by +5by + b3 +by =7 | logsolution a;
(16) 5b1 + 5by + b3 + by + 5]7K1,2 + sz,Z >12 (8) + (14)

(17) 5Vx,2t Vk,2 27 | (15)+(16), L

Worked-Out Example. We end this section with a complete, worked-out example
of OLL solving and proof logging for the toy MaxSAT instance (F, O) with formula
F = {(bl \Y X), (—|x \Y bz), (bg \ b4)} and Objective O =5by +5by + b3 + by.

After initialization, the internal SAT solver of the OLL algorithm is loaded with
the clauses of F and the proof consists of constraints (1)—(3) in Table 1. The OLL
search begins by invoking the SAT solver on the clauses in F in order to check
the existence of any solutions. Assume the SAT solver returns the solution ay
assigning by = b3 = by = 1 and b, = x = 0. This solution has objective value
O(a1) = Opig(@1) = 7 so the algorithm updates UB = 7 and logs the objective-
improving constraint (4) in Table 1 equivalent to Opig < 6.

Assume the stratification bound wg,; is initialised to 2. Then the solver is
invoked with b; = b, = 0 and returns the core K1 = b1 + by > 1, which is added to
the proof as constraint (5). As already mentioned, core clauses are guaranteed to
be RUP with respect to the set of clauses in the SAT solver database, which are
also added to the proof.

For simplicity, we ignore WCE and structure sharing in this example, meaning
that the solver next reformulates the objective based on K; by introducing clauses
enforcing yx,2» < (b1 + by > 2) for the new counting variable yg, ». This is
done by (i) introducing the pseudo-Boolean constraints (6) and (7) in Table 1
by reification, and (ii) deriving the clauses corresponding to these constraints.
While the MaxSAT solver only uses the implication (6), the proof also requires
constraint (7) corresponding to yk, 2 = (b1 + b > 2). Conveniently, in this toy
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example yk, » & (b1 + by > 2) is already the clause by + by + yk, 2 > 1, so step (ii)
is not needed. For the general case, we derive totalizer clauses as explained in
Section 4. Conceptually, we now replace 5b1 + 5by by 5yk, » + 5 to obtain the
reformulated objective Oy = b3 + b3 + 5y, 2 + 5 with lower bound LB = 5. The
core Kj says that at least one of b; and b, must be true, thus incurring a cost of 5,
and yx, 2 is added to the objective to indicate if both of them incur cost.

Since it now holds that coeff (O, Yk, ,2) + LB =5+ 5 > 7 = UB, the literal yx, 2
is hardened to 0. In order to certify this hardening step, i.e., derive yy , > 1, the
proof logger first derives the objective reformulation constraint 561 +5b, + bz + by >
b3 + bs + 5yk, 2 + 5 enforced by line (8) in Table 1. The objective-improving and
objective reformulation constraints are then added together to get constraint (9),
after which . , > 1is obtained by a RUP step.

The next SAT solver call with b3 = by = 0 returns as core the input clause
b + by > 1, and reformulation (lines (11)-(13)) yields O, = 5yk, 2 + Yk, 2 + 6 with
LB = 6. Now suppose the SAT solver finds the solution ay with by = bz =x =1
and all other variables set to 0, resulting in the objective-improving constraint (15).
Since Oyig(az) = 6 = LB, the solver terminates and reports a, to be optimal. To
certify that this is correct, another objective reformulation constraint (16) is derived,
after which the contradictory constraint (17) is obtained by adding (15) and (16).
This proves that solutions with cost less than 6 do not exist.

5 Experimental Evaluation

To evaluate the proof logging techniques developed in this paper, we have imple-
mented them in the state-of-the-art MaxSAT solver CGSS [CGSa, IB]J21], which uses
the OLL algorithm and structure-sharing totalizers. We employed VErIPB [Ver],
extended to parse MaxSAT instances in the standard WCNF format, to verify the
certificates of correctness emitted by the certifying solver.

Our experiments were conducted on machines with an 11th Gen Intel(R)
Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory. Each benchmark ran
exclusively on a single machine with a memory limit of 14 GB and a time limit of
3600 seconds for solving with CGSS and 36 000 seconds for checking the certificates
with VERIPB. As benchmarks we used all 594 weighted and 607 unweighted
instances from the complete track of the MaxSAT Evaluation 2022 [Max22], where
an an instance (F, O) is unweighted if all coefficents coeff (O, {) are equal. The data
from our experiments can be found in [BBN*23].

Overhead of Proof Logging. To evaluate the overhead in solver running time, we
compared the standard CGSS solver [CGSb] without proof logging (but with the
bug fixes discussed below) to CGSS with proof logging as described in this paper.
With proof logging 803 instances are solved within the resource limits, which is 3
instances less than without proof logging (see Figure 1). Adding proof logging
slowed down CGSS by about 8.8% in the median over all solved instances. For
95% of the instances CGSS with proof logging was at most 36.2% slower. Thus,
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Figure 1: Running time of CGSS with and Figure 2: CGSS running time compared to
without proof logging. time required for proof checking.

the proof logging overhead seems perfectly manageable and should present no
serious obstacles to using proof logging in core-guided MaxSAT solvers.

Overhead of Proof Checking. To assess the efficiency of proof checking, we
compared the running time of CGSS with proof logging to the time taken by
VERIPB for checking the generated proofs. The instances that were not solved
by CGSS within the resource limits were filtered out, since the running time for
checking an incomplete proof is inconclusive.

VERIPB successfully checked the proofs for 747 out of the 803 instances solved
by CGSS (see Figure 2); 42 instances failed due to the memory limit and 14 instances
failed due to the time limit. Checking the proof took about 3 times the solving time
in the median for successfully checked instances. About 87% of the successfully
checked instances were checked within 10 times the solving time.

Proof checking time compared to solver running time varies widely, but our
experiments indicate that the performance of VeriPB is sufficient in most cases,
and verification time scales linearly with the size of the proof for a majority of
the instances. However, there is room to improve VErIPB, where focus so far
has been on proof logging strength rather than performance. For the instances
where checking is 100 times slower than solving, the main bottleneck is the proof
generated by the SAT solver, which could be addressed by standard techniques for
checking DRAT proofs, and checking logged solutions (when objective improving
constraints (3a) are added) could also be implemented more efficiently.

Bugs Discovered by Proof Logging. Our work on implementing proof logging
in CGSS led to the discovery of two bugs, which were also present in the solver RC2
on which CGSS is based, but have now been fixed in CGSS in commit 5526d04 and
in RC2 in commit d0447c3. The bugs are due to a slightly different implementation
of OLL compared to the description in Section 3.
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Table 2: Illustration of discovered bug (where y; x should be read as yg; k).

#iter|Literals considered (wsts: = 2) Core Kgiter extracted
1 [{bjei|i=1...5} Ki=Y2 b >1
2 {ei|i=1...5}U{y1,2} K2:y1,2+€2+€421
3 {ei |i=1---3,5}U{y1,z,y1,3}U{yz,2} K3:y1,3+81+€2+€521
4 {Ei | i=1...3}U{y112,]/1,4}U{_1/2/2,]/3’2} K4=y1,2+€1+€2 >1
5 Heili=1...3}U{y1a}U{y22, Y32, y12} |Ks =er+er+es+y1a+y22>1
6 [Hes} U{yisy U{yast U{ys2, va2, y52} Result is SAT

#iter Orer (after reformulation of Kyiter)

0 10(X7_, bi) + 11e + 14ey + 11ez + 3eq + 2e5 + 01 + 02

1 11eq + 14ep + 11es + 3e4 + 2e5 + 10y1,2 +01+0+10

2 11eq + 11ep + 1le3 + 2e5 + 7y1,2 + 3y1/3 + 3}/2,2 +01+0,+13

3 9¢1 + 9ey + 1163 + 7y1,2 +Yi13+ 2y1,4 + 3y2,2 + 2y3,2 + 01+ 07+ 15

4 2e1 + 2ey + 1lez + 8y1,3 + 2y1,4 + 3y2,2 + 2]/3,2 + 7y4,2 +01+0p+22

5 963 + 8y1,3 + 2y1,5 + Yoo+ 2]/2,3 + 2]/3,2 + 7]/4,2 + 2]/5,2 +01+0r+24

First, when a counting variable yx,, ; for a core K,; appears for the first time in
a later core K¢, the next counting variable yx,, i+1 is added to the reformulated
objective with coefficient w(Kyew, Opew) rather than w(Koig, Onq). The coefficient
of yk,,,i+1 is then further increased when yg_,,; is found in future cores. Second,
rather than computing the upper bound UB from an actual solution, CGSS uses
a weaker estimate UB,; obtained by summing the current lower bound and the
coefficients of all literals b where coeff (Oyf, b) < wgyer (meaning that these literals
were not set to 0 in the SAT solver call, and so could potentially be true in the
solution).

The bugs we detected could lead to the solver producing an overly optimistic
estimate UB, < UB. The first way this can happen is when the contributions of
counting variables yx i in the reformulated objective are underestimated due to
too small coefficients. The second bug is when the coefficient of yx,, i+1 is first
lowered below ws,s and then raised above this threshold again when yk,, ; is
found in a core. Then CGSS fails to assume vk, i+1 = 0 in future solver calls. These
bugs can result in erroneous hardening as detailed in the next example.

Example 1. Givena MaxSAT instance (F, O) with F = { (\/15:1 bi), (01 Voz)} U{b;Ve; |
i= 1,...,5}andO = (Z?:l 10-17,') +11'€1+14-€2+11'€3+3'€4+2-85+01+02,
assume the stratification bound is wg, = 2. Table 2 displays a possible CGSS
run for this instance, except that for simplicity we assume one core extraction
per iteration and no use of any other heuristics. The upper half of the table lists
the variables set to 0 in solver calls, the extracted core, and the lower bound
derived from it. The lower half of the table provides the reformulated objective.
Even though the coefficient of y, 3 is increased to 8 after the fourth core, this
variable is not set to 0 in subsequent iterations, which allows the solver to finish
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the stratification level after extracting 6 cores with a solution that sets to true
the variables by, by, b3, bs, e4, 01, 02, Yk,,2 and yx,; fori = 1,...,4, and all other
variables to false. The cost of this solution is 45.

Now CGSS would incorrectly estimate UB,s = LB +4 = 28, since yk, 3 and yk, 2
(abbreviated as y13 and y» in the table) both have coefficient 1 in the current
reformulated objective. This is lower than the cost 45 of the solution found (and
even than the optimum 36), and erroneously allows hardening—which considers
Yx,,3 with the correct coefficient 8—to fix yx, 3 = 0, even though b1, b> and b3 (and
hence also yx, 3) are true in every minimal-cost solution.

In our computational experiments there were cases of faulty hardening, but all
incorrectly fixed values happened to agree with some optimal solution and so we
never observed incorrect results. Proof logging detected the problem, however,
since the derivations of the buggy hardening steps failed during proof checking.
Interestingly, what proof logging did not turn up was any examples of mistaken
claims Oy < UBst — 1 when the cost of a found solution was estimated. The issue
with mistaken estimates due to faulty stratification was instead discovered while
analyzing and fixing the hardening bug. The moral of this is that even if all results
are certified as correct, this does not certify that the code is free from bugs that
have not yet manifested themselves. However, proof logging still guarantees that
even if the solver would have undiscovered bugs, we can always trust computed
results for which the accompanying proofs pass verification.

6 Concluding Remarks

In this work, we develop pseudo-Boolean proof logging techniques for core-guided
MaxSAT solving and implement them in the solver CGSS [IBJ21] with support
for the full range of sophisticated reasoning techniques it uses. To the best of our
knowledge, this is the first time a state-of-the-art MaxSAT solver has been enhanced
to output machine-verifiable proofs of correctness. We have made a thorough
evaluation on benchmarks from the MaxSAT Evaluation 2022 using the VeriPB
proof checker [GN21, BGMN22], and find that proof logging overhead is perfectly
manageable and that proof verification time, while leaving room for improvement,
is definitely practically feasible. Our work also showcases the benefit of proof
logging as a debugging tool—erroneous proofs produced by CGSS revealed two
subtle bugs in the solver that previous extensive testing had failed to uncover.
Regarding proof verification time, further investigation is needed into the rare
cases where verification is much slower (say, more than a factor 10) than solving.
There are reasons to believe, though, that this is not a problem of MaxSAT proof
logging per se, but rather is explained by features not yet added to VeEriIPB, which
is a tool currently undergoing very active development. So far, the proof checker
has been optimized for other types of reasoning than the clausal reverse unit
propagation (RUP) steps that dominate SAT proofs. Also, VErIPB lacks the ability
to trim proofs during checking as in [HHW13a]. Finally, introducing a binary proof



References 123

format in addition to plain-text proofs would be another way to boost performance
of proof checking. But these are matters of engineering rather than research, and
can be taken care of once the proof logging technology as such has been developed
and has proven its worth.

The focus of this work is on core-guided MaxSAT solving, but we would like to
extend our techniques to solvers using linear SAT-UNSAT (LSU) solving (such as Pa-
cose [PRB18]) and implicit hitting set (IHS) search (such as MaxHS [DB13a, DB13b]).
Although there are certainly nontrivial technical challenges that will need to be
overcome, we are optimistic that our work paves the way towards a unified proof
logging system for the full range of modern MaxSAT solving approaches. Going
beyond MaxSAT, it would also be interesting to extend VerIPB proof logging to
pseudo-Boolean solvers using core-guided search [DGD*21] or IHS [SBJ21, SBJ22],
and perhaps even to similar techniques in constraint programming [GBDS20] and
answer set programming [AKMS12].
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Certifying Without Loss of
Generality Reasoning in
Solution-Improving Maximum
Satisfiability

Abstract

Proof logging has long been the established method to certify correctness of
Boolean satisfiability (SAT) solvers, but has only recently been introduced for
SAT-based optimization (MaxSAT). The focus of this paper is solution-improving
search (SIS), in which a SAT solver is iteratively queried for increasingly better
solutions until an optimal one is found. A challenging aspect of modern SIS solvers
is that they make use of complex “without loss of generality” arguments that are
quite involved to understand even at a human meta-level, let alone to express in a
simple, machine-verifiable proof.

In this work, we develop pseudo-Boolean proof logging methods for solution-
improving MaxSAT solving, and use them to produce a certifying version of the
state-of-the-art solver Pacose with VErRIPB proofs. Our experimental evaluation
demonstrates that this approach works in practice. We hope that this is yet another
step towards general adoption of proof logging in MaxSAT solving.

1 Introduction

Thanks to tremendous progress over the last decades on algorithms for combinato-
rial search and optimization, today NP-hard problems are routinely solved in many
practical applications. Unfortunately, as these algorithms get more and more sophis-
ticated, it also gets more and more challenging to avoid errors sneaking in during
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algorithm design and implementation. It is well-known that modern combinatorial
solving algorithms in different paradigms can sometimes produce “solutions” that
violate hard constraints, claim that suboptimal solutions are optimal, or declare that
feasible problems lack solutions [BBN*23, BB09, BLB10, CKSW13, GSD19, JHB12].

Although there are many ways to address this problem, including software
testing techniques such as fuzzing [BB09, PB23], and design of formally verified
software [Fle20], the most promising approach appears to be the use of certifying
algorithms [ABM*11, MMNS11] with so-called proof logging. What this means is
the algorithm should not only produce an answer, but also a proof that this answer
is correct. Such proofs should follow simple rules, as specified by a formal proof
system, so that they can easily be verified by an independent proof checker. In
addition to guaranteeing correctness, proof logging brings many other advantages:
it enables advanced testing (since one can detect correct answers found for invalid
reasons, and also test instances for which the answer is not known), detailed
debugging (since invalid proof steps pinpoint where errors happened), auditability
(since proofs can be stored and verified independently of which algorithm was
used), and performance analysis (since proofs can be mined for insights on which
reasoning steps were crucial for reaching the final conclusion).

Proof logging has been particularly successful in the domain of Boolean
satisfiability (SAT) solving [BHvMW?21], where a large variety of proof systems
has seen the light of day [BCH21, Bie06, GN03, WHH14]. Using proof logging
has long been mandatory in the main track of the SAT competitions, and it is
hard to overestimate the impact this has had on improving overall correctness
and reliability of SAT solvers. This has stimulated the spread of proof logging
into other combinatorial solving paradigms, including SAT modulo theories
(SMT) [SFBF21, BRK*22], automated planning [EH20, ERH17, ERH18, R6g17],
and mixed integer linear programming [EG23, DEGH23].

Proof Logging for MaxSAT Solving In view of the above discussion, it is
interesting to compare the developments in other combinatorial optimization
paradigms to the state of affairs in maximum satisfiability (MaxSAT), the op-
timization version of the SAT problem. Without loss of generality, MaxSAT
can be described as the problem of maximizing a linear objective O subject to
satisfying a Boolean formula F in conjunctive normal form (CNF). Although
MaxSAT is arguably the one optimization paradigm closest to SAT, and al-
though several proof systems for formalizing MaxSAT reasoning have been
proposed [BLM07, LNOR11, MM11, PCH20, PCH21, PCH22], for a long time
there has been no practically feasible proof logging method for state-of-the-art
MaxSAT solvers. This changed only recently when pseudo-Boolean proof logging
using VErIPB [GN21, BGMN23] was proposed for MaxSAT [Van23, VDB22], a
proposal that was followed by the successful design and implementation of VEriIPB
proof logging for modern core-guided MaxSAT solvers [BBN*23].

In this paper, we revisit proof logging work for solution-improving search
(SIS) [Van23, VDB22], also referred to as model-improving search or linear SAT-UNSAT
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(LSU) search, and consider state-of-the-art solving techniques. In the SIS approach—
which is much simpler to explain than, e.g., core-guided [FM06] or implicit hitting
set [DB13] search—a SAT solver is repeatedly called on the formula F, each time
with an added solution-improving constraint asking for increasingly better solutions
with respect to the objective O, and the problem turns infeasible when the last
solution found was optimal. In the work by Vandesande et al. [Van23, VDB22],
the main technical challenge was to certify correctness of the CNF encodings of
these solution-improving constraints, which could then essentially be concatenated
with the proof logging generated by the SAT solver (modulo some non-trivial
engineering).

At first sight, it seems that implementing pseudo-Boolean proof logging in a
state-of-the-art MaxSAT solver using solution-improving search would mostly be
a matter of carefully transferring already developed techniques [Van23, VDB22],
perhaps combining them with proof logging ideas developed for other CNF
encodings [GMNO22]. After all, the distinguishing feature of a top-of-the-line SIS
solver is the choice of CNF translation for reasoning about the objective function,
such as, in the case of Pacosk, the polynomial watchdog (DPW) encoding [BBR09].
Once proof logging for such a CNF encoding is in place, it seems reasonable to
expect that the rest should be plain sailing.

It is all the more surprising, then, that it turns out nothing could be further
from the truth. To minimize the time the MaxSAT solver spends on generating PW
encodings, an essential step is to introduce completely unconstrained variables
that can be used to perform different comparisons with a single CNF encoding; this
is referred to as the dynamic polynomial watchdog encoding (DPW) [PRB18]. Loosely
speaking, if we know that the best possible objective value lies in the range [lo, hi],
then instead of generating repeated encodings O > V to probe different possible
objective values V in this range, one can introduce free variables t; encoding a tare
sum T taking values between 0 and /i — lo and try to maximize the value T = T" for
which one single DPW-encoded constraint O —T > lo holds. Once the maximum T*
has been found, it is clear that O = lo + T" is the best possible objective value,
since without loss of generality T could be set to any value. But how can such a
meta-argument be expressed in simple propositional logic reasoning?

In what follows, we provide a brief, if still high-level, discussion of some
of the challenges that arise when trying to design simple proofs to certify such
fairly complex “without loss of generality” arguments, and then outline how such
challenges can be overcome.

Solution-Improving “Without Loss of Generality” Reasoning As already
discussed above, the key aspect in which different solution-improving MaxSAT
solvers differ is how they encode the solution-improving constraints. In order to
compute the value of a linear expression L over 0-1 variables of interest, PAcosk
uses the polynomial watchdog encoding to describe a Boolean circuit BC with
output variables zj such that z; = 0 implies L > 1+ k- 2% (for some fixed integer P).
If we chose L to be the objective function O that we are maximizing, this would
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allow to find the interval [1 + k2P (k+1)-2F ] in which the optimal value lies
by calling the SAT solver with the prechosen partial assignment z; = 0 (referred to
as an assumption) for increasing values of k until the solver returns that there is
no satisfying assignment. To determine the exact location of the optimum in this
interval, additional, completely unconstrained, variables ¢;, called tare variables,
are used to encode an integer T = Y.\ 2/t; in the range [0,2P - 1]. The actual
circuit in the encoding uses the linear form L = O — T, so that z; = 0 means
O —-T > 1+ k-2P. By making SAT solver calls with suitable assumptions on
the unconstrained t;-variables, the optimal value of the objective function can be
computed.

Given the CNF encoding of a circuit BC(O — T > 1 + k - 2F) evaluating the
inequality O — T > 1 + k - 2F as outlined above, the solution-improving search
proceeds in two phases:

1. The coarse convergence phase identifies the largest k for which zy = 0is possible.

2. The fine convergence phase then maximizes the tare variable sum T.

Let us discuss this process in slightly more detail, and explain why it presents
challenges from a proof logging point of view.

If during the coarse convergence phase a SAT solver call with assumption zx = 0
returns a satisfying assignment a achieving objective value at least 1 + k - 2, the
solver stores the information z; = 0 (in the form of a unit clause z), which enforces
that any future solutions found have to be at least this good. The SAT solver is then
called again with zy = 0 for some k’ > k to probe whether a solution exists with
value at least 1 + k’ - 2P. Here it is relevant to note that fixing zx = 0 could remove
assignments corresponding to optimal solutions. For instance, if the optimal value
is V.= V*+ 1+ k- 2P, this value could be achieved by an assignment a’ setting
T =T*>V*+1. Forsuch an @’ we would have O —T = -T*+ V*+1+k-2P < k-2F,
which would violate z;, = 0. However, since the tare variables are unconstrained,
in this case there would also exist another assignment a” achieving objective value
V* + k- 2P for which T = 0, and so it is safe to require that solutions improving
on «a should satisfy zx = 0.

In the fine convergence phase the zi-variables are all fixed, and assumptions
on the tare variables are made in the SAT solver calls to determine the exact value
of the optimal solution. This again relies on reasoning without loss of generality,
claiming that one can always choose T > s for any value 0 < s < 2F. But now
we are treading on dangerous ground: clearly, we cannot assume both T = 0 and
T > s > 0 simultaneously! How can we convince ourselves, and more importantly,
how can we convince a proof checker, that our derivations are consistent? Ata
meta-level, we can argue that since the tare variables are completely unconstrained
in the original encoding, we should be able to fix them to any value we like at any
given point in time. But how do we produce a simple, machine-verifiable proof
that this is sound? And are we even sure this is sound?
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Discussion of Our Contribution In this work, we show how pseudo-Boolean
proof logging with VErIPB [GN21, BGMN23] can certify correctness of the complex
CNF encodings used in state-of-the-art solution-improving MaxSAT solvers, as well
as of the subtle without loss of generality reasoning applied on these encodings.
To give a sense of how this can be done, we need to give a high-level description
how VERIPB proofs work (referring the reader to later sections for the missing
technical details).

A VErIPB proof maintains a set of core constraints C, initialized to the formula F,
together with a set of derived constraints O inferred by the solver. The proof
semantics ensures that C and F have the same optimal value for O and that any
solution to C can be extended to . A new constraint C can be derived “without
loss of generality” by the redundance-based strengthening rule, which requires the
explicit specification of a substitution @ (mapping variables to truth values or
literals) together with explicit proofs

CUDU{-CIr(CUDU{CHI,U{Ol, = O} @

thatall consequences on the right (with the substitution w applied to the constraints)
follow from previously derived constraints C U D together with the negation -C
of the constraint to be inferred. This guarantees that if some assignment « satisfies
everything so far but violates C, the “patched” assignment a o w satisfies also C
and does not worsen the objective.

To make our informal discussion simple and concrete, suppose that we have
a CNF encoding of a circuit BC(O — T > o) evaluating O — T > lo, and that the
solver has derived no constraints but only has the input formula F. If we want to fix
T = T~ using the redundance rule (1), we would have to find a substitution w such
that FU{BC(O —T > lo)} U{T # T*} implies (FU{BC(O =T > lo)} U{T = T*}) .
But it seems like this would force us to prove that if we take any assignment
satisfying the Boolean circuit and modify the value of some of its inputs (the
tares), the circuit would remain satisfied, and this is just not true. So although the
redundance-based strengthening rule is very strong, it is not clear how it can be
used to argue that the tare variables are unconstrained.

We get around this problem by first deriving a copy shadow circuit BC’ of
the original circuit, but substituting fixed values ¢} for the tare variables, so that
BC'(O — T* > lo) evaluates O — T* > lo. We then let w be the substitution setting
t; = t; for all i and mapping all other variables x in BC to the corresponding
shadow variables x” in BC’, so that, effectively, the shadow circuit computes the
substitution needed. This turns our application of the redundance rule (1) into

FU{BC(O-=T >10)} U{BC' (O =T > o)} U{T # T*} (2a)
F(FU{BC(O—-T = 10)} U{BC(O —T" 2 10)} U{T =T"})1'x, U{Ols > O}
(2b)

=FU{BC(O-T >10)} U{BC (O -T > o)} U{T* =T} U{0 >0} (20)

(where the final line (2c) is simply the result of applying the substitution w to (2b)).
If we study (2c) carefully, we see that all we need to prove about the circuit now
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is that the two copies of the shadow circuit in the consequences are implied by
the same shadow circuit in the premises, and so (2c) follows trivially from the
premises (2a).

This idea of using shadow circuits is crucial for certifying the correctness of
assigning tare variables without loss of generality. However, we need to get rid of
the completely unrealistic assumption that the solver would not have learned any
constraints in . This is a problem in that the above argument fails when such
learned constraints D € 9 contain variables in the BC-circuit, since then there is
no way to prove D, as required in (1).

Here a second idea discovered in recent VErIPB development turns out to be
very helpful. Very briefly, it can be shown that if in the proof we enforce the
requirement that all new constraints D derived by strengthening are immediately
moved to the core set C, referred to as strengthening-to-core, then the redundance
rule (1) can be simplified to

CUDU{=C}H(CU{CHIowU{Oly =0}, 3)

omitting the proof obligations for the derived set . This means that we can
ignore the problems arising from derived constraints when using shadow circuit
reasoning.

We stress that this is only a brief and informal discussion that sweeps many
technical challenges under the rug. Perhaps one of the most annoying such
challenges is that the tare variables are sometimes fixed one at a time, and then a
new shadow circuit is required for every new fixing. It would be desirable to find
better ways of dealing with this problem.

We have implemented our methods in the state-of-the-art solution-improving
MaxSAT solver Pacose [PRB18] to make it output VErIPB proofs, and have per-
formed an extensive evaluation of how such proof logging works in practice. While
there is certainly room for performance improvements in both proof generation
and proof checking, the significance of our contribution is that we present practical
methods to certify correctness for a solving paradigm that has previously been
beyond the reach of proof logging. We hope that our work can serve as an impetus
towards general adoption of proof logging for MaxSAT, and can stimulate further
research on how to make these proof logging techniques more efficient.

As a final remark, we note that an interesting aspect of recent progress in proof
logging is that it brings together all three software quality assurance methods
discussed in the opening paragraphs above. While proof logging does seem like
the most viable approach to certify correctness in combinatorial solving, extensive
use of fuzzing techniques has been instrumental in our work to debug both proof
logging routines and the VErIPB proof checker. This fuzzing, in turn, relies on the
use of proof logging and on feedback from the proof checker. Finally, although we
do not address this aspect in the current paper, formally verified proof checking
backends as in [GMM*24, IOT*24] are crucially needed to ensure that the verdict
of proof checkers for increasingly powerful proof logging systems can be trusted.
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Outline of This Paper After reviewing some preliminaries in Section 2, we
discuss the dynamic polynomial watchdog (DPW) encoding in Section 3. In
Section 4 we describe how to design proof logging for solution-improving solvers
using the DPW encoding, including a discussion of possible variations of our
method (and of why simply using SAT proof logging for the final unsatisfiability
call does not work). We report results from an empirical evaluation in Section 5
and end with some conclusions and a discussion of future research directions in
Section 6.

2 Preliminaries

In this section, we review some pseudo-Boolean basics and then discuss MaxSAT
in general and solution-improving search in particular, referring the reader to
[BN21, LM21, BJM21] for more details.

Pseudo-Boolean Constraints and Proofs We write x to denote a {0,1}-
valued Boolean variable, and write x as a shorthand for 1-x, using £ to denote such
positive and negative literals, respectively. A (linear) pseudo-Boolean (PB) constraint C
is a 0-1 integer linear inequality )}; w;f; > A. Without loss of generality, we will
often assume our constraints to be normalized, meaning that all literal are over
distinct variables and the coefficients w; and the degree A are non-negative. A PB
formula is a conjunction of PB constraints.

A (disjunctive) clause is a PB constraint }; {; > 1 with all coefficients and
degree equal to 1. We sometimes refer to constraints ¢ > 1 with a single literal as
unit clauses {. We say that a formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses. A (linear) pseudo-Boolean term is a weighted sum };; w;{;
of literals with integer coefficients. A (partial) assignment « is a (partial) function
from variables to {0, 1}; it is extended to literals by respecting the meaning of
negation. We write C [, for the constraint obtained from C by substituting all
assigned variables x by a(x) (and simplifying). A constraint C is satisfied under o
if 2 4()=1 Wi = A, and a formula F is satisfied if all its constraints are. We say that
F implies C, denoted F |= C, if all assignments that satisfy F also satisfy C.

A pseudo-Boolean optimization (PBO) instance consists of a formula F and a linear
term O = }; w;{; (called the objective). An assignment « to the variables in F
and O that satisfies F is a solution to the instance, which is optimal if it maximizes
the value O[, = Y}; w;a(¥;).* For a PBO instance (F, O) the VErIPB proof system
maintains a proof configuration of core and derived constraints (C, D), initialized
to F and 0, respectively. The VErIPB proofs we consider are in the so-called
strengthening-to-core mode, which maintains the invariant that all constraints in the

INote that most of the PBO literature is formulated in terms of minimization, and this is also
the perspective of VErIPB, but reasoning in terms of maximization is in line with the papers on
solution-improving MaxSAT relevant for this work. We therefore adopt this perspective here, although
the actual VErIPB proofs will argue in terms of minimizing the negation of the objective as described
here.
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derived set D are implied by the core set C. Constraints can be moved from D
to C but not vice versa. New constraints can be derived from C U D and added
to D using the cutting planes proof system [CCT87] as follows:

Literal Axioms. For any literal ¢;, {; > 0 is an axiom.

Linear Combination. Given two previously derived PB constraints C; and Cp,
any positive integer linear combination of these constraints can be inferred.

Division. Given the normalized PB constraint }}; w;#; > A and a positive integer c,
the constraint ) ;[w;/c1¢; > [A/c] can be inferred.

Some additional VErIPB proof rules extending cutting planes are as listed below—
we refer to [BGMN23, GN21, HOGN24] for more details. For optimization prob-
lems we have rules for improvements of or rewriting of the objective function:

Objective Improvement. Given a total assignment « that satisfies C U D, one can
add the constraint O > 1+ O, to C, which forces the search for strictly
better solutions.

Objective Reformulation. The current objective O can be replaced by a new
objective Onew given explicit proofs from the core set C (using the VeEriPB
proof rules above) of the constraints O — Opew = 0 and Opew — O 20 (i€, a
proof that O = Opew holds).

Importantly, there are also rules for deriving non-implied constraints as long as
the optimal value of the objective is preserved. VErIPB has a generalization of the
RAT rule [JHB12] that makes use of substitutions w, mapping variables to truth
values or literals (where we extend the meaning of C[,, to denote C with each x
replaced by w(x)):

Redundance-Based Strengthening. The constraint C can be inferred and added
to C by explicitly specifying a substitution w and proofs C U D U {-C} +
(CU{CHIw U {01, = O}. This assumes strengthening-to-core mode—
otherwise derivations for all constraints in DT, are also needed (but then C
can be placed in D instead of C).

Intuitively, this rule shows that @ remaps any solution of C that does not satisfy C
to a solution of C that satisfies also C without worsening the objective value. A
typical use case of redundance-based strengthening is reification, which is the
derivation of two pseudo-Boolean constraints that encode ¢ < D for some PB
constraint D and for some fresh literal ¢.

Finally, VErIPB has rules for deleting constraint in a way that guarantees that
no spurious better-than-optimal solutions are introduced:

Deletion A constraint D € D in the derived set can be deleted at any time. If
strengthening-to-core mode is used, then deleting a constraint C € C in the
core set requires an explicit proof that C is implied by C \ {C}. Otherwise, it
is sufficient to show the weaker property that C can be derived from C \ {C}
by redundance-based strengthening.
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MaxSAT, Incremental SAT Solving, and Solution-Improving Search An
instance of (weighted partial) Maximum Satisfiability (MaxSAT) consists of a CNF
formula F and a pseudo-Boolean objective O = }}; w;{; to be maximized under
satisfying assignments to F, where we can assume without loss of generality that all
literals in O are over distinct variables and that the constants are positive. Viewing
MaxSAT in terms of an objective function and a CNF formula is equivalent to
the more classical definition in terms of hard and soft clauses, in the sense that
maximizing the objective corresponds to maximizing the total weight of satisfied
soft clauses (see, e.g., [LBJ20] for more details).

The solution-improving search (SIS) algorithm we focus on in this work makes
extensive use of incremental SAT solving with assumptions [ES03]. Invoking a SAT
solver on a CNF formula F with a set of assumptions A, i.e., a partial assignment,
returns either 1. SAT and an extension of A that satisfies F or 2. UNSAT if no such
assignment exists.

Given a MaxSAT instance (F, O), solution-improving search (SIS) computes
an optimal solution by issuing a sequence of queries to a SAT solver asking for
solutions of improving quality until an optimal one is found. More precisely,
during search SIS maintains the best known solution a*. In each iteration, the
algorithm queries a SAT solver on the working formula F A ASCNF(O > Ol,),
where AsCNF(O > Ofl,-) is a CNF formula that is satisfied by an assignment «
if and only if it is a better solution than a*, i.e., if O[, > OT,-. If the SAT solver
returns SAT, a better solution has been obtained and the working formula updated
accordingly. Otherwise, if the SAT solver reports UNSAT, the best known solution
a* is determined to be optimal and the search is terminated.

The existing practical instantiations of SIS differ mainly in how the encoding of
the formula AsSCNF(O > O4) is realized. Numerous CNF encodings of pseudo-
Boolean constraints have been proposed for this task [ES06, JMM15, KP19, MPS14,
Sin05]. For many instantiations of SIS the main challenge for proof logging is to
certify the clauses added when encoding the objective constraint [VDB22, Van23],
but as we will explain in the rest of this paper the so-called Dynamic Polynomial
Watchdog encoding requires much more subtle arguments.

3 The Dynamic Polynomial Watchdog Encoding for
SIS

The polynomial watchdog (PW) encoding [BBR09] is currently one of the best
approaches for encoding pseudo-Boolean constraints in CNF, in terms of being
compact while still propagating well. Using it for solution-improving search
requires some non-trivial alternations, however, such as the addition of a dynamic
constant. In this section we review this dynamic polynomial watchdog (DPW)
encoding to the extent required for MaxSAT solution-improving search (SIS),
referring the reader to [PRB18] for more details.
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3.1 Initialization

Given a linear pseudo-Boolean term L = }}; w;¢;, we define wmax to be the largest
constant appearing in L. Additionally, we let P := [logZ(wmaX)J be one smaller
than the number of bits in the binary representation of wmax and W := }; w; be the
maximum value for L. The polynomial watchdog encoding for L is a CNF formula
PW(L) with ¢ := [ZHP] output variables zx for k € [0, ¢ —1] enforcing the implications
Zx = L > 1+k-2P. In words, a satisfying assignment a of PW(L) that sets a(zx) = 0
will also satisfy ; w;a(f;) > 1+ k - 2P. We describe the formula PW(L) in more
detail in Section 4.1.

Example 1. Consider a MaxSAT instance (F, O) and a working formula F* =
F A PW(O). Assume we first invoke a SAT solver on F¥ under the assumption
zk-1 = 0 and then a second time under the assumption z; = 0, and that the solver
reports SAT for the first call and UNSAT for the second. At this point, we know
that an optimal solution a°F* has value O 4ept in the range [1+ (k — 1) - 2P, k - 2F].

The PW encoding was proposed as a way of enforcing a fixed bound B on the
term L by considering a (static) constant T = B — (1 + k - 2), where k is the largest
integer for which B > 1+ k - 2P, and encoding PW(L — T) [BBR09]. Then a solution
that sets the k™ output z; of PW(L—T) to 0 will also satisfy ¥; w;a(6;)—T > 1+k-2F,
which is equivalent to }}; w;a(¢;) > B. The dynamic polynomial watchdog (DPW)
encoding [PRB18] is an extension of the PW encoding that allows dynamically
changing the value of T, and therefore also of B, so that the optimal value can be
determined precisely with a single CNF encoding.

Consider a MaxSAT instance (F,O) and let P = Llogz(wmax)J as described
above. Instantiations of SIS with DPW introduce a “dynamic constant” in the
form of a tare term T := Zf:_ol 21 . t;, for fresh variables t; not appearing anywhere
else in the instance. The SAT solver is instantiated with the working formula
F APW(O - T). Now we can use the output variables z to determine the optimal
value within an additive constant 2F, and then assign the tare T to values in
[0,2P — 1] to determine the precise value in that range. These are the coarse
convergence and fine convergence phases mentioned in Section 1, which we describe
in more detail next.

3.2 Coarse Convergence Phase

During the initial coarse convergence phase, only assumptions over the output
variables z; are made. Whenever a solution « is found, a call to the SAT solver is
made with the assumption z; = 0 where k is the largest natural number such that
Oly = 1+ (k—1)-2P. The coarse convergence phase ends when the solver reports
UNSAT. The following observation summarizes the relevant conclusions of coarse
convergence.

Observation 1. Assume F is satisfiable and the SAT solver returns UNSAT under an
assumption zp = 0 in the coarse convergence phase. Then 1. there is a solution a* to
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F APW(O —T) that assigns the tare variables so that (O — T) [+ > 1+ (K — 1) - 2F holds,
and 2. no solution B to F assigning also the tare variables can satisfy (O — T)lg > 1+k*-2F.

In words, coarse convergence provides bounds on the maximum value of O =T
obtainable by any solution of F. Importantly, as the tare term T is unconstrained
by the formula F, its value can without loss of generality be assumed to be 0 at this
stage, resulting in bounds on the objective value of optimal solutions as well. From
now on, the algorithm commits to only searching for solutions that have O — T in
the specified interval, adding the unit clauses z}—1 and zy to the working formula
before proceeding to the fine convergence phase. In practice, whenever the SAT
solver returns SAT after being called with assumption zj, the unit clause zj is
added immediately, allowing the SAT solver to simplify its clause database.

3.3 Fine Convergence Phase

During the fine convergence phase, assumptions for the tare variables are used to
pinpoint the precise optimal value. Let k* be the value for which the assumption
zj = 0 returned UNSAT in coarse convergence, and o* = O, the objective value
of the currently best known solution a*. Then we define s := 0* — (k' = 1) - 2P to be
the smallest value of the tare that would force an improved solution. The next call
to the SAT solver assumes t; = 1 for all tare variables for which the it bit in the
binary representation of s is 1. These assumptions enforce T > s, so any solution «
to the working formula (which now includes the unit clause zy—; > 1) that extends
the assumptions will satisfy O, > 0" + 1.

The fine convergence phase continues in this manner until the SAT solver
reports UNSAT, at which point an optimal solution has been found. As the
value of s is monotonically increasing, we add unit clauses t; to the working
formula whenever we have deduced that the ith bit ¢; in the tare T can safely be
set to 1 in any solution (and hence in any future SAT call), which is the case when
s—1>1+3; /.:_il 20t j holds. The fact that we have s — 1 rather than s in this last
inequality is related to stratification, which we discuss next.

3.4 Stratification

Stratification is a technique for partitioning the indices of an objective O = )., w;{;
into two sets {H, L} in a way that allows computing the maximum values first of
Ox = Yjeq wili and then of Oy, = };; w;¥;, and finally combining them to get the
maximum value of O.

Specifically, stratification is applied when ged{w; | i € H} > }};; w;, i.e.,, when
the greatest common divisor of the coefficients in Oy is at least the sum of all
coefficients in Op. SIS with the DPW encoding and stratification will first run
coarse and fine convergence only on Oy as described above. At the end of the fine
convergence, the SAT solver returns UNSAT after being invoked with assumptions
that enforce Ty > s for the tare term Ty added to the DPW encoding of Oy and
some constant s. At this stage, the value of Ty will be fixed to s —1 with unit clauses,



144 Certifying Without Loss of Generality Reasoning in SIS for MaxSAT

effectively fixing Op to its maximum value. This fixing of Oy is consistent with the
unit clauses learned in the previous section. After this O, is optimized via coarse
and fine convergence under the fixed value of Oy. The solution obtained at the
end of the final fine convergence phase will be optimal with respect to the original
instance. For more details on stratification, we refer the reader to [ALM09, PRB21].

Example 2. Consider the objective O = 10x1 + 5x2 + 5x3 + 3x4 + 2x5 and the
partition H = {1,2,3} and L = {4,5}. Since gcd{10,5,5} =5 > 3 + 2, changes
of the objective restricted to {x1, x2, x3} will dominate any contributions from
3x4+2x5. If a solution a with Oy [, = 15is found, we can without loss of generality
assume Oy > 15, since for any solution g with Oyl < 15 we have Ol < OT,.
Notice that maximizing first Oy and then O;, can remove some optimal solutions
from the search space, but never all of them.

4 Certifying Solution-Improving MaxSAT with the
DPW Encoding

We are now ready to describe how to do proof logging for solution-improving
MaxSAT with the dynamic polynomial watchdog encoding. In addition to
certifying the correctness of CNF encodings, as done in previous work on proof
logging SIS for MaxSAT [VDB22, Van23], we need to certify the without loss of
generality reasoning discussed in Section 3. This turns out to require quite intricate
proof logging methods.

We start with a brief discussion how to certify the DPW encoding. We then turn
to proof logging for the without loss of generality reasoning during the coarse and
fine convergence phases. Afterwards, we deal with proof logging for stratification.
We defer a discussion of minor additional heuristics used in state-of-the-art solvers
to Appendix B. We note that for all clauses learned by the SAT solver we can use
standard VErIPB proof logging, and since all such learned clauses are logically
implied by the working formula it is safe to add them to the derived set O. This
means that we can ignore all constraints added to the database by the SAT solver
when we perform redundance-based strengthening steps.

4.1 Proof Logging for Clauses of the DPW Encoding

Figure 1 depicts the structure of the DPW encoding of the term 2x1 +3x2 +5x3 +7x4.
For a term L in which the largest coefficient has P bits, the encoding introduces
P totalizers [BB03] (which are circuits that sort their inputs), and P —1 mergers. The
ith totalizer takes as input all variables in L for which the corresponding coefficient
has its i bit equal to 1.

Proof logging for the DPW encoding boils down to taking care of the totalizer
encodings as described in [VDB22]. Ata high level, the proof for PW(O —T) derives
a number of constraints encoding implications y = C, and y < C,, where y are
variables in the auxiliary variable set Y and C, are suitably chosen PB constraints
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Figure 1: Illustration of the polynomial watchdog encoding.

over the variables in O — T. A concrete example is the output variable z; for
which the constraint C, is chosen as O — T < k - 2. From these pseudo-Boolean
definitions all clauses in the CNF encoding added to the solver database can be
derived with explicit VErIPB derivations. A technical point that is crucial for the
proof logging is that in this way we only need to add the PB definitions of new
variables to the core set C. The clauses actually used for the SAT solver calls are
implied from these definitions, and can therefore be placed in the derived set D.

4.2 Proofs Without Loss of Generality Using Shadow Circuits

The MaxSAT solving algorithm uses without loss of generality (wlog) reason-
ing when 1. introducing fresh variables for encoding PW(O — T); 2. adding unit
clauses zy during coarse convergence; 3. learning unit clause over the tare vari-
ables t; during fine convergence; and 4. concluding that the optimal value has been
found.

To see why unit clauses zx > 1 require wlog reasoning, suppose in the coarse
convergence phase that the SAT solver returns a solution & when invoked with the
assumption z; = 0, indicating that (O — T)!, > 1+ k - 2P, The constraint z; > 1
is not entailed by the solution-improving constraint O > O[,, since some other
(possibly optimal) solution g might have Ol > O[, but assign the tare variables
sothat (O -T)lg <1+k- 2P < (O - T)1, holds. However, since the tare variables
are not constrained by the original formula F, any solution to F could be extended
to any fixed value for the tare T. Hence, in particular, we can assume without loss
of generality that T = 0, which in turn implies that z; > 1.

The fine convergence phase makes use of the fact that the DPW encoding does
not constrain T, which takes values in the range [O, 2P — 1]. The unit clauses
t; > 1 learned are not entailed, but can be deduced since the tare variables are
unconstrained in the DPW encoding. This requires a VErIPB proof that wlog
T > s — 1. When the SAT solver reports UNSAT during fine convergence, it does
so under the assumption that a specific set of tare variables take value 1. If this
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yields UNSAT, then we can conclude that the current solution is optimal (since we
can wlog assume T to be equal to the value that led to UNSAT).

It is worth noticing that the without loss of generality arguments above are quite
intricate even at a human meta-level. The coarse convergence phase repeatedly
claims to be able to assume T = 0, after which the fine convergence phase picks
an increasing sequence 0 < s1 < s < ... and assumes T > s; — 1 wlog. Finally, a
specific value T = s;+ is used to argue about optimality. The meta-level argument
for why this works is that no conclusions are drawn from the assumptions made
during coarse and fine convergence that invalidate subsequent assumptions. The
challenge is how to convince a mechanical proof checker of this.

Consider first proof logging for the coarse convergence phase, and suppose the
solver returns SAT when invoked with assumption z;. The only rule that would
allow us to derive z; > 1 without loss of generality (from the argument that we
can set T = 0 wlog) is redundance-based strengthening, which requires specification
of a witness substitution @ that can be used to “patch” any assignment « in
which z; > 1 is violated. More formally, our witness should guarantee that
CUDU{=Zr21} E (CU{Zkx21})1o U {O < Olw}. A natural approach
would be to choose a witness w that maps 1. zx to 0, 2. all original variables to
themselves, and 3. T to 0. Such a witness would make (zy > 1)1, trivially true and
would incur no proof obligations for the formula F or the objective O. However,
setting T = 0 will not work for the constraints C € C defining variables in the DPW
encoding. If we fix T = 0, then we also need to update all auxiliary variables Y in
the circuit evaluating PW(O — T). But how this should be done depends on which
assignment a we need to patch, and the redundance rule has no mechanism for
defining “conditional witnesses” w = w(«a).

To determine how the witness should assign the auxiliary variables in PW(O-T),
we devise a new proof logging technique that we call shadow circuits. Corresponding
to each auxiliary variable y defined as the reification of a PB constraint C, in the
original circuit, a shadow circuit for a fixed value v has a fresh variable y=" defined
by yT:v © Cyl10. In words, the defining constraints of yT:v and y are the same
except that we fix the tare variables t; so that T = v. The definitions of such shadow
circuits are stored in the core set C since they are derived using the redundance
rule. Note that the shadow circuit only “copies” the pseudo-Boolean definitions of
the variables and not their clausal encodings.

Shadow circuits provide us with a mechanism to compute witnesses for the
redundance rule that allow us to assume the value of T and certify the without loss
of generality reasoning. During coarse convergence, each addition of a constraint
z; > 1 is logged with a witness that maps all tare variables t; to 0 and other
auxiliary variables y in PW(O — T) to their counterparts =" in the shadow circuit
for T = 0. During fine convergence, the constraints T > s — 1 are derived using
shadow circuits for s — 1, which allows adding unit constraints over individual
tare variables to the proof. Finally, for proving optimality a shadow circuit for the
final value s* for which the SAT solver returned UNSAT will be used to derive
contradiction.
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The next proposition gives a more formal summary of the wlog proof logging
performed during the coarse convergence phase. The proof for this proposition,
together with precise descriptions of the other wlog proof logging steps, are given
in Appendix A.

Proposition 2. Suppose the VERIPB proof log contains derivations of reification constraints
Zk © O —T > 1+k-2P and a shadow circuit for T = 0 as well as the constraint
O >1+k-2P. Then the constraint Zy > 1 can be derived using redundance-based
strengthening with witness w = {t; > 0|0<i <P -1} U{y » y™ |y e Y}.

The constraint O > 1+ k - 2P in Proposition 2 can be obtained by weakening the
solution-improving constraint O > O, + 1 for the previously found solution «. If
stratification is used, deriving Oy > 1+ k - 2F requires more work (see Section 3.4
for details).

Our technique with shadow circuits and repeated without loss of generality
arguments selecting (different) values for the same variables in T heavily relies on
that VErIPB proofs in the strengthening-to-core mode maintain the guarantee that all
constraints in the derived set D are entailed by the core set C. In particular, what
this means is that whenever we want to apply redundance-based strengthening,
fixing tare variables and using the corresponding shadow circuit, we do not need to
worry about reproving any clauses learned by the SAT solver under the witness w.
It turns out that for all non-trivial proof obligations, the solution-improving
constraint O > OJ, for the latest solution « obtained is helpful. This also makes
it easier to see why the entire pipeline is consistent. During coarse convergence,
we never derive T = 0, but instead derive z; = 0 for certain values of k using the
fact that we could set T = 0 wlog. This constraint z; = 0 will be used by the solver
for deriving several consequences. Later, when we make the wlog argument that
T > s — 1 for some value s, this incurs the obligation to reprove that zx = 0 holds!
That is, the proof checker realizes that zy = 0 was also derived wlog, and we need
to prove that this is still consistent with the current wlog assumption to justify that
we can “change our mind” about the value of T.

The use of strengthening-to-core requires some extra care when dealing with
constraint deletions. SAT solvers use heuristics to aggressively erase clauses that
are believed to no longer be useful, and this is crucial for performance. Also,
clauses in the input are removed whenever some literal in the clause is deduced to
be true. In strengthening-to-core mode, we can still do unrestricted deletions of
constraints in the derived set D, but a core constraint C € C can only be erased
if the implication C \ {C} [= C can be shown to hold. For this reason we did not
implement deletion from the core set in our proof logging routines.

4.3 Stratification

For proof logging of stratification steps as in Section 3.4, we need to be able to
convert known facts about the whole objective O to statements about the split
objectives Oy and Or. To certify a unit constraint added during coarse convergence
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or to derive the constraints T > s — 1 during fine convergence when maximizing
On, we need to derive Oy > Oy [, from O > Ol, + 1. We do this by weakening

away all terms in Op—meaning that for every term w;{; in O, we add w;{; > 0 to
cancel the term—to get Oy > O[, + 1 — g, where g is the greatest common divisor
of the coefficients in Oy. This clearly also entails Oy > Onl, — g + 1. Dividing

% —1+ 1, and multiplying this again by g

by g and rounding up yields éOH >
yields Oy > Ox 4.

By applying this reasoning, we can derive the constraint Oy > of; right after
finding the optimal value o}, for Oy. Moreover, after introducing a shadow circuit
for T = s, we can derive (local) optimality in the form of the constraint Oy < of;.
Hence, we can reformulate the objective by replacing Oy with the constant o/,
from which we can now derive the constraint O, + of; > O, +1. Observe that
this constraint coincides with the solution-improving constraint for Or. Once the
constraints O > o/ and O, < o/ have been derived in a similar way, the objective
will be rewritten to a constant, for which proving optimality boils down to logging
a solution that has objective value o* = o}, + o/

4.4 Limiting the Use of Shadow Circuits

Our proof logging method makes repeated use of shadow circuits, which are
copies of the original circuit, and repeatedly deriving all constraints defining such
circuits could potentially incur serious overhead for proof generation in the solver.
Let us discuss ways of limiting or completely eliminating the use of shadow circuits
and the downside of such approaches.

First, the shadow circuits are introduced each time the solver deduces a unit
clause over an output variable z; or tare variable t;. Instead of learning these unit
clauses, we could do all subsequent solver calls with those literals as assumptions.
At the very end of the fine convergence phase, we could then introduce a single
shadow circuit to prove optimality (or, in case of stratification, two shadow circuits:
one to prove optimality and one to fix the value of the tare variables). The
disadvantage is that when variables used as assumptions, the solver cannot use
them to simplify its clause database; so while this would have a positive effect on
the time required to do the actual proof logging, it could have negative effects
on solving time. Appendix C.2 reports on an experimental evaluation of this
approach.

Second, there is a way to completely eliminate shadow circuits. By the end of
the execution, the solver knows which value T = s resulted in the final UNSAT call
in the fine convergence. What we could do at this point is insert at the beginning
of the proof constraints saying that T = s holds (which at this point can easily be
derived by redundance-based strengthening). The rest of the proof will then be
checked for a fixed value of T that happens to be the value needed at the end. There
are two important reasons why we prefer the shadow circuit approach. The first
reason is that it is not clear if and how this would work together with stratification,
where after a stratification level we want to fix T = s — 1. The second reason is
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that fixing T in advance adds substantial new information that the solver did not
have available when constructing the proof. This means that we would not be
verifying that the reasoning the solver actually performed was correct, but only
that its reasoning checks out given advance information about the optimal solution.
While this could still be used to certify the correctness of the final answer, it would
not provide any guarantees about the process leading there. It has been shown
repeatedly that proof logging can catch subtle bugs in solvers that only report
correct results but for the wrong reasons [EG23, GMM*20, KM21, BBN*23], but
in order for this to be possible the correctness of solver-generated proofs should
only depend on what the solver actually knows when the proof is being produced.

4.5 Discussion of an Even Simpler Approach and Why It Does
Not Work

The proof logging techniques in this paper certify every single reasoning step
in the solver. An alternative, and seemingly much simpler, way to get proofs of
correctness for any MaxSAT solver would be to (i) compute an optimal solution
by running the MaxSAT solver without proof logging, (ii) check that this solution
is feasible, (iii) encode a solution-improving constraint into CNF, and (iv) call a
SAT solver to generate a proof of unsatisfiability (and hence of optimality of the
solution) with standard SAT proof logging. However, there are several serious
issues with this approach that we would like to point out.

First, proofs of correctness are needed for the CNF encodings used in step (iii),
and such proofs cannot be done with SAT proof logging since it cannot reason
about values of objective functions. Second, it is not possible to just repeat the
“final UNSAT call” of the MaxSAT solver in step (iv). Even if the same SAT solver is
used, in the original UNSAT call this solver had access to all constraints learned in
previous calls, and there is no guarantee that the solver will learn these constraints
again, or other equally good constraints, when it is now run in a different way
and with a different input. It is therefore impossible to know for sure whether
the final SAT solver invocation with the solution-improving constraint would be
faster or, more likely, slower, than the original solving process, and by how much.
This defeats the whole idea of generating proofs with a small and predictable
overhead, since there would be no way of knowing in advance whether “proof
logging” for a previously claimed result would succeed or not. Moreover, when
a solution-improving MaxSAT solver makes use of stratification (as discussed
in Section 3.4), then optimality is not derived by a single UNSAT call but by
a combination of UNSAT calls at different levels. It is hard to see how such a
combination of calls could be replicated with the simple approach described above.

Third, an increasingly popular usage scenario for MaxSAT solvers is so-called
anytime solving, where the solver can be terminated at any point and then returns
the best upper and lower bounds on the objective computed so far. Proofs
constructed as described in this paper (as well as in other MaxSAT papers using
VERIPB proof logging) will at all times contain formal proofs of everything the
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solver knows about upper and lower bounds on the objective. Whenever the solver
is terminated, it can therefore just end the generated proof at that point by printing
a concluding line stating what upper and lower bounds have been proven. This
functionality would be lost in the alternative approach.

Finally, even if this approach could be made to work efficiently—which, as
explained above, is not really the case, for several reasons—we would have the
same problem as in Section 4.4 that we would only certify the final result and not
the solver reasoning process.

5 Experimental Evaluation

To evaluate our proof logging approach in practice, we implemented it in the
state-of-the-art solution-improving MaxSAT solver Pacose [PRB18]. The source
code for all software tools used, as well as all experimental data, are available
in [BBN*24]. During development, we extensively checked the correctness of
our implementation with a fuzzer [PB23] and minimized failed instances with a
delta debugger. This process accelerated the development, as we did not need to
create instances for special cases, and helped us fix unexpected and sporadic bugs.
The proofs emitted by Pacosk were verified by the pseudo-Boolean proof checker
VERIPB [Ver], and our fuzzing also helped to debug the proof checker.

The experiments were performed on identical machines with an 11th Gen
Intel(R) Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory. Each
benchmark ran exclusively on a machine and the memory limit was set to 14 GB.
The time limits were set to 3 600 seconds for solving a MaxSAT instance with Pacosg
and to 36000 seconds for checking the proof with VErIPB. As our benchmark
set we used the 558 weighted and 572 unweighted MaxSAT instances from the
MaxSAT Evaluation 2023 [Max23].

Our implementation supports all techniques Pacose employed in the MaxSAT
Evaluation 2023. This means that in addition to the dynamic polynomial watch-
dog encoding we also implemented proof logging for the binary adder encod-
ing [War98] following the approach in [GMNO22, Van23] as well as support for
stratification as described in Section 3.4 and for the preprocessing techniques
in TRIMMAXSAT [PRB21]. Appendix B discusses TRIMMAXSAT in detail and Ap-
pendix C contains detailed experimental results for the default setup in which
Pacosk employs heuristics to choose between different encodings. In this section,
we focus on the main novelty of this paper, namely proof logging for SIS with the
DPW encoding.

To show the viability of enabling proof logging while solving, we analyse the
overhead of generating proofs. In Figure 2 we compare the running time of Pacosk
with and without proof logging. With proof logging enabled 674 instances were
solved within the resource limits, which is 11 fewer instances than without proof
logging. Out of the 11 instances that were not solved with proof logging enabled,
9 instances failed due to the memory limit and 2 instances due to the time limit.
For the solved instances, Pacose with proof logging was on average 1.93x slower
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cosk using the DPW encoding. using DPW encoding.

than without proof logging. About 90% of the solved instances were solved at most
5.26x more slowly with proof logging enabled. This overhead for solving is to
some extent caused by our shadow circuits approach. While we demonstrate that
shadow circuits can be used to justify the without loss of generality reasoning in
Pacos, it remains to investigate whether there is a better approach. It is important
to note, though, that the average overhead of 1.93x is heavily biased by small
instances: the cumulative solving time of all 674 instances, with proof logging is
only 1.32x the cumulative solving time without proof logging. This suggests that
proof logging overhead decreases for harder instances.

For proof logging to be maximally useful in practice, it is also desirable
that it should be possible to check generated proofs within a time limit that
is some small constant factor of the solving time for the instance. To evaluate
the efficiency of proof checking, we compared the running time of Pacose with
proof logging enabled with the running time of VeriPB, with results plotted in
Figure 3. Out of the 674 instances solved by Pacose with proof logging, 592 were
successfully checked by VErIPB, but 53 instances failed due to the memory limit
and 29 instances due to the time limit. On average, checking the proof with VeriPB
was 22.5x slower than solving and generating the proof with Pacose. 90% of
the proofs were checked within 100X the running time of Pacose. These results
for checking are in line with what has been reported in other works on proof
logging for MaxSAT [BBN*23, Van23]. While there is certainly room for further
improvements, this shows that proof logging and checking is viable. It should also
be emphasized that the only sources of problems for VEriPB were the time and
memory limits—other than that all proofs were successfully checked.
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6 Conclusion

In this paper, we demonstrate how to design proof logging for solution-improving
MaxSAT solving using the dynamic polynomial watchdog encoding. This turns
out to be surprisingly challenging, mainly due to the heavy use of reasoning
without loss of generality. To understand the correctness of this reasoning
at a human level is one thing, but convincing a proof checker by producing
machine-verifiable proofs is quite another. What we show is that by combining
the redundance-based strengthening rule and the strengthening-to-core mode
in VERIPB, together with a technique we call shadow circuits for having more
expressive witnessing capabilities, we are able to devise efficient pseudo-Boolean
proof logging techniques.

We have implemented our approach in the state-of-the-art MaxSAT solver
Pacose. Our experimental evaluation shows that while enabling proof logging is
feasible, it does incur a non-negligible overhead in solving time. Moreover, the
time needed to check the generated proofs is several times larger than the time
needed to generate them, suggesting that more efficient algorithms and more
optimized engineering are needed in VErIPB. This is not so surprising, since the
focus of VErIPB development so far has been on providing support for certifying
algorithms in combinatorial optimization paradigms previously beyond the reach
of proof logging, rather than on optimizing the proof checker code base.

The addition of Pacosk to the collection of certifying MaxSAT solvers using
VERIPB proofs provides further support to the hypothesis that pseudo-Boolean
proof logging hits a sweet spot for MaxSAT solving, being rich enough to support
a wide variety of solving algorithms and complex reasoning tricks, but still being
simple enough to support even formally verified proof checking as in [BMM*23,
GMM™*24, IOT*24].

We believe that in the longer term VeriIPB can have a strong positive impact on
the reliability and robustness of MaxSAT solvers. In the other direction, MaxSAT
solving is likely to provide excellent benchmarks and performance challenges to
further improve pseudo-Boolean proof logging and checking. Our suggestion for
speeding up these developments is to introduce a certifying track in the yearly
MaxSAT Evaluation [Max].
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Appendix A Formalization of the Proof Logging of SIS
with the DPW

In this appendix, we provide formal details on the claims made in the main body
of the paper. In the proofs, we follow the same notation. The formalization of the
reasoning in the coarse convergence is discussed in Section 4.2, here we discuss
the other phases.

A.1 Coarse Convergence

Our first proposition formalizes the wlog performed during the coarse convergence
phase.

Proposition 3 (Proposition 2, restated). Assume the definition of z has been derived
and a complete shadow circuit for T = 0 has been introduced. Furthermore assume the
constraint

O>1+k-2F (4)

has been derived. The constraint zy > 1 can be derived using redundance-based strength-
ening with witness
w=T—07YH Y

The notation for the witness in this proposition is a shorthand for the mapping
that sends each variable t; to 0 and every introduced circuit variable y to the
corresponding shadow circuit variable 7.

Proof. To verify this is indeed possible, we need to show that from
CUDU{zx =1}

we can derive the following constraints:

. lo= 1; in other words we need to show that Ez:o > 1 holds. Recall that

k
zz 0 is defined by the reification
' e0-021+k-2".

Adding up one direction of this definition to (4), immediately yields that

Z, 0 > 1, as desired.
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e Cl, foreach C € C.

- If C is a clause in the original input, C[,= C and this is trivial.

— If C is a previously derived solution-improving constraint, also C[,= C
(since w does not touch any variable in O.

- If Cis a previously derived constraint of the form zp > 1 with k" < k,
this can either be derived analogously to zx [ > 1 or directly from the
fact that the definitions of zx and z] immediately imply that z; = 0
implies that zy = 0.

* Oly> O; this is obvious since the variables in O are unaltered by w. m]

Remark 1. Proposition 3 assumes the existence of a constraint (4). It can be seen
that this constraint is actually a (potentially weakened version of a) non-strict
solution improving constraint O > O, where «a is a previously found solution.
During the coarse convergence phase, this constraint can be obtained by weakening
the solution-improving constraint.

At the end of the coarse convergence phase, also the unit clause zp > 1 is
derived. This requires no additional proof logging: this clause is obtained by
running the SAT solver with the assumption that z;- = 0 and failing. Whenever
this is the case; we know that z; > 1 is internally derived by standard conflict
analysis; hence this constraint is added to O without any additional effort.

A.2 Fine Convergence

As with the coarse convergence, the constraints derived during fine convergence
that require a justification in the proof are the unit clauses added to the solver.
Proving this relies again on redundance-based strengthening and a shadow circuit.

Proposition 4. Assume Zy_1 > 1 has been derived. Let s be any number and assume
a complete shadow circuit for T = s — 1 has been introduced. Furthermore assume the
constraint

O>s+(k-1)-2P (5)

has been derived. The constraint T > s — 1 can be derived using redundance-based
strengthening with witness

w=Tr>s,Y - Y=

Proof. As in the proof of Proposition 2, this yields several proof obligations. The
only non-trivial ones are

¢ Previously derived constraints of this form T > s’ — 1, but they are trivially
satisfied under w since s > s’.
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¢ The unit clause zp_1 > 1[,. In other words we need to show that E£i5_1
holds. Recall that z£f§‘1 is defined by the reification

Z  ©O0-(-1)21+(k-1)-2"
which simplifies to
S o 0-s > (k-1)-2".

Now (5) tells us precisely that the right-hand side of this equivalence is
satisfied, hence a straightforward cutting planes derivation indeed allows us

to conclude thatz,. ) > 1. O

Remark 2. Just like Proposition 2, also Proposition 4 does not make use of the
model-improving constraint, but rather makes the assumption on O it uses explicit
in (5). As before, this turns out to be useful when applying Proposition 4 in the
context of stratification.

Proposition 4 will be applied when a solution « is found taking
s:=0, (kK -1)-2.
In this case, the solution-improving tells us that
O>0la+l=s+(k-1)-2" +1,

and (5) is indeed satisfied. Unit clauses are derived if for a certain j, s > 27 —2/ + 1.
In this case, the derived constraint T > s — 1 guarantees that T > 2P 2 ie., that
all dominant bits of T up to j must be equal to one. This follows using reverse unit
propagation or a straightforward cutting planes derivation.

A.3 Conclusion of Optimality

When the very last call to the SAT solver is unsatisfiable, we need to derive a
contradiction in the proof, to complete the proof that the previously best found
solution is optimal. We proceed as follows. First, we introduce a fresh variable, let
us call it p using the reification

pe0>0 +1. ©6)

Our goal will be to show that p is false, which then allows us to conclude that the
objective can no longer be improved, meaning we have indeed proven optimality.
Recall that at this point, we have s defined as s := 0* — (k" — 1) - 2. The crucial step
in our proof is showing that without loss of generality T can be set equal to s. We
proceed as follows.
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Proposition 5. Assume zj-_1 > 1 and the definition of p have been derived. Furthermore
suppose that a shadow circuit for T = s has been introduced. Using redundance-based
strengthening with witness

w=Tr>s,Y Y=

we can derive the PB constraints representing
p=T=s, (7)

i.e., in normalised form, the constraints

s-p+T>s,and (8)
P-1 o

(2P—s—2)~;7+22]-Tj2(2P—1)—s—1. )
j=0

Proof. The proof for the two constraints is similar. The only proof goal where they
differ is showing that the constraint to-be-derived is satisfied under w, but this is
trivial since the witness sets T equal to s by construction.

For all the other proof goals, we can make use the negation of the constraint
to be derived (the negation of (8) or of (9)). From this negation, we can directly
derive p > 1. Adding this up to (one direction of (6) yields O > 0" + 1, i.e., that

O>s+(k-1)-2F +1. (10)

In other words, the conditions of 4 are satisfied. All the other proof obligations are
the same as the ones in the proof of that proposition and hence, making use of
(10), the proof proceeds identically to the proof of Proposition 4. |

In words, Proposition 5 tells us is that if the objective is strictly improving
on the previously found best value, then we can set T equal to s without loss of
generality. The SAT solver, however, has in its last call that yielded UNSAT already
derived a clause telling us that at least one of the bits of T does not correspond
to s. So we can now straightforwardly derive that p > 1 and hence that O < 0%,
which is what we needed for concluding optimality.

Appendix B Proof Logging of Additional Techniques
Implemented in Pacose

We detail some of the additional search techniques implemented in and how we
proof log them. As a minor point, we note for completeness that in addition to
the gcd-based criterion described in Section 3.4, Pacosk attempts to find more
partitions of the objective during stratification via exhaustive search, as illustrated
by the following example:
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Example 3. Consider the objective O := 14x1 + 9x + 5x3 + 2x4 + 1x5 + 1x¢ and
the partition H = {1,2,3} and L = {4, 5, 6}. According to the gcd-based criterion
from Section 3.4, this partition is not viable due to the gcd not aligning with any
single divisor that groups the weights cohesively. However, this partition still
validly separates the weights of x1 to x¢ through an alternative method: Define
Lc¢ as the set containing all possible summed combinations of weights from L:
Lc:=5,9,14,5+9,5+ 14,9 + 14,5 + 9 + 14. To validate this partitioning, ensure
that the total weight Wy, from L is at most the difference between any two sums
in Lc. This ensures that L forms a consistent grouping, as there is no weight
combination of L invalidating a prior result of solving H.

A more in-depth explanation together with a proof can be found in [PRB21].
While certifying the exhaustive search remains interesting future work, we note
that it did not result in additional partitions on any of the benchmarks in our
evaluation, nor on the weighted instances of the 2019 and 2020 MaxSAT Evaluation.

We would like to mention that a naive approach to certify the exhaustive search
would be to derive the desired constraint Oy > Oy [, from the weakened constraint
Ox > Ol =W + 1 using redundance-based strengthening with an empty witness.
As Ogl, is the sum of a subset of the coefficients in Oy and the distance between
any two sums is at least Wy, the negation Oy < Oy [, of the desired constraint
can only be satisfied if the sum of true literals in Oy is at most Oy [, —WL. As
OTla= Ogly, the weakened constraint can only be satisfied if the sum of true literals
in Oy is at least Oy [, =Wy, + 1. Hence, there exists no assignment to the variables
in Oy for which both constraints are satisfied. To show this we can iterate through
every possible assignment « of the variables in Oy and derive the clause excluding
this assignment by reverse unit propagation. This step works, as reverse unit
propagation for this clause assigns all variables in Oy, which will falsify either the
negated constraint or the weakened constraint by the arguments above. Resolving
all the clauses will result in a contradiction that proves that Oy > Oyl is implied.

B.1 TrimMaxSAT

TriIMMAXSAT [PRB21] is a preprocessing technique applied before the main SIS
algorithm in order to decrease the number of literals in the objective that need to be
encoded by the DPW and to get a good initial value of the objective. TrimMaxSAT
heuristically splits the variables in the objective into partitions and queries the
SAT solver for a solution that assigns at least one of the literals in each partition
to 1. If such an assignment is found, the objective variables set to 1 are removed
from consideration and the number of partitions are decreased. If the partition
size is 1 and the SAT solver reports UNSAT, all remaining literals are fixed to O for
the rest of the search. In other words TRIMMAXSAT aims to find objective literals
whose negation is implied by the constraints in the formula and fix their value,
thus conceptually decreasing the size of the objective under consideration and-as
a consequence-also the size of the DPW encoding built over it.
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In more detail, assume L contains the set of objective variables that have not
been set to 1 in any solutions found so far during TRiIMMAXSAT. During an iteration
of TRIMMaXSAT, L is partitioned into m subsets Lifori=1,...,m. Anew variable
r is introduced and the clauses r = (X i £ > 1) foreveryi =1,...,m are added
to the SAT solver and the proof via redundance-based strengthening to the core
set. The SAT solver is then queried under the assumption that r is true. If the
result is SAT, the literals in £ assigned to 1 in the obtained solution are removed
from the set under consideration and the unit clause 7 > 1 is added to the solver
such that the SAT solver can remove the clauses of the form r = (X, { > 1).
This unit clause can be derived by redundance-based strengthening with witness
w = r — 0. If, on the other hand, the result is UNSAT, the unit clause 7 > 1 is
added to the SAT solver and the SAT solver can simplify its clause database. This
clause is derived by standard cutting planes reasoning in the conflict analysis by
the SAT solver and is therefore added to the derived set in the proof. If in this case
m =1, we can also conclude that all literals ¢ € £ are implied to be false. Hence,
the solver learns the unit clauses ¢ > 1. In order to derive ¢ > 1 for each ¢ € £,
we first introduce the second part of the reification < (3 ycsi { > 1) using the
redundance rule with witness r +— 1 and then use cutting planes reasoning to
derive that since r is false, all literals in £’ must be false. Interestingly, thanks to
the use of strengthening-to-core, the unit clause 7 > 1 derived earlier does not
interfere with the derivation of the second direction of the reification.

B.2 Hardening

Hardening refers to the addition of the unit clause /; for an objective literal /;
if the currently best known solution o0* is larger than the sum of all weights in
O excluding w;. In the proof, the unit clause /; can be derived easily from the
solution-improving constraint and the objective reformulation rule can be used to
replace I; by the constant w; in the objective.

Appendix C Additional Experimental Evaluation

In this appendix, we present some additional experimental analysis with data and
plots to give some further insights into proof logging for Pacosk. In Section C.1, we
present results for the binary adder encoding that is also used in Pacose and how
detail how well proof logging performs for Pacose when it heuristically selects
the encoding. We present data for an additional approach that uses assumptions
instead of unit clauses for fixing variables in the coarse convergence in Section C.2.
To better understand the proof logging overhead in Pacosk, we have a deeper look
at some additional data for the proof logging process in Section C.3.
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C.1 Binary Adder Encoding and Encoding Selection Heuristic

Pacosk also uses the binary adder encoding [War98] instead of the DPW encoding.
A comparison between these two encodings is beyond the scope of this paper, but
as we implemented proof logging for both encodings, we can also have a look
at the data for the binary adder encoding. A comparison of solving with and
without proof logging for this encoding can be found in Figure 4. With proof
logging for the binary adder encoding 722 instances could be solved within the
resource limits, which are 6 fewer instances than without proof logging. This also
demonstrates that the heuristic for selecting the encoding works, as the number of
solved instances for the heuristic is bigger than for any of the two encodings on
their own. In the mean, Pacosk with proof logging is 1.63% slower than without
proof logging. This overhead is smaller than for the DPW encoding, which lead to
the conclusion that more work is required to certify the DPW encoding compared
to the binary adder encoding.

Out of the 722 instances that were solved with the binary adder encoding,
658 instances were successfully checked by VerIPB within the resource limits. In
Figure 5, the running time of Pacosk is compared to that of VErIPB. In the mean,
VERIPB is 21.1X slower than Pacosk for solving the instance with proof logging,
which is similar to the DPW encoding. This could mean that the bottleneck for
checking the proofs is the implementation of the checker.

Using the default settings, Pacosk heuristically selects between the DPW and
binary adder encoding. A plot comparing Pacose with and without proof logging
in the default settings in Figure 6 and a plot comparing Pacose with proof logging
with VErIPB for checking the proof in Figure 7. With this heuristic activated, 698
instances are solved within the resource limits with proof logging enabled and 707
instances without. Pacose with proof logging is 1.83x slower in the mean than
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Pacose without proof logging. Checking the proof with VErIPB is 21.8x slower
than running Pacosk with proof logging in the mean.

C.2 Coarse Convergence with Assumptions Instead of Unit
Clauses

An alternative approach for representing the information that output variables
of the DPW encoding are fixed to a value in the coarse convergence is to use
additional assumptions for the SAT solver instead of unit clauses. As we need a
shadow circuit to derive each unit clause, we could reduce the number of shadow
circuits by using assumptions. The idea is that we add the variable fixing to the
assumptions for all future calls to the SAT solver. This approach is supported in
Pacosk, and we ran additional experiments using this approach.

The following data always use assumptions instead of unit clauses for fixing
variables. In Figure 8, Pacose with proof logging is compared to Pacose without
proof logging. Using assumptions Pacose with proof logging could solve 666
instances, which is 10 fewer instances than without proof logging. Pacose with
proof logging is 1.81x slower than without proof logging in the mean. This is very
similar to Pacose with the DPW encoding where the variables are fixed by unit
clauses and introducing shadow circuits. In the mean, the proof checking is 22.2x
slower than solving the instance with proof logging.

It can be concluded that this alternative approach of fixing variables by adding
assumptions is about as good as doing the fixing by unit clauses. Hence, it could be
that introducing additional shadow circuits for deriving the unit clauses does not
slow down the solving a lot, or it is a coincidence that the performance gains are
countered by the additional work required for keeping track of the assumptions.
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C.3 Proof Logging Overhead Analysis

To get a better understanding of the 1.93x slowdown of Pacose with proof logging
compared to without proof logging, we investigate different causes for the extra
running time with proof logging. The idea for doing so is to get insights into how
to improve the running time of the solvers.

The expectation is that the proof size scales linearly with the running time of
the solver. It would be interesting to look into the instances where this is not the
case and if there is a correlation with the solving overhead. We can illustrate this by
plotting the solving time against the proof size and colour the marks depending on
the overhead as it is done in Figure 10 for the DPW encoding and in Figure 11 for
the binary adder encoding. We added a diagonal line representing linear scaling of
proof size with running time for better orientation, which is not related to the data
at all. It can be seen that for the instances that have a proof size that is significantly
bigger than expected, the overhead also seems to increase similarly. To confirm
this observation, we compute the correlation of the proof logging overhead and
the proof size divided by the solving time. For the DPW encoding we have a
correlation of 0.92 and for the binary adder encoding we have a correlation of 0.88,
which shows that the two parameters are highly correlated. This mean that the
slowdown is due to proof being larger than expected for some instances.

We can conclude with some ideas to improve the performance of proof logging
in Pacosk. First, the performance can be improved by engineering better data
structures to handle the proof logging to increase the speed for writing the proof.
This idea only works if we have not reached the maximum persistent disk write
speed, which is not the case for our experiments. Second, the proof could be done
in a smarter way to reduce the size of the proof, where slow parts of the proof
logging could be identified by profiling. Considering that we also have a 1.63x
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Figure 10: Solving time vs. proof size vs.

solving overhead for proof logging for the
DPW encoding.

10]1
1010
109
108
107
106 -
10°

Size of generated proof (byte)

10* g

103 | | | | | |
102 107* 10° 10' 102 10 10*

PACOSE without proof logging (s)

1 3.16 10 31.62 100
Proof logging overhead (factor)
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slowdown for the binary adder encoding, the slowdown is not purely caused by
the shadow circuits, as they are not used for this encoding.
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Certifying MIP-Based Presolve
Reductions for 0-1 Integer
Linear Programs

Abstract

It is well known that reformulating the original problem can be crucial for the
performance of mixed-integer programming (MIP) solvers. To ensure correctness,
all transformations must preserve the feasibility status and optimal value of the
problem, but there is currently no established methodology to express and verify
the equivalence of two mixed-integer programs. In this work, we take a first step
in this direction by showing how the correctness of MIP presolve reductions on
0-1 integer linear programs can be certified by using (and suitably extending)
the VErIPB tool for pseudo-Boolean proof logging. Our experimental evaluation
on both decision and optimization instances demonstrates the computational
viability of the approach and leads to suggestions for future revisions of the proof
format that will help to reduce the verbosity of the certificates and to accelerate
the certification and verification process further.

1 Introduction

Boolean satisfiability solving (SAT) and mixed-integer programming (MIP) are two
computational paradigms in which surprisingly mature and powerful solvers
have been developed over the last decades. Today such solvers are routinely
used to solve large-scale problems in practice despite the fact that these problems
are NP-hard. Both SAT and MIP solvers typically start by trying to simplify
the input problem before feeding it to the main solver algorithm, a process
known as presolving in MIP and preprocessing in SAT. This can involve, e.g., fixing

Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordstrom. “Certifying MIP-Based
Presolve Reductions for 0-1 Integer Linear Programs”. In Proceedings of the 21st International Conference
on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 24),
volume 14742 of Lecture Notes in Computer Science, pages 310-328. Springer, May 2024.
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variables to values, strengthening constraints, removing constraints, or adding
new constraints to break symmetries. Such techniques are very important for SAT
solver performance [BJK21], and for MIP solvers they often play a decisive role in
whether a problem instance can be solved or not, regardless of whether the solver
uses floating-point [ABG*19] or exact rational arithmetic [EG22].

The impressive performance gains for modern combinatorial solvers come
at the price of ever-increasing complexity, which makes these tools very hard to
debug. It is well documented that even state-of-the-art solvers in many paradigms,
not just SAT and MIP, suffer from errors such as mistakenly claiming infeasibility
or optimality, or even returning “solutions” that are infeasible [AG]*18, CKSW13a,
GSD19, Klo14, Stell]. During the last decade, the SAT community has dealt with
this problem in a remarkably successful way by requiring that solvers should use
proof logging, i.e., produce machine-verifiable certificates of correctness for their
computations that can be verified by a stand-alone proof checker. A number of
proof formats have been developed, such as DRAT [HHW13a, HHW13b, WHH14],
GRIT [CMS17], and LRAT [CHH*17], which are used to certify the whole solving
process including preprocessing.

Achieving something similar in a general MIP setting is much more challeng-
ing, amongst others because of the presence of continuous and general integer
variables, which may even have unbounded domains. For numerically exact
MIP solvers [CKSW13b, EG22, EG24] the proof format VIPR [CGS17] has been
introduced, but it currently only allows verification of feasibility-based reasoning,
which must preserve all feasible solutions. In particular, it does not support the ver-
ification of dual presolving techniques that may exclude feasible solutions as long
as one optimal solution remains. This means that while exact MIP solvers could
in principle generate a certificate for the main solving process, such a certificate
would only establish correctness under the assumption that all the presolving steps
were valid, as, e.g., in [EG22]. And, unfortunately, the proof logging techniques
for SAT preprocessing cannot be used to address this problem, since they can only
reason about clausal constraints.

Our contribution in this work is to take a first step towards verification of the
full MIP solving process by demonstrating how pseudo-Boolean proof logging
with VERIPB can be used to produce certificates of correctness for a wide range
of MIP presolving techniques for 0-1 integer linear programs (ILPs). VerIPB is
quite a versatile tool in that it has previously been employed for certification of,
e.g., advanced SAT solving techniques [BGMN23, GN21], SAT-based optimization
(MaxSAT) [BBN*23, VDB22], subgraph solving [GMM™*20, GMN20], and constraint
programming [GMN22, MM23]. However, to the best of our knowledge this is
the first time the tool has been used to prove the correctness of reformulations
of optimization problems, and this presents new challenges. In particular, the
proof system turns out not to be well suited for problem reformulations with
frequent changes to the objective function, and therefore we introduce a new rule
for objective function updates.

Our computational experiments confirm that this approach to certifying pre-
solve reductions is computationally viable and the overhead for certification aligns
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with what is known from the literature for certifying problem transformations in
other contexts [GMNO22]. The analysis of the results reveals new insights into
performance bottlenecks, and these insights directly translate to possible revisions
of the proof logging format that would be valuable to address in order to decrease
the size of the generated proofs and speed up proof verification.

We would like to note that, while our current methods are only applicable to
0-1 ILPs, this covers already a large and important class of MIPs. In particular,
there are applications where the exact and verified solution of 0-1 ILPs is highly
relevant, see [Ach07, EGP22, SBD19] for some examples.

The rest of this paper is organized as follows. After presenting pseudo-Boolean
proof logging and VErIPB in Sec. 2, we demonstrate in Sec. 3 how to produce
VERIPB certificates for MIP presolving on 0-1 ILPs. In Sec. 4 we report results
of an experimental evaluation, and we conclude in Sec. 5 with a summary and
discussion of future work.

2 Pseudo-Boolean Proof Logging with VeriPB

We start by reviewing pseudo-Boolean reasoning in Sec. 2.1, and then explain our
extension to deal with objective function updates in Sec. 2.2. In order to make the
concept of proof logging more concrete, we conclude this section by providing, in
Tab. 1, a few examples of how the derivation rules explained below are encoded in
VERIPB syntax. For space reasons, this list does not include examples of subproofs
that may be necessary for some derivations that cannot be proven automatically by
VErIPB. Further details on practical aspects and implementation of pseudo-Boolean
proof logging can be found in the software repository of VeriPB [GO23].

2.1 Pseudo-Boolean Reasoning with the Cutting Planes Method

Our treatment of this material will by necessity be somewhat terse—we refer
the reader to [BN21] for more information about the cutting planes method and
to [BGMN23, GMNO22] for detailed information about the VErIPB proof system
and format.

We write x to denote a {0, 1}-valued variable and X as a shorthand for 1 — x, and
write ¢ to denote such positive and negative literals, respectively. By a pseudo-Boolean
(PB) constraint we mean a 0-1 linear inequality }; a;¢; > b, where when convenient
we can assume all literals ¢; to refer to distinct variables and all a; and b to be
non-negative (so-called normalized form). A pseudo-Boolean formula is just another
name for a 0-1 integer linear program. For optimization problems we also have an
objective function f = }}; ¢jx; that should be minimized (and f can be negated to
represent a maximization problem).

The foundation of VERIPB is the cutting planes proof system [CCT87]. At the
start of the proof, the set of core constraints C are initialized as the 0-1 linear
inequalities in the problem instance. Any constraints derived as described below
are placed in the set of derived constraints D, from where they can later be moved
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to C (but not vice versa). Loosely speaking, VERIPB proofs maintain the invariant
that the optimal value of any solution to C and to the original input problem is
the same. New constraints can be derived from C U D by performing addition of
two constraints or multiplication of a constraint by a positive integer, and literal
axioms ¢ > 0 can be used at any time. Additionally, for a constraint }; a;¢; > b
written in normalized form we can apply division by a positive integer d followed
by rounding up to obtain }; [a;/d]¢; > [b/d], and saturation can be applied to
yield %; min{a;, b} - {; > b.

For a PB constraint C = ), ja ilj = b (where we use = to denote syntactic
equality), the negation of C is =C = }};a;¢{; < b — 1. For a partial assignment p
mapping variables to {0, 1}, we write C [, for the restricted constraint obtained
by replacing variables in C assigned by p by their values and simplifying the
result. We say that C unit propagates { under p if CT, cannot be satisfied unless ¢ is
assigned to 1. If unit propagation on all constraints in C U D U {~C} starting with
the empty assignment p = (), and extending p with new assignments as long as
new literals propagate, leads to contradiction in the form of a violated constraint,
then we say that C follows by reverse unit propagation (RUP) from C U D. Such
(efficiently verifiable) RUP steps are allowed in VErRIPB proofs when it is convenient
to avoid writing out an explicit derivation of C from C U . We will also write
Clw to denote the result of applying to C a (partial) substitution @ which can remap
variables to other literals in addition to 0 and 1, and we extend this notation to sets
in the obvious way by taking unions.

In addition to the cutting planes rules, which can only derive semantically
implied constraints, VErIPB has a redundance-based strengthening rule that can derive
anon-implied constraint C as long as this does not change the feasibility or optimal
value of the problem. Formally, C can be derived from C U D using this rule by
exhibiting in the proof a witness substitution w together with subproofs

CUDU{-C}H(CUDU{CHIo Y{f = flw}, 1)

of all constraints on the right-hand side from the premises on the left-hand side
using the derivation rules above. Intuitively, what (1) shows is that if « is any
assignment that satisfies C U D but violates C, then o o w satisfies C U D U {C}
and yields at least as good a value for the objective function f.

During presolving, constraints in the input formula can be deleted or replaced
by other constraints, and the proof needs to establish that such modifications are
correct. While deletions from the derived set D are always in order, removing
a constraint from the core set C could potentially introduce spurious solutions.
Therefore, deleting a constraint C from C can only be done by the checked deletion
rule, which requires to show that C could be rederived from C \ {C} by redundance-
based strengthening (see [BGMN23] for a more detailed explanation).

2.2 A New Rule for Objective Function Updates

When variables are fixed or identified during the presolving process, the objective
function f can be modified to a function f’. This modified objective f’ can then
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Table 1: Examples of basic derivation rules in VERIPB syntax. Here, (id) refers to the
constraint ID assigned by VERIPB.

Rule Syntax Explanation
cutting planes in pol x1 4 + add x1 > 0 and (4)
reverse Polish pol 3 2 d divides (3) by 2
notation

pol 1 2 * ~x1 + multiplies (1) by 2 and adds X1 > 0
redundance-based red +1 x1 >= 1; x1 1 verifies x1 > 1 with w = {x1 (=g 1}
strengthening red +1 x1 +1 x2 >= 1; x1 x2 x2 x1 verifies x1 + xp > 1 with

w ={x1 > x2,%2 > x1}

RUP rup +1 x1 +1 x2 >= 1; verifies x1 + xp > 1 with RUP

move to core core id 3 moves (3) to the core constraints
deletion from core  delc 3 deletes (3) from the core constraints
objective function obju new +1 x1 +1 x2 1; defines x1 + x2 + 1 as new objective
update obju diff +1 ~x1; adds ¥ to the objective

be used in other presolver reasoning. This scenario arises also in, e.g., MaxSAT
solving, and can be dealt with by deriving two PB constraints f > " and f" > f
in the proof, which encodes that the old and new objective are equal [BBN*23].
Whenever the solver argues in terms of f, a telescoping-sum argument with f” = f
can be used to justify the same conclusion in terms of the old objective.

However, if the presolver changes f to f’ and then uses reasoning that needs
to be certified by redundance-based strengthening, then tricky problems can
arise. One of the required proof goals in (1) is that the witness w cannot worsen
the objective. If w does not mention variables in f”, then this is obvious to the
presolver—w has no effect on the objective—but if w assigns variables in the original
objective f, then one still needs to derive f > f 1, in the formal proof, which can
be challenging. While this can often be done by enlarging the witness w to include
earlier variable fixings and identifications, the extra bookkeeping required for this
quickly becomes a major headache, and results in the proof deviating further and
further from the actual presolver reasoning that the proof logging is meant to
certify.

For this reason, a better solution is to introduce a new objective function update
rule that formally replaces f by a new objective f’, so that all future reasoning
about the objective can focus on f” and ignore f. Such a rule needs to be designed
with care, so that the optimal value of the problem is preserved. Due to space
constraints we cannot provide a formal proof here, but recall that intuitively we
maintain the invariant for the core set C that it has the same optimal value as the
original problem. In agreement with this, the formal requirement for updating
the objective from f to f’ is to present in the proof log derivations of the two
constraints f > f" and f’ > f from the core set C only.
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3 Certifying Presolve Reductions

We now describe how feasibility- and optimality-based presolving reductions
can be certified by using VerIPB proof logging enhanced with the new objective
function update rule described in Sec. 2.2 above. We distinguish between primal
and dual reductions, where primal reductions strengthen the problem formulation
by tightening the convex hull of the problem and preserve all feasible solutions, and
dual reductions may additionally remove feasible solutions using optimality-based
arguments. More precisely, weak dual reductions preserve all optimal solutions,
but may remove suboptimal solutions. Strong dual reductions may remove also
optimal solutions as long as at least one optimal solution is preserved in the
reduced problem. Our selection of methods is motivated by the recent MIP solver
implementation described in [PaP]. Before explaining the individual presolving
techniques and their certification, we introduce a few general techniques that are
needed for the certification of several presolving methods.

3.1 General Techniques

Substitution. In order to reduce the number of variables, constraints, and non-zero
coefficients in the constraints, many presolving techniques first try to identify an
equality E = xj = X, a;jx;j + B with aj, B € Q. Subsequently, all occurrences of x
in the objective and constraints besides E are substituted by the affine expression on
the right-hand side and x is removed from the problem. The simplest case when
x is fixed to zero or one, i.e., when € {0,1} and all a; = 0, is straightforward to
handle by deriving a new lower or upper bound on xx. During presolving, every
fixed variable is removed from the model. In the cases where some « i #0, first
the equation is expressed as a pair of constraints Ex> A E< and then the variable is
removed by aggregation as follows.

Aggregation. In order to substitute variables or reduce the number of non-zero
coefficients, certain presolving techniques add a scaled equality s-E = s-E> As-Eg,
s € Q, to a given constraint D. We call this an aggregation. Since VERIPB certificates
expect inequalities with integer coefficients, s is split into two integer scaling
factors sg, sp € Zwith s = sg/sp. In the certificate, the aggregation is expressed
as a newly derived constraint

D |sg| - Es + |sp| - D ifZ—EE’>0
e |sel - E< +|sp|-D otherwise .

Note that the presolving algorithm may decide to keep working with the
constraint (1/5p)Dyew internally. In this case, it must store the scaling factor sp in
order to correctly translate between its own state and the state in the certificate;
this happens in the implementation used in Sec. 4.

Checked Deletion. The derivation of a new constraint D, can render a previous
constraint D redundant. A typical example is the case of substituting a variable
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above. In a (pre)solver, the previous constraint is overwritten, and in order to
keep the constraint database in the proof aligned with the solver, one may want to
delete the previous constraint from the proof. In order to check the deletion of D,
a subproof is required that proves its redundancy. In most cases, this subproof
contains the “inverted” derivation of D¢. As an example, consider an aggregation
Dyew = D + E< with an equality E = E< A Es. In this case, the subproof for the
checked deletion is D,y + E>. Unless stated otherwise, the new constraints are
moved to the core and redundant constraints are always removed by inverting the
derivation of the constraint that replaces them.

3.2 Primal Reductions

Primal reductions can be certified purely by implicational reasoning.

Bound Strengthening. This preprocessor [FMO05, Sav94] tries to tighten the variable
domains by iteratively applying well-known constraint propagation to all variables
in the linear constraints. Each reduced variable domain is communicated to the
affected constraints and may trigger further domain changes. This process is
continued until no further domain reductions happen or the problem becomes
infeasible due to empty domains. Specifically, for an inequality constraint

Za/xj >b (2)

jEN

with a; # 0, we first underestimate ayxj via

akxkzb—Zajszb— Z aj.

j#k j#k,a;>0

If ai > 0, this yields the lower bound

wz[- Y a)im, ®

j#k,a]->0

and if a; < 0 we can obtain an analogous upper bound on xy.

The bound change can be proven either by RUP, or more explicitly by stating
the additions and division needed to form (3) from (2) and the bound constraints.
We analyze the effect of both variants in Sec. 4.4.

Parallel Rows. Two constraints Cj and Cy are parallel if a scalar A € R* exists with
/\(ajl, e, A, bj) = (ax1,...,akn, bx). Hence, one of these constraints is redundant
and can be removed from the model [ABG*19, GCW*20]. The subproof for
deleting the redundant rows must contain the remaining parallel row and A to
prove the redundancy. For a fractional A the two constraint are scaled to ensure
integer coefficients in the certificate.

Probing. The general idea of probing [Ach(07, Sav94] is to tentatively fix a variable
x;j to 0 or 1 and then apply constraint propagation to the resulting model. Suppose



178 Certifying MIP-Based Presolve Reductions for 0-1 ILP

Xk is an arbitrary variable with k # i, then we can learn fixings or implications in
the following cases:

1. If x; = 0 implies xx = 1 and x; = 1 implies x; = 0 we can add the constraint
xj = 1—x¢. Analogously, we can derive xx = x; in the case that x; = 0 implies
xr =0and x; = 1 implies x = 1.

2. If x; = 0 propagates to infeasibility we can fix x; = 1. Analogously, if x; = 1
propagates to infeasibility we can fix x; = 0.

3. If xj = 0 implies x; = 0 and x; = 1 implies x; = 0 we can fix x; to 0.
Analogously, xi can be fixed to 1 if x; = 0 implies x; = 1 and x; = 1 implies
Xk = 1.

Cases 1 and 2 can be proven with RUP. To prove correctness of fixing x; = 1 in
Case 3 we first derive two new constraints xx + x; > 1 and x; — x; > 0 in the proof
log by RUP. Adding these two constraints leads to x; > 1. To prove x; = 0 we
derive the constraints x; + x; < 0 and x — x; < 0 leading to x; = 0.

Simple Probing. On equalities with a special structure, a more simplified version
of probing called simple probing [ABG*19, Sec. 3.6] can be applied. Suppose the

equation
Zajxj = b with Za]' =2-b and |ax| = Z Llj—b

jEN jEN JEN,a;>0

holds for a variable xx with a; # 0. Let N = {p € N | a, # 0}. Under these
conditions, xx = 1 implies x, = 0 and xx = 0 implies x, = 1 for all p € N with
ap > 0. Further, xx = 1 implies x, = 1 and x4 = 0 implies x, = 0 forall p € N with
ap < 0. These implications can be expressed by the constraints

xkzl—xpforallpENWithap>0, 4)
Xx = xp forall p ENwithap <0. (5)

The constraints (4) and (5) can be proven with RUP and used to substitute variables
xp forallp € N from the problem.

Sparsifying the Matrix. The presolving technique sparsify [ABG*19, CM93] tries to
reduce the number of non-zero coefficients by adding (multiples of) equalities to
other constraints using aggregations. This can be certified as described in Sec. 3.1.

Coefficient Tightening. The goal of this MIP presolving technique, which goes back
to [Sav94], is to tighten the LP relaxation, i.e., the relaxation obtained when the
integrality requirements are replaced by x; € [0, 1]. To this end, the coefficients
of constraints are modified such that LP relaxation solutions are removed, but
all integer feasible solutions are preserved. Suppose we are given a constraint
Yjen 4jXj 2 bwith ag > € 1= ap = b + X1 ;<04 > 0, then the constraint can be
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strengthened to (ax — €)xk + X4 ajxj > b. The case a < 0is handled analogously.
This technique is also known as saturation in the SAT community [CKO05] and
VERIPB provides a dedicated saturation rule that can be used directly for proving
the correctness of coefficient tightening. The deletion of the original, weaker
constraint can be proven automatically.

GCD-based Simplification. This presolving technique from [Wen16] uses a divisibility
argument to first eliminate variables from a constraint and then tighten its right-
hand side. Given C = };cyajxj > b with |a1| > -+ > [a,| > 0. We define the
greatest common divisor gx = gecd(ay, ..., ax) as the largest value g such that

aj/g € Z for all j € {1,...,k}. If for an index k it holds that b — g - L%w >

Dk<j<n,a;>0 4j and b — g - [gb_k-‘ — 8k < Xk<jsnaj<0 4j, thenall agiy, ..., a, canbe set
to 0. This first step can be certified as weakening [LBMW20] and VerIPB provides an
out-of-the-box verification function for it. Finally, b can be rounded to gx - [b/gk].
This rounding step can be certified by dividing C with g, and then multiply it
again with gj.

Substituting Implied Free Variables. A variable x; is called implied free if its lower
bound and its upper bound can be derived from the constraints. For example, the
constraints x; — x > 0 and xp > 0 imply the lower bound x; > 0. If we have an
implied free variable x; in an equality E = a;x;j + Y, axxx = b with a; > 0, then
we can remove x; from the problem by substituting it with x; = (b - 3, ki @ kXk)/aj,
see [ABG*19] for details.

To apply the substitution in the certificate we use aggregations to remove
x;j from all constraints and the objective function update to remove x; from the
objective. If coefficients c;/a; or ar/a; are non-integer, then the resulting constraints
are scaled as described in Sec. 3.1. To prove the deletion of E, we derive two
constraints by adding x; > 0 and 1 > x; to E each, which results in

bZZakxk/\Zakxkzb—aj. (6)

k#j k#j

Then the deletion of E» can be certified by a witness w = {x; > 1}. The constraint
simplifies to (6) and is therefore fulfilled. Analogously, we use the witness
@ = {x; > 0} to certify the deletion of E<. Finally, to delete the constraints in (6)
we generate a subproof that shows that negation of the auxiliary constraints in (6)
leadsto x; ¢ {0, 1}. Thisis a contradiction to the implied variable bounds0 < x; < 1.
Since these bounds are still present through the implying constraints, we can add
these implying constraints to (6) in the subproof to arrive at a contradiction.

Singleton Variables. 1t is well-known that variables that appear only in one inequality
constraint or equality can be removed from the problem [ABG*19, Sec. 5.2]. This
can be certified by applying one of the following primal or dual strategies in this
order: First, try to apply duality-based fixing, see Sec. 3.3; second, an implied free
singleton variable can be substituted as explained above; otherwise, the singleton
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variable can be treated as a slack variable: substitute the variable in the objective,
then relax the equality as in (6), and delete the original constraint.

3.3 Dual Reductions

Dual reductions remove solutions while preserving at least one optimal solu-
tion. Hence, to prove the correctness of dual reductions we need to involve the
redundance-based strengthening rule of VerIPB. For each derived constraint C we
only explain how to prove f > fT,, (subject to the negation —C); the proof goals
for Cl,, can be derived in a very similar fashion.

Duality-based Fixing. This presolving step described in [ABG*19, Sec. 4.2] counts
the down- and up-lock of a variable. A down-lock on variable x; is a negative
coefficient, an up-lock on variable x; is a positive coefficient (for > constraints). If
xj has no down-locks and ¢; < 0, it can be fixed to zero; if x; has no up-locks and
¢j = 0, it can be fixed to one. These reductions can be certified with redundance-
based strengthening using the witness w = {x; + v}, where v is the fixing value.
The proof goal for f > f [, is equivalent to cjx; > c;v, which is fulfilled by the
conditions of duality-based fixing.

Dominated Variables. A variable x; is said to dominate another variable x; [ABG*19,
GKM™*15], in notation x; > x, if

cj<cr A ajj2ajforallie{l,..., m}, @)

where a;; and a;; are the coefficients of variable x; and xi, respectively, in the
i-th constraint. Variable x; is then favored over xj since x; contributes less
to the objective function, but more to the feasibility of the constraints. For
every domination x; > xi, a constraint C = x; > xi can be introduced. This

constraint can be certified by redundance-based strengthening with the witness
@ = {xr > xj,xj = xr}. The proof goal for f > fI, is equivalent to

CjXj + CkXk = CjXk + CkXj . (8)

The negated constraint =C = x; < xi leads to xx = 1 and x; = 0. Substituting these
values in (8) leads to ¢, > ¢;j, which follows directly from Condition (7).

Dominated Variables Advanced. For an implied free variable we can drop the variable
bounds and pretend the variable is unbounded. This allows for additional fixings
in the following cases of dominated variables:

(a) If the upper bound of x; is implied and x; > x, then x; = 0.
(b) If the lower bound of xj is implied and x; > xi, then x; = 1.
(c) If the upper bound of x; is implied and x; > —xi, then x; = 1.

(d) If the lower bound of x; is implied and —x; > xi, then x; = 0.
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We use redundance-based strengthening with witness w = {xx + 0} to prove
the correctness of a as follows. If the upper bound of x; is implied, this means

b= 2,050 WJ -1.D

— . Due
to Condition (7), it must hold that 0 > a;; > a;, and the constraint x; + xx < 1
can be derived. Hence, negating and propagating C = x; = 0 with RUP leads to
contradiction, which proves the validity of C. Case b can be handled analogously
using the witness w = {x; +— 1}. To derive C = x; = 1 in ¢ we use redundance-
based strengthening with witness w = {x; + 1, x; — 1}. Then, the proof goal for
f = floiscj-xj+ck-xk 2 ¢j+cg. After propagating —C, this becomes equivalent
to ¢; < —ck, which is true by Condition (7). Case d can be handled analogously
using the witness w = {xx 0, x; — 0}.

there exists a constraint with a;; < 0 such that x; < [

3.4 Example

We conclude this section with an example of a small certificate for the substitution
of an implied free variable in Fig. 1, also available with a more detailed description
at the software repository of PAPILO [Hoe23]. Consider the 0-1 ILP

min x1+xp s.t. x1+x2—x3—x4=1, 9)
—-x1+x5>0, (10)

in which the lower bound of x; is implied by (9) and the upper bound of x; is
implied by (10). Hence, x; is implied free and we can use (9) to substitute it.
In the left section of Fig. 1 we first derive the two auxiliary constraints

0<xp—-x3—x4 <1, (11)

which receives the constraint IDs 4 and 5 and are moved to the core. Note that
the equality in (9) is split into two inequalities with IDs 1 and 2. In the middle
section, we first remove x; from (10) by aggregation with (9), perform checked
deletion, then remove x1 from the objective (automatically proven by VeriPB). Last,
in the right section, we delete the equality in (9) used for the substitution and the
auxiliary constraints in (11) and arrive at the reformulated problem min x3 +x4+1
s.t. xp —x3 — x4 + x5 > 1. From here, we could continue to derive x, = 1 by
duality-based fixing, since x; has zero up-locks and objective coefficient zero.
This displays the importance of the objective update, as without it x, would still
contribute to the objective with a positive coefficient, and this would prohibit
duality-based fixing to 1.

4 Computational Study

In this section we quantify the cost of certifying presolve reductions in a state-of-
the-art implementation for MIP-based presolve (Sec. 4.2) and the cost of verifying
the resulting certificates (Sec. 4.3). In Sec. 4.4, we analyze the impact of certifying
constraint propagation by RUP or by an explicit cutting planes proof.
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* generates ID 4:
pol 1 ~x1 + ;
core id 4

* generates ID 5:
pol 2 x1 + ;

core id 5

* generates ID 6:

pol 3 1 + ;

core id 6

delc 3 ; ; begin
pol 6 2 +

end

del
del
del
del

end

c 2 ; x1 ->0
c1l; x1 ->1
c5

c 4 ; ; begin
pol 6 -1 +

obju new +1 x3 +1 x4 1 ;

Figure 1: A VERIPB certificate to substitute an implied free variable x1.

4.1 Experimental Setup

For generating the presolve certificates we use the solver-independent presolve
library PAPILO [PaP], which provides a large set of MIP and LP techniques
from the literature, described in Sec. 3. Additionally, it accelerates the search
for presolving reductions by parallelization, encapsulating each reduction in a
so-called transaction to avoid expensive synchronization [GGH23]. Logging the
certificate, however, is performed sequentially while evaluating the transactions.

We base our experiments on models from the Pseudo-Boolean Competition
2016 [Roul6] including 1398 linear small integer decision and 532 linear small
integer optimization instances of the competitions PB10, PB11, PB12, PB15, and
PB16 and 295 decision and 145 optimization instances from MIPLIB 2017 [GHG*21]
in the OPB translation [Dev20], excluding 10 large-scale instances! for which
PaPILO reaches the memory limit. This yields a total of 671 optimization and
1681 decision instances. We use PaAPILO 2.2.0 [HG23] running on 6 threads and
VERIPB 2.0 [GO23]. The experiments are carried out on identical machines with
an 11th Gen Intel(R) Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory
and are assigned 14,000 MB of memory. The strict time limit for presolve plus
certification and verification is three hours. Times (reported in seconds) do not
include the time for reading the instance file. For all aggregations, we use the
shifted geometric mean with a shift of 1 second.

4.2 Overhead of Proof Logging

In the first experiment, we analyze the overhead of proof logging in PAPILO.
The average results are summarized in Tab. 2, separately over decision (dec) and
optimization (opt) instances for PB16 and MIPLIB. Column “relative” indicates
the average slow-down incurred by printing the certificate.

The relative overhead of proof logging is less than 6% across all test sets. VeEriPB
supports two variants to change the objective function. Either printing the entire
objective (obju new) or printing only the changes in the objective (obju diff). In
our experiments, we only print the changes, since printing the entire objective for
each change can lead to a large certificate and overhead, especially for instances
with large and dense objective functions. On the PB16 instance NORMALIZED-

INORMALIZED-184, NORMALIZED-PB-SIMP-NONUNIF, A2864-998LP, 1vu06-BIG, 1vU59, sUPPORTCASE11, A2864-
998Lr.0.s/ U, suprOorTCASEL1.0.5/U
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Table 2: Runtime comparison of PAPILO with and without proof logging.

test set size default [s] w/proof log [s] relative
PB16-dec 1397 0.06 0.06 1.00
MIPLIB-dec 291 042 0.43 1.02
PB16-opt 531 0.65 0.66 1.02
MIPLIB-opt 142 0.33 0.35 1.06

Table 3: Time to verify the certificates. VERIPB timeouts are treated with PAR2.

PAPILO time [s]  VErIPB relative time w.r.t.

test set size verified default w/prooflog time [s] default w/proof log
PB16-dec 1397 1397  0.06 0.06 0.88 14.67 14.67
MIPLIB-dec 291 267 042 0.43 9.64 2285 2242
PB16-opt 531 520  0.65 0.66 1044 16.06 15.82
MIPLIB-opt 142 139 0.33 0.35 525 1591 15.00

paTT256, for example, PAPILO finds 135206 variable fixings. Updating the entire
objective function with 262 144 non-zeros for each of these variables leads to a
huge certificate of about 138 GB and increases the time from 3.3 seconds (when
printing only the changes) to 6625 seconds.?

For 99% of the instances, we can further observe that the overhead per applied
reduction is below 0.001 - 10~ seconds over both test sets. This means that the
proof logging overhead is not only small on average, but also small per applied
reduction on the vast majority of instances. These results show that the overhead
scales well with the number of applied reductions and that proof logging remains
viable even for instances with many transactions. Here, under applied reductions
we subsume all applied transactions and each variable fixing or row deletion in the
first model clean-up phase. During model clean-up, PAPILO fixes variables and
removes redundant constraints from the problem. While PAPILO technically does
not count these reductions as full transactions found during the parallel presolve
phase, their certification can incur the same overhead.

4.3 Verification Performance on Presolve Certificates

In this section, we analyze the time to verify the certificates generated by PAPILO.
The results are summarized in Tab. 3. The “verified” column lists the number of
instances verified within 3 hours. VEriPB timeouts are counted as twice the time
limit, i.e., PAR2 score. Similar to Tab. 2, the “relative” columns report the relative
overhead of VerIPB runtime compared to PAPILO.

2Certificate generated on Intel Xeon Gold 5122 @ 3.60GHz 96 GB with 50,000 MB of memory
assigned.
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VERIPB (time in seconds)

1072 107!
PaPILO (time in seconds)

100 10" 102 10°

VErIPB (time in seconds)

10

102 1070 10° 10" 10> 10°
PaPILO (time in seconds)

Figure 2: Running times of VERIPB vs. PAPILO on test sets PB16 (left) and MIPLIB
(right), including all instances with more than 1 seconds in VERIPB and less than 30 minutes
in PAPILO, and excluding timeouts. Green + signs mark optimization and blue X signs
mark decision instances.

First note that all certificates are verified by VErRIPB (partially on the 38 instances
where VErIPB times out). On average, it takes between 14.7 and 22.4 times as much
time to verify the certificates than to produce them. Nevertheless, some instances
take a longer than average time to verify. Over all test sets, 25% of the instances
have an overhead of at least a factor of 193, see also Fig. 2.

To put this result into context, note that presolving amounts more to a trans-
formation than to a (partial) solution of the problem. Each reduction has to be
certified and verified while a purely solution-targeted algorithm may be able to
skip certifying of a larger part of the findings that are not form a part of the
final proof of optimality. Hence, it makes sense to compare the performance
of VErRIPB on presolve certificates to the overhead for, e.g., for verifying CNF
translations [GMNO22]. For this study, a similar performance overhead is reported
as in Fig. 2.

4.4 Performance Analysis on Constraint Propagation

Finally, we investigate how the performance of VErIPB depends on whether we
use RUP (as in Sec. 4.2 and Sec. 4.3) or explicit cutting planes derivations (POL)
to certify bound strengthening reductions from constraint propagation. Here,
we additionally exclude 9 large-scale instances® for which PAPILO reaches the
memory limit when certifying with POL. The results are summarized in Tab. 4.
The “verified” column contains the number of instances verified by VeriPB within
the time limit. The “time” column reports the time for verification.

Deriving the propagation directly with cutting planes is 3.2% faster on PB16-
dec, 2.8% faster on MIPLIB-dec, 13.1% faster on MIPLIB-opt, and 0.7% faster on

3NE0S-4754521-awARAU.0.s, NEOs-827015.0.s /U, NE0S-829552.0.5 /U, s100.0.5/U, NORMALIZED-DATT256,
s100
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Table 4: Comparison of the runtime of VERIPB with RUP and POL over instances with at
least 10 propagations.

RUP POL
test set size verified time [s] verified time [s] relative
PB16-dec 284 284 2.21 284 2.14 0.968
MIPLIB-dec 35 31 153.23 31 148.88 0.972
PB16-opt 153 142 28.43 142 28.22 0.993
MIPLIB-opt 16 14 147.11 14 127.83 0.869

PB16-opt. On 95% of the decision instances using RUP is at most 9.7% slower.
While it is expected that verification is faster when the cutting planes proof is given
explicitly, it is surprising that the performance difference between the methods
is not more pronounced.This is partly due to the cost of the watched-literal
scheme [MMZ*01, SS06] used by VeriPB for unit propagation. The overhead of
maintaining the watches is present regardless of whether (reverse) unit propagation
is used or not. Furthermore, unit propagation is also used for automatically
verifying redundance-based strengthening. Together, this limits the potential for
runtime savings by providing the explicit cutting planes proof.

Furthermore, providing an explicit cutting planes proof for propagation re-
quires printing the constraint into the certificate. Hence, the certificate size becomes
dependent on the number of non-zeros in the constraints leading to propagations.
In contrast, the overhead of RUP is constant and much smaller.

All in all, these results suggest to prefer RUP when deriving constraint prop-
agation since it barely impacts the performance of VeEriPB and keeps the size of
the certificate smaller. The computational cost of RUP could be further reduced
by extending it to accept an ordered list of constraints that shall be propagated
first, similar as in [CFHH"17]. Such an extension could also be used for other
presolving techniques, in particular probing and simple probing.

5 Conclusion

In this paper we set out to demonstrate how presolve techniques from state-of-the-
art MIP solvers can be equipped with certificates in order to verify the equivalence
between original and reduced models. Although the pseudo-Boolean proof logging
format behind Ver1PB [BGMN22] was not designed with this purpose in mind, we
could show that a limited extension needed for handling updates of the objective
function is sufficient to craft a certified presolver for 0-1 ILPs.

However, our experimental study on instances from pseudo-Boolean compe-
titions and MIPLIB also exhibited that the verification of MIP-based presolving
can suffer from large and overly verbose certificates. To shrink the proof size
we introduced a sparse objective update function but identified further possible
improvements. First, a native substitution rule in VeriPB would remove the need
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for the explicit derivation of new aggregations and the verification of checked
deletion as described in Sec. 3.1. For instances where presolving is dominated by
substitutions, we estimate that this would reduce certificate sizes by up to 90%,
and no more time would be spent on checked deletion for substitutions. Second,
augmenting the RUP syntax by the option to specify an ordered list of constraints
to propagate first, similarly as in [CFHH™"17], would accelerate RUP, in particular
for fast verification of bound strengthenings by constraint propagation.

While VErIPB is currently restricted to operate on integer coefficients only, the
certification techniques presented in Sec. 3 do not rely on this assumption and
are applicable to general binary programs. It has been shown how to construct
VERIPB certificates for bounded integer domains [GMN22, MM23], and within the
framework of the generalized proof system laid out in [DEGH23], our certificates
would even translate to continuous and unbounded integer domains. To conclude,
we believe our results show convincingly that this type of proof logging techniques
is a very promising direction of research also for MIP presolve beyond 0-1 ILPs.
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End-to-End Verification for
Subgraph Solving

Abstract

Modern subgraph-finding algorithm implementations consist of thousands of
lines of highly optimized code, and this complexity raises questions about their
trustworthiness. Recently, some state-of-the-art subgraph solvers have been
enhanced to output machine-verifiable proofs that their results are correct. While
this significantly improves reliability, it is not a fully satisfactory solution, since
end-users have to trust both the proof checking algorithms and the translation
of the high-level graph problem into a low-level 0-1 integer linear program (ILP)
used for the proofs.

In this work, we present the first formally verified toolchain capable of full
end-to-end verification for subgraph solving, which closes both of these trust
gaps. We have built encoder frontends for various graph problems together with
a 0-1 ILP (a.k.a. pseudo-Boolean) proof checker, all implemented and formally
verified in the CAkeML ecosystem. This toolchain is flexible and extensible, and
we use it to build verified proof checkers for both decision and optimization graph
problems, namely, subgraph isomorphism, maximum clique, and maximum common
(connected) induced subgraph. Our experimental evaluation shows that end-to-end
formal verification is now feasible for a wide range of hard graph problems.

1 Introduction

Combinatorial optimization algorithms have improved immensely since the turn
of the millennium, and are now routinely used to solve large-scale real-world
problems, through both general-purpose solving paradigms [BHvMW21, BR07,
GSVW14] and dedicated algorithms for more specialised problems such as sub-
graph finding [MPT20]. Since these combinatorial solvers are used for an increas-

Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordstrom, Andy Oertel, and Yong Kiam
Tan. “End-to-End Verification for Subgraph Solving”. In Proceedings of the 38th AAAI Conference on
Artificial Intelligence (AAAI '24), pages 8038-8047, Febuary 2024.
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Figure 1: The full verification workflow. Without verified proof checking, only the left-hand
part of the diagram is used. Our current work enables the additional shaded parts, where the
thick dashed box is the formally verified program and thick arrows show its key input-output
interfaces.

ingly wide range of applications, it becomes crucial that the results they compute
can be trusted. Sadly, this is currently not the case [CKSW13, AGJ*18, GSD19,
BMN22]. Extensive testing, though beneficial, has not been able to resolve the
problem of solvers occasionally producing faulty answers, and attempts to build
correct-by-construction software using formal verification run into the obstacle
that current techniques cannot scale to the level of complexity of modern solvers.

Instead, the most promising way to achieve verifiably correct combinatorial
solving seems to be proof logging, meaning that solvers produce efficiently verifiable
certificates of correctness that can be corroborated by an independent proof
checking program [MMNS11]. This approach has been successfully used in the
SAT community [HHW13a, HHW13b, WHH14], which raises the question of
whether similar techniques could be employed in other settings such as subgraph
finding. For this it would seem that the proof checker would need to understand
graph concepts such as vertices, edges, neighbourhoods, et cetera. Surprisingly,
this turns out not to be the case—instead, the solver can encode the graph problem
using 0-1 linear inequalities (also referred to as pseudo-Boolean constraints), and then
justify its complex high-level reasoning in terms of this low-level representation.
This approach has been used to add proof logging with the VErIPB tool to state-
of-the-art solvers for subgraph isomorphism, clique, and maximum common
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(connected) induced subgraph [GMN20, GMM*20], as illustrated in the left-hand
part of Figure 1. We emphasize that although this approach uses reasoning with
pseudo-Boolean constraints for the proof logging, it is not limited to pseudo-
Boolean solving. Rather, it can be used to certify the output of any untrusted
solver—such as tools that operate natively on graph representations—as long as
the solver’s relevant reasoning steps can be expressed with pseudo-Boolean proofs.

While this approach has been successful for debugging solvers and providing
convincing demonstrations that the fixed solvers are producing correct answers,
it is important to observe that it crucially hinges on the assumption that three
components are correct: (1) the low-level encoding of the problem, (2) the proof
checker, and (3) the interpretation of the final output. For example, if the maximum
clique solver in [GMM™*20] produces a proof accepted by the VEriPB checker, then
one can conclude that if the 0-1 ILP encoding of clique is implemented correctly,
and if VErIPB does not contain bugs, and if (say) a 200-vertex graph having a
maximum clique size of 13 corresponds to the optimal objective value for the
low-level encoding being 187 (because it minimises the number of vertices not in
the clique), then the maximum clique size is indeed 13. Such assumptions are not
unreasonable—encodings have been chosen to be as simple as possible and the
code can be subjected to extensive testing; the proof format is designed so that
proof checking should be easy; and verifying that proof outputs correspond to
solver outputs is not too cumbersome. Compared to having to trust an extremely
complex solver, this is a vast improvement. However, if provably correct results
are the end goal, then this still leaves much to be desired.

1.1 Our Contribution

In this work, we resolve all the concerns discussed above by presenting the first
toolchain capable of end-to-end formal verification for state-of-the-art algorithms
for maximum clique, subgraph isomorphism, and maximum common (connected)
induced subgraph problems. Although the implementations of modern solvers
for these problems are far too complicated to be formally verified by current
techniques, we can still use formal verification to certify the correctness of the
proof logging and proof checking process. We do so by defining a solver-friendly
augmented VERIPB proof format; enhancing the VErRIPB tool with a proof elaborator
that can translate such augmented proofs to a more explicit kernel format; and
designing a formally verified proof checker for the kernel format. This formally verified
checker is also capable of providing its own formally verified encodings from
graph problems to 0-1 ILPs. Finally, the output provided by the formally verified
proof checker is in terms of the original problem, not the low-level encoding. This
means that using the process illustrated in the right-hand part of Figure 1, if the
checking process outputs (say)

s VERIFIED MAX CLIQUE SIZE |CLIQUE| = 13

then we can be absolutely sure that the maximum clique size for our graph is 13,
if we trust the formal verification tool(s) and if the formal higher-order logic
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. . def

is_clique vs (v,e) =
vsc {01,.,0-1} A
VXY.XEUVSAYEUSAX#Y = is_edgeexy

. . def . .
max_clique_size ¢ = maxset { card vs | is_clique vs ¢ }

has_subgraph_iso (vp,ep) (vt.er) 4

af.injf {01,..,0,-1} {01,...0:-1} A
Vab.is_edge e, a b = is_edge e (f a) (f b)

Figure 2: HOL definitions for maximum clique size of a graph with v vertices and edge
set e (top), and existence of a subgraph isomorphism from a pattern graph (vy, e,) to a
target graph (v;, e;) (bottom).

(HOL) specifications (as shown in Figure 2) accurately reflect what it means to
be a clique. The toolchain we provide is also flexible and extensible, in that it
can be readily adapted to other combinatorial problems, including problems not
involving graphs.

1.2 Comparison to Related Work

Formally verified proof checkers have previously played an important role in SAT
solving [CMS17, CHH*17, Lam20] and are vital for widespread acceptance of
SAT-solver-generated mathematical proofs [HK17]. However, such proof checkers
have worked only for conjunctive normal form (CNF), and only to establish that
decision problems encoded in CNF are infeasible: verification that the encoding
accurately reflects the problem to be solved has either been ignored or has been
handled separately, e.g., [CMS19, SFL*21, CAH23]. For graph problems, previous
attempts at verified proof checking have been tied to one specific problem, or even
one specific algorithm, e.g., [BDM23]. In contrast, we provide formal verification
for optimization problems and with much more expressive formats than CNF, and
we do so in a unified way with a single pseudo-Boolean proof logging format for 0-1
linear inequalities together with a general-purpose toolchain, rather than having to
design proof logging from scratch for each new combinatorial problem considered.
In this way, we demonstrate that end-to-end formally verified combinatorial solving
is now eminently within reach, by combining pseudo-Boolean proof logging with
formally verified tools for 0-1 ILP encodings and pseudo-Boolean proof checking.

1.3 Outline of This Paper

After reviewing preliminaries in Section 2, we describe the formally verified proof
checker in Section 3 and how solver proofs in a user-friendly proof format can be
converted to a more restricted format accepted by this proof checker in Section 4.
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We report results from an experimental evaluation in Section 5. We conclude in
Section 6 with a discussion of future research directions.

2 Preliminaries

Our discussion of pseudo-Boolean proof logging will be brief, since the main
thrust of this work is how to formally verify proof logging rather than to design
it. See [GN21] and [BGMN23] for more on the VErRIPB system and [BN21] for
background on the cutting planes reasoning method used.

A literal { over a variable x is x itself or its negation X, taking values 0 (false)
or 1 (true), so that x =1 — x. A pseudo-Boolean (PB) constraint C is a 0-1 integer
linear inequality };a;¢; > A, which without loss of generality we can always
assume to be in normalized form; i.e., all literals ¢; are over distinct variables and the
coefficients a; and the degree (of falsity) A are non-negative. The negation -=C of C is
Ziﬂi?i > >a; — A + 1 (saying that the sum of the coefficients of falsified literals is
so large that the satisfied literals can contribute at most A —1). A pseudo-Boolean
formula is a conjunction F = /\; C; of PB constraints.

Cutting planes [CCT87] is a method for iteratively deriving new constraints
logically implied by a PB formula by taking positive linear combinations or dividing
a constraint and rounding up. We say that C unit propagates the literal ¢ if under
the current partial assignment C cannot be satisfied unless ¢ is set to true, and
that C is implied by F by reverse unit propagation (RUP) if adding —C to F and then
unit propagating until saturation leads to contradiction in the form of a violated
constraint. VErRIPB allows adding constraints by RUP, which is a convenient way of
avoiding having to write out explicit syntactic derivations.

In addition to deriving constraints C that are implied by F, VErIPB also has
strengthening rules for inferring redundant constraints D having the property that F
and F A D are equisatisfiable. If there is a partial mapping w of variables to literals
and/or truth values such that

FU{"D}F(FUD)M (1)

holds, meaning that after applying w to F U {D} all of the resulting constraints can
be derived by cutting planes from F U {=D}, then D can be added by redundance-
based strengthening. There is also a similar but slightly different dominance-based
strengthening rule. Importantly, the proof has to specify w and also contain explicit
subderivations for all proof goals in (FU D), in Equation (1) unless they are obvious
enough that VEriPB can automatically figure them out (e.g., by using RUP). Finally,
for optimization problems there are rules to deal with objective functions and
incumbent solutions, and the strengthening rules also need to be slightly adapted
for this setting.

The formalization of our proof checking toolchain is carried out in the HOL4
proof assistant for classical higher-order logic [SN08]. We make particular use of
the CakeML tools for production and optimization of verified CakeEML source
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Figure 3: Architecture of the end-to-end verified proof checkers for various graph problems.

code [MO14, GMKN17] as well as for formally verified compilation [TMK*19],
allowing to transfer guarantees of source-code-level correctness down to executable
machine code. Where applicable, formal code snippets are pretty-printed for
illustration, e.g., as shown in Figure 2. The set and first-logic notation is standard
(e.g., = denotes logical implication); other HOL notation is explained where
appropriate. Formally verified results are preceded by a turnstile +. All code is
available in the supplementary material [GMM™23].

3 Formally Verified Graph Proof Checkers

This section details the formal verification of our pseudo-Boolean proof checker
CakePB and its various graph frontends, focusing on the key architectural decisions
and reusable insights behind the verification effort. An overview of the tool is
shown in Figure 3. We first present the different components, and then plug them
together to obtain end-to-end verified graph proof checkers.

3.1 Verified Pseudo-Boolean Proof Checking

A key design objective for CaxePB is to make it a general yet effective pseudo-
Boolean proof checking backend. To this end, CAkePB supports a kernel subset
of the VErIPB proof format with cutting planes, strengthening, and optimization
rules as discussed in Section 2. The implementation and verification of all of this
within a single proof checker backend presents several new challenges compared
to prior tools for efficient verified CNF proof checking [CHH*17, Lam20, THM23].
Firstly, the pseudo-Boolean proof system features a much richer set of rules, each
of which needs a formal soundness justification. Secondly, there is an intricate
interplay between different proof rules, especially concerning how they preserve
optimal solutions (or satisfiability for decision problems). This necessitates careful
maintenance of state invariants within the proof checker implementation. And
thirdly, all of the above needs to be adequately optimized for practical use, whilst
being formally verified.
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We use a refinement-based approach to tackle each challenge in order and at
the appropriate level of abstraction.

1. The verification process starts by defining an abstract, mathematical, pseudo-
Boolean semantics, with respect to which the soundness of each rule is
justified. For example, we prove lemmas that justify the soundness of adding
two constraints and dividing a constraint by a non-zero natural number in a
cutting planes proof step:

+ satisfies_npbc w C; A satisfies_npbc w Cp =
satisfies_npbc w (add C; Cy)

+ satisfies_npbc w C Ak #0 =
satisfies_npbc w (divide C k)

Here, satisfies_npbc w C says that the pseudo-Boolean constraint C is sat-
isfied by the Boolean assignment w. We verify similar lemmas for all
supported reasoning principles, the most involved of which is dominance-
based strengthening. Specifically, this rule requires making a well-founded
induction argument over an arbitrary user-specified order for Boolean assign-
ments, for which we largely follow the proof from [BGMN23, Proposition
4].

2. Next, we implement a prototype proof checker that ensures that every
application of a proof rule is valid, e.g., that divide is never applied with k = 0,
throwing an error otherwise. The proof checker is verified to maintain key
invariants on the proof state, especially the ones needed for dominance and
optimization reasoning. Soundness of the checker is proved by induction
over the sequence of proof steps. The main idea is illustrated by the following
abridged lemma snippet.

F ... A valid_conf ord obj fml =
check_step step ord obj fml ... =

Some (ord’,obj’ fml’, ...) =

... A valid_conf ord” obj’ fml’

Here, valid_conf ord obj fiml says that for any satisfying assignment w to the core
constraints in formula fml, there exists another satisfying assignment w’ < w
which satisfies all constraints in fml, where < is the order on assignments
induced by ord and obj. The lemma fragment says that, whenever checking
a single proof step (check_step) succeeds and returns a new proof checker
state (result Some), the valid_conf invariant is maintained for the state. Other
key properties verified for check_step include showing that fml” and fml are
equisatisfiable by assignments that improve the best known objective value.

3. The final phase involves refining the prototype into an optimized proof
checker implementation using the CaxeML tools for profiling and source
code verification [MO14, GMKN17]. We manually optimize several hotspots
encountered in the pseudo-Boolean proofs generated in our experimental
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is_cis vs (vp,e,) (vpe) =

If.osc {0,1,..,up=1} Ainjfous {0,1,..,0-1} A
VYab.acvs Abeuvs=
(is_edge e, ab — is_edgee; (f a) (f b))
connected_subgraph vs e £
VYab.acvsAbeuvs=
(Axy.yevsnis_edgeexy) ab

. . def
is_ccis vs (vp,ep) (Vr,€1) =
is_cis vs (vp,ep) (vr,e) A connected_subgraph vs e,

def

max_ccis_size 8t =
maxset { card vs | is_ccis vs g gt }

+ good_graph (v,,e,) A good_graph (vs,er) A
encode (vp,ey) (vr,er) = constraints =
((3vs. is_ccis vs (vp,ep) (vr,er) A card vs = k) &
Jw. satisfies w (set constraints) A
eval_obj (unmapped_obj v,) w = v, — k)

Figure 4: HOL definition of the size of a maximum common connected induced subgraph
(MCCIS) for a pattern graph g, and a target graph g; (top), and a correctness theorem for
encoding the MCCIS problem using PB constraints (bottom).

evaluation, e.g., using buffered 1/0O to stream large proof files, and swapping
to constant-time array-based constraint lookups for cutting planes steps and
hash-based proof goal coverage checks in application of the dominance-based
strengthening rule.

The verified proof checker backend operates most naturally and efficiently with
normalized pseudo-Boolean constraints where, in addition, variables are indexed
by numbers. However, this is not the most convenient interface for frontend users.
Accordingly, CakePB also includes a verified pseudo-Boolean normalizer. As shown
in Figure 3, CAkePB accepts any pseudo-Boolean formula as input (normalized
or otherwise) together with an externally generated kernel proof. It produces an
appropriate verified conclusion about the formula, such as satisfiability status
or upper and lower bounds on the objective function, depending on the type of
problem and on the claims made by the proof.

3.2 Verified Graph Problem Encoders

Pseudo-Boolean formulas provide a convenient format for verified frontend
encoders for graph problems, which we turn to next. Graphs are represented
in HOL as a pair (v,e), where v is the number of vertices corresponding to the
vertex set { 0,1,...,v-1 }, and e is an edge list representation such that is_edge ea b
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is true iff there is an edge between vertices a and b. All graphs considered here
are undirected.! The graph encoders use a shared graph library which formalizes
these basic graph notions and provides parsing functions for standard text formats
such as LAD and DIMACS.

The HOL definitions of various graph problems formalized in this paper are
shown in Figures 2 and 4; we use maximum common connected induced subgraph
(MCCIS) as a representative example. Given a pattern graph g, and a target
graph g;, a subset of vertices vs of g, is a common induced subgraph (is_cis) iff
there exists an injective mapping f from vs into the target graph vertices which
preserves edges and non-edges. Additionally, vs is a connected subgraph of g, iff
its vertices are pairwise connected in the reflexive transitive closure (denoted *) of
the induced is_edge relation. The MCCIS size is the size of the largest common
connected induced subgraph between g, and g; (max_ccis_size).

The MCCIS pseudo-Boolean encoding from [GMM*20, Section 3.1] is imple-
mented as a HOL function encode. The main subtlety is connected_subgraph; briefly,
connectedness is encoded using additional auxiliary variables that indicate whether
a walk of length n for some n < min(v,, v;), exists between each pair of vertices
in the chosen subgraph. The correctness theorem for encode is shown in Figure 4
(bottom). It says that a CCIS of cardinality k exists iff a satisfying assignment to the
encoding constraints exists with objective value v, — k. Therefore, minimizing the
objective (unmapped_obj v,) yields the MCCIS size. Similar theorems are proved
for encodings of subgraph isomorphism and maximum clique. The value of formal
verification here is twofold: to gain confidence in the pen-and-paper justification
of the encodings, and to ensure that the encodings are correctly implemented in
code.

3.3 End-to-End Verification

Feeding the output of each frontend encoder into CakePB yields a suite of
formally verified graph proof checkers, collectively called CAkeEPBGRrAPH. Since
we are working within the CAxeML ecosystem, we can further achieve end-to-end
verification by running the CaxkeML compiler on CAkeEPBGraAPH to transfer the
source-level correctness guarantees for the CAkeEPBGrarH checkers down to the
level of their respective machine code implementations.

Let us illustrate this by briefly discussing the final correctness theorem for the
maximum clique proof checker as shown in Figure 5. The assumption on Line 1 is
standard for all programs written in CakeML, and states that the compiled machine
code is correctly loaded in memory of an x64 machine and that the appropriate
command line and file system foreign function interfaces (FFIs) are available to
CakeML. The first correctness guarantee on Lines 2—4 says that the code will run
without crashing and will terminate safely, possibly reporting an out-of-memory
resource error. The second correctness guarantee starting at Line 5-6 says there

1In practice, we apply a consistency check good_graph for undirectedness and other syntactic
properties when parsing input graphs. Graphs failing the check are rejected by the encoders.
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. def ~ . ~
clique_eq_strn = s VERIFIED MAX CLIQUE SIZE |CLIQUE| = " toString n © "\n"

clique_bound_str I u &

"s VERIFIED MAX CLIQUE SIZE BOUND " ~ toString! " " <= |CLIQUE| <= "
" toString .~ "\n"

1 | +cake_pb_clique_run cl fs mc ms =

2 machine_sem mc (basis_ffi cl fs) ms C

3 extend_with_resource_limit

4 { Terminate Success (cake_pb_clique_io_events ¢l fs) } A

5 Jout err. extract_fs fs (cake_pb_clique_io_events cl fs) =

6 Some (add_stdout (add_stderr fs err) out) A

7 (out # " =

8 Jg. get_graph_dimacs fs (el 1 c[) = Some g A

9 (length cl = 2 A out = concat (print_pbf (full_encode g)) v
10 length ¢l =3 A

11 (out = clique_eq_str (max_clique_size g) V

12 31 u. out = clique_bound_strl u A (Vus. is_clique vs g = card vs < u) A
13 Jus. is_clique vs g A I < card vs)))

Figure 5: End-to-end correctness theorem for CAKEPB with a maximum clique pseudo-
Boolean encoder frontend.

will be (possibly empty) strings out and err printed to standard output and error,
respectively. The remaining lines now claim that if standard output is non-empty,
then the input file was parsed in DIMACS format to a graph g (Lines 7-8), and the
output is either:

e a pretty-printed pseudo-Boolean encoding of the maximum clique problem
for ¢ (Line 9), or

* a pretty-printed conclusion string which is either:

- averified exact maximum clique size for ¢ formatted using clique_eq_str
(Line 11), or

— verified lower and upper bounds on clique sizes in g formatted using
clique_bound_str (Lines 12-13).

Let us clarify what needs to be trusted, or at least carefully inspected, in order to
claim that the conclusions by CAkePBGraPH checkers are formally verified:

¢ The HOL definitions of the graph input parsers and of various graph problems
that appear in the final correctness theorems (e.g., Figure 5). We have kept
these definitions as simple as possible. Notably, the internal definitions of
pseudo-Boolean semantics and cutting planes used in the proof checker are
not part of CAKEPBGRraPH’s trusted base because conversion into and out of
pseudo-Boolean semantics is formally verified.
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¢ The formal HOL model of the CakeML execution environment and its
correspondence with the real system on which CaxePBGraPH runs. CAKEML
has been used in various other proof checkers, e.g., by [THM23], and its
target architecture models have been validated extensively [TMK*19].

¢ The HOL4 theorem prover, including its logic, implementation and execution
environment. The prover follows an LCF-style design [SN08] with a well-
separated and trustworthy kernel responsible for checking every logical
inference.

A trusted base for binary code extraction [KMTMI18] as above is of the highest
assurance standard for formally verified software—correctness is proved within a
single system down to the machine code that runs. This provides a gold standard
of trustworthiness for subgraph solving, in contrast to prior unverified proof
checking approaches.

4 Proof Elaboration

CakePBGRrarH verification helps solver users who wish to attain a high level of
trust in solver conclusions. In this section, we discuss our new elaboration phase,
which aids solver authors who wish to add trustworthy proof logging and checking
to their tools.

The convenience afforded by proof elaboration is illustrated in the workflow
in Figure 1. First, solver authors can design their proof output with respect to
their own (untrusted) pseudo-Boolean encodings, without following the verified
encodings from CakePBGrarh exactly; elaboration helps to automatically line up
(where possible) untrusted and verified encodings. Second, elaboration supports
an augmented proof format with syntactic sugar that makes proof logging much
easier at runtime; elaboration then fills in the necessary details to convert the proof
into the kernel format understood by CakePBGrarH. The VERIPB proof elaborator
also performs (unverified) proof checking during the translation process, helping
solver authors to detect bugs in their proof logging or solver code even before the
formal verification process starts.

4.1 Lining up Encodings

Many VErIPB proof rules refer to constraints by positive integer constraint IDs,
assigned automatically in order of appearance in the proof. It would be quite a
hassle for solver authors to keep track of the exact order in which constraints in
the encoding are generated by CAkePBGraPH. Fortunately, it is straightforward
to instead recover an ID by rederiving the constraint, which provides it with a
new, known ID, before it is used. This can either be done upfront, at the start of
the proof, or lazily (which avoids a potentially large overhead for instances with
very short proofs). A useful fact is that the two constraints do not need to match
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Verified Encoding

min:

1 x0_n1x1_n1x2n1l1x3_n1zx4 n1x5_n

1 x0_n1x0_01x0_11x0_21x0_31x0_4\
1x0.51x061x071x0.81%x09=1;

1 x1_n1x1_01x1_11x1_21x1_3 1 x1_4 \
1x1.51x1.61x1.71x1.81x1.9=1;
. 1172 omitted constraints ...

H

Augmented Proof

Kernel Proof

pseudo-Boolean proof version 2.0

* Specifying a partial solution
soli x5_9 x2_7 ...

(58 omitted literals)

* Unit propagation step

pseudo-Boolean proof version 2.0

* Specifying a full solution
soli x0_n x1_n ...

(304 omitted literals)

* Derivation by cutting planes

ul -~x4 0 >=1 ; red 1 ~x4_ 0 >= 1 ; ; begin
pol 8784 8778 + 8772 + 8766 + \
. 8133 13 * + 8085 13 * +

end 8786

conclusion BOUNDS 2 : 8798 2
end pseudo-Boolean proof

conclusion BOUNDS 2 2
end pseudo-Boolean proof

Figure 6: (Top) MCCIS problem encoding for the pattern graph K33 and the target
Petersen graph. (Bottom) An augmented proof generated by a solver on the left, and a
corresponding elaborated kernel proof on the right; kernel annotations in bold. When run
on the kernel proof, CAKEPBGRAPH outputs: s VERIFIED MAX CCIS SIZE [CCIS| =
4. This corresponds to the conclusion in the proof, which claims that at least two of the six
pattern vertices must be mapped to null.

exactly—it is sufficient that they are close enough so that VErIPB can automatically
check and prove that one of them follows from the other.

When it comes to variable names, the solver proof logging routines are required
to agree exactly with the CAxkePBGrarH encoding. This is an easier task, however,
since VERIPB and CakePB both support expressive variable names. For example,
for subgraph mapping problems, we use the protocol that the variable name x1_2
means that pattern vertex 1 will be mapped to target vertex 2.

4.2 Elaborating on Syntactic Sugar

The augmented proof format contains a number of rules designed to support
the ease of proof logging. Chief among these is reverse unit propagation (RUP),
which allows to add a constraint when the VErIPB proof checker can easily verify
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that it is implied by applying unit propagation. Such RUP steps occur frequently
in proofs in many applications, and so have to be dealt with efficiently by the
proof checker, but implementing efficient formally verified unit propagation is a
challenging task even for the simpler case of CNF [FBL18]. Instead, a RUP rule
application deriving C from F is converted to an explicit cutting planes proof of
contradiction from F U {=C}. This is possible since unit propagation on the latter
set of constraints leads to a violation (by the definition of RUP), and this in turn
means that pseudo-Boolean conflict analysis can be used to derive contradiction.
This algorithm is more involved than CNF-based conflict analysis as used in SAT
solvers, but we employ a procedure similar to the PB conflict analysis in [EN18]
for this. For optimization problems, the augmented format allows incumbent
solutions to be partially specified, so long as the given assignment unit propagates
to a full solution; the kernel format will always specify a full solution instead. This
is illustrated in Figure 6.

Another convenient rule is syntactic implication, where a constraint to be
derived is implied by a single (unspecified) previous constraint by simple syntactic
manipulations. This condition is again easy to check, but the elaborator converts
this into an explicit derivation or explicitly annotates the kernel proof with IDs.
Yet another important aspect that we are ignoring here, but which is crucial for
efficient proof checking, is deletion of constraints no longer needed in the proof.

Finally, applications of strengthening rules generate a separate proof goal
for each constraint currently in use in the proof, which is a potentially huge
overhead, but often most of these proof goals are obvious and can be skipped in the
augmented format (e.g., if they can be obtained by RUP or syntactic implication).
The proof elaborator fills in the necessary missing details for such proof goals.

5 Experiments

To validate our approach, we performed experiments on a cluster of machines with
dual AMD EPYC 7643 processors, 2TBytes RAM, and a RAID array of solid state
drives, running Ubuntu 22.04. We ran up to 40 jobs in parallel, and limited each
individual process to 64GBytes RAM. Note that performance of the verification
process is strongly affected by I/0O and memory cache speeds, and so we do not
expect running time measurements to be highly reproducible, but they should still
be indicative of the feasibility of the approach and the slowdowns that one might
encounter. We used the Glasgow Subgraph Solver [MPT20] as the proof-producing
solver for all experiments, and made small modifications so that it would lazily
recover constraint IDs as required. The results are plotted on an instance by
instance basis in Figure 7 and explained below.

For maximum clique, we took the 54 instances from the Second DIMACS
Implementation Challenge [JT96] that [GMM*20] were able to check. We managed
to produce proofs for and formally verify 50 of these instances; for the 4 instances
that we could not verify, 3 were due to VerIPB taking over one week to check
the proof files, and the final one to the 64GByte memory limit for the verified
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Figure 7: Experiments using the Glasgow Subgraph Solver on (a) max clique, (b) subgraph
isomorphism, and (c) max common connected induced subgraph problem instances. In
the left column, comparisons of kernel and augmented proof sizes; in the right column,
time comparisons for verified and unverified checking of kernel and augmented proofs,
respectively. Crosses indicate failures due to space or memory limits.
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checker. Over the successfully checked instances, translating augmented proofs to
kernel proofs took, on average, 18% longer than simply verifying the proofs, and
produced proof files that were on average 2.26 times as large. However, verified
checking of these kernel proofs was consistently faster than checking the original
augmented proofs using VErIPB: the average running time was 3.8 times lower.

For subgraph isomorphism, we used the same subset of 1,226 small-to-medium-
sized instances from the benchmark set in [KMS16] as was studied by [GMN20].
We were able to verify 417 satisfiable and 784 unsatisfiable instances; 13 instances
failed due to memory limits on the verified checker, and 12 instances when the
converted kernel proofs exceeded 500GBytes in size. Performance-wise, running
VErRIPB and asking it to output a kernel proof was on average 27% slower than
verification alone. Producing the verified encoding was never a significant cost in
the process. Verifying kernel proofs was on average 2.4 times slower than verifying
the original, augmented proofs; the former were on average 10.5 times larger than
the latter.

For maximum common connected induced subgraph, we used a database
of randomly generated instances [CFV07, DFSV03], and ran the solver in clique
reformulation mode. We were able to verify all 690 instances involving up to
20 vertices in each graph. Elaborating the proofs took on average 43% longer than
verifying them using VERIPB, and the proofs were on average 14.7 times larger.
However, verifying the kernel proofs using CaxePB took on average only 9% longer
than using VErIPB for the original, augmented proofs.

Across each problem family, producing formally verified encodings was always
extremely cheap, and asking VErIPB to produce an elaborated kernel proof was
never substantially more expensive than simply checking the augmented proof.
This is to be expected: VErIPB already has to produce nearly all of the information
needed for proof elaboration to check a proof anyway. Checking elaborated proofs
was sometimes a little faster than checking the original, augmented proof, and
sometimes a little slower, and we were able to formally check almost every proof
that was amenable to unverified checking.

6 Conclusion

In this paper, we present the first efficient toolchain for formal end-to-end verifica-
tion of state-of-the-art subgraph solving. Our design is easily adaptable, which
opens up the possibility of bringing formal verification to other combinatorial
problem domains where problem instances can be suitably represented using the
expressivity of 0-1 integer linear programs. In fact, our formally verified CaxePB
proof checker equipped with a CNF frontend has also been used for SAT solving in
the SAT Competition 2023 [BMM*23], supporting, also for the first time, efficient
verified proof logging and checking for the full range of advanced techniques
used in modern SAT solvers such as cardinality reasoning, Gaussian elimination,
and symmetry breaking. A future challenge of particular interest would be to
provide a formally verified setting for the proof logging techniques for constraint
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programming developed in a sequence of papers by [EGMN20, GMN22] and
[MM23]. It would also be valuable to expand the reach of pseudo-Boolean proof
logging to problems like (projected) model enumeration problems, which were
dealt with in a somewhat ad-hoc fashion by [GMM™*20].

To further improve performance, it would be highly desirable to enhance the
VERIPB elaborator with proof trimming to be able to remove unnecessary proof steps
before handing the kernel proof to CAkePB. Currently, our system verifies all of the
steps carried out by the solver to reach its conclusion. This is useful for detecting
solver bugs, but for storing and distributing proofs a trimmed proof would suffice
and could be much faster to verify. Another significant source of performance
gains could come from switching from a text proof format to a binary format:
although this would lose some human-readability, our experiments suggest that
text parsing often forms a substantial portion of the elaboration and checking
times.
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Certified MaxSAT
Preprocessing

Abstract

Building on the progress in Boolean satisfiability (SAT) solving over the last decades,
maximum satisfiability (MaxSAT) has become a viable approach for solving NP-
hard optimization problems. However, ensuring correctness of MaxSAT solvers
has remained a considerable concern. For SAT, this is largely a solved problem
thanks to the use of proof logging, meaning that solvers emit machine-verifiable
proofs to certify correctness. However, for MaxSAT, proof logging solvers have
started being developed only very recently. Moreover, these nascent efforts have
only targeted the core solving process, ignoring the preprocessing phase where
input problem instances can be substantially reformulated before being passed on
to the solver proper.

In this work, we demonstrate how pseudo-Boolean proof logging can be used
to certify the correctness of a wide range of modern MaxSAT preprocessing
techniques. By combining and extending the VeErIPB and CakePB tools, we provide
formally verified end-to-end proof checking that the input and preprocessed
output MaxSAT problem instances have the same optimal value. An extensive
evaluation on applied MaxSAT benchmarks shows that our approach is feasible in
practice.

1 Introduction

The development of Boolean satisfiability (SAT) solvers is arguably one of the
true success stories of modern computer science—today, SAT solvers are routinely
used as core engines in many types of complex automated reasoning systems.
One example of this is SAT-based optimization, usually referred to as maximum
satisfiability (MaxSAT) solving. The improved performance of SAT solvers, coupled

Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Jarvisalo, Magnus O. Myreen,
and Jakob Nordstrom. “Certified MaxSAT Preprocessing”. In Proceedings of the 12th International Joint
Conference on Automated Reasoning (IJCAR "24), volume 14739 of Lecture Notes in Computer Science, pages
396-418. Springer, July 2024.
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with increasingly sophisticated techniques for using SAT solver calls to reason
about optimization problems, have made MaxSAT solvers a powerful tool for
tackling real-world NP-hard optimization problems [BHvMW21].

However, Modern MaxSAT solvers are quite intricate pieces of software,
and it has been shown repeatedly in the MaxSAT evaluations [Maxb] that even
the best solvers sometimes report incorrect results. This was previously a se-
rious issue also for SAT solvers (see, e.g., [BLB10]), but the SAT community
has essentially eliminated this problem by requiring that solvers should be cer-
tifying [ABM*11, MMNS11], i.e., not only report whether a given formula is
satisfiable or unsatisfiable but also produce a machine-verifiable proof that this
conclusion is correct. Many different SAT proof formats such as RUP [GNO03],
TraceCHEeck [Bie06], GRIT [CMS17], and LRAT [CHH*17] have been proposed,
with DRAT [HHW13a, HHW13b, WHH14] established as the de facto standard;
for the last ten years, proof logging has been compulsory in the (main track of
the) SAT competitions [SAT]. It is all the more striking, then, that until recently no
similar developments have been observed in MaxSAT solving.

1.1 Previous Work

A first natural question to ask—since MaxSAT solvers are based on repeated calls
to SAT solvers—is why we cannot simply use SAT proof logging also for MaxSAT.
The problem is that DRAT can only reason about clauses, whereas MaxSAT solvers
argue about costs of solutions and values of objective functions. Translating such
claims to clausal form would require an external tool to certify correctness of the
translation. Also, such clausal translations incur a significant overhead and do not
seem well-adapted for, e.g., counting arguments in MaxSAT.

While there have been several attempts to design proof systems specifically
for MaxSAT solving [BLM07, FMSV20, 1BJ22, LNOR11, MIB*19, MM11, PCH20,
PCH21, PCH22], none of these have come close to providing a general proof logging
solution, because they apply only for very specific algorithm implementations
and/or fail to capture the full range of techniques used. Recent papers have instead
proposed using pseudo-Boolean proof logging with VeriPB [BGMN23, GN21]
to certify correctness of so-called solution-improving solvers [VDB22] and core-
guided solvers [BBN*23]. Although these works demonstrate, for the first time,
practical proof logging for modern MaxSAT solving, the methods developed
thus far only apply to the core solving process. This ignores the preprocessing
phase, where the input formula can undergo major reformulation. State-of-the-art
solvers sometimes use stand-alone preprocessor tools, or sometimes integrate
preprocessing-style reasoning more tightly within the MaxSAT solver engine, to
speed up the search for optimal solutions. Some of these preprocessing techniques
are lifted from SAT to MaxSAT, but there are also native MaxSAT preprocessing
methods that lack analogies in SAT solving.
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1.2 Our Contribution

In this paper, we show, for the first time, how to use pseudo-Boolean proof
logging with VERIPB to produce proofs of correctness for a wide range of pre-
processing techniques used in modern MaxSAT solvers. VErIPB proof logging
has previously been successfully used not only for core MaxSAT search as dis-
cussed above, but also for advanced SAT solving techniques (including symmetry
breaking) [BGMN23, GMNO22, GN21], subgraph solving [GMM*20, GMM*24,
GMN20], constraint programming [EGMN20, GMN22, MM23, MMN24], and 0-1
ILP presolving [HOGN24], and we add MaxSAT preprocessing to this list.

In order to do so, we extend the VErIPB proof format to include an output section
where a reformulated output can be presented, and where the pseudo-Boolean
proof establishes that this output formula and the input formula are equioptimal,
i.e., have optimal solutions of the same value. We also enhance CakePB [BMM*23,
GMM*24]—a verified proof checker for pseudo-Boolean proofs—to handle proofs
of reformulation. In this way, we obtain an end-to-end formally verified toolchain
for certified preprocessing of MaxSAT instances.

It is worth noting that although preprocessing is also a critical component in
SAT solving, we are not aware of any tool for certifying reformulations even for the
restricted case of decision problems, i.e., showing that formulas are equisatisfiable—
the DRAT format and tools support proofs that satisfiability of an input CNF
formula F implies satisfiability of an output CNF formula G but not the converse
direction (except in the special case where F is a subset of G). To the best of
our knowledge, our work presents the first practical tool for proving (two-way)
equisatisfiability or equioptimality of reformulated problems.

We have performed computational experiments running a MaxSAT prepro-
cessor with proof logging and proof checking on benchmarks from the MaxSAT
evaluations [Maxb]. Although there is certainly room for improvements in perfor-
mance, these experiments provide empirical evidence for the feasibility of certified
preprocessing for real-world MaxSAT benchmarks.

1.3 Organization of This Paper

After reviewing preliminaries in Section 2, we explain our pseudo-Boolean proof
logging for MaxSAT preprocessing in Section 3, and Section 4 discusses verified
proof checking. We present results from a computational evaluation in Section 5,
after which we conclude with a summary and outlook for future work in Section 6.

2 Preliminaries

We write £ to denote a literal, i.e., a {0, 1}-valued Boolean variable x or its negation
x =1-x. Aclause C = {1 V...V ¥ is a disjunction of literals, where a unit
clause consists of only one literal. A formula in conjunctive normal form (CNF)
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F =CiA... ANCy is a conjunction of clauses, where we think of clauses and
formulas as sets so that there are no repetitions and order is irrelevant.

A pseudo-Boolean (PB) constraint is a 0-1 linear inequality >;; a;¢; > b, where,
when convenient, we can assume all literals l’j to refer to distinct variables and all
integers a; and b to be positive (so-called normalized form). A pseudo-Boolean formula
is a conjunction of such constraints. We identify the clause C = ¢; V - - - V {; with
the pseudo-Boolean constraint PB(C) = & + - - - + ¢ > 1, so a CNF formula F is just
a special type of PB formula PB(F) = {PB(C) | C € F}.

A (partial) assignment p mapping variables to {0, 1}, is extended to literals
by respecting the meaning of negation, satisfies a PB constraint }}; a;{; > b if
> Gep()=114j 2 b (assuming normalized form). A PB formula is satisfied by p if all
constraints in it are. We also refer to total satisfying assignments p as solutions.
In a pseudo-Boolean optimization (PBO) problem we ask for a solution minimizing
a given objective function O = }}; ¢j{j + W, where ¢j and W are integers and W
represents a trivial lower bound on the minimum cost.

2.1 Pseudo-Boolean Proof Logging Using Cutting Planes

The pseudo-Boolean proof logging in VErIPB is based on the cutting planes proof
system [CCT87] with extensions as discussed briefly next. We refer the reader
to [BN21] for and in-depth discussion of cutting planes and to [BGMN23, Goc22,
HOGNZ24, Ver] for more detailed information about the VeEriIPB proof system and
format.

A pseudo-Boolean proof maintains two sets of core constraints C and derived
constraints O under which the objective O should be minimized. At the start of the
proof, C is initialized to the constraints in the input formula F. Any constraints
derived by the rules described below are placed in D, from where they can later
be moved to C (but not vice versa). The proof system semantics preserves the
invariant that the optimal value of any solution to C and to the original input
problem F is the same. New constraints can be derived from C U O by performing
addition of two constraints or multiplication of a constraint by a positive integer,
and literal axioms { > 0 can be used at any time. Additionally, we can apply
division to }.; aj{j > b by a positive integer d followed by rounding up to obtain
2 [aj/d|¢; > [b/d], and saturation to yield 2 min{a;, b} - {; > b (where we again
assume normalized form).

The negation of a constraint C = Zj ajlj > bis -C = Z]» ajlj < b—1. For
a (partial) assignment p we write C [, for the restricted constraint obtained by
replacing literals in C assigned by p with their values and simplifying. We say that
C unit propagates { under p if CT, cannot be satisfied unless ¢ is assigned to 1. If
repeated unit propagation on all constraints in C U D U {=C}, starting with the
empty assignment p = (), leads to contradiction in the form of an unsatisfiable
constraint, we say that C follows by reverse unit propagation (RUP) from C U D.
Such (efficiently verifiable) RUP steps are allowed in VErIPB proofs as a convenient
way to avoid writing out an explicit cutting planes derivation. We use the same
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notation C,, to denote the result of applying to C a (partial) substitution w, which
can map variables not only to {0, 1} but also to literals, and extend this notation to
sets of constraints by taking unions.

In addition to the above rules, which derive semantically implied constraints,
there is a redundance-based strengthening rule, or just redundance rule for short, that
can derive non-implied constraints C as long as they do not change the feasibility
or optimal value. This can be guaranteed by exhibiting a witness substitution w such
that for any total assignment «a satisfying C U D but violating C, the composition
@ o w is another total assignment that satisfies C U D U {C} and yields an objective
value that is at least as good. Formally, C can be derived from C U D by exhibiting
w and subproofs for

CUDU{-C}+(CUDU{CHIy» U{O 2 Olw}, @

using the previously discussed rules (where the notation C; + C> means that the
constraints C, can be derived from the constraints Cy).

During preprocessing, constraints in the input formula are often deleted or
replaced by other constraints, in which case the proof should establish that these
deletions maintain equioptimality. Removing constraints from the derived set D is
unproblematic, but unrestricted deletion from the core set C can clearly introduce
spurious better solutions. Therefore, removing C from C can only be done by the
checked deletion rule, which requires a proof that the redundance rule can be used
to rederive C from C \ {C} (see [BGMN23] for a more detailed explanation).

Finally, it turns out to be useful to allow replacing O by a new objective O’
using an objective function update rule, as long as this does not change the optimal
value of the problem. Formally, updating the objective from O to O’ requires
derivations of the two constraints O > O’ and O’ > O from the core set C, which
shows that any satisfying solution to C has the same value for both objectives.
More details on this rule can be found in [HOGN24].

2.2 Maximum Satisfiability

A WCNF instance of (weighted partial) maximum satisfiability 7" = (Fy, Fs) is a
conjunction of two CNF formulas Fy and Fs with hard and soft clauses, respectively,
where soft clauses C € Fs have positive weights wC. A solution p to " must
satisfy Fy and has value cost(Fs, p) equal to the sum of weights of all soft clauses
not satisfied by p. The optimum opt(F") of #" is the minimum of cost(Fs, p)
over all solutions p, or oo if no solution exists.

State-of-the-art MaxSAT preprocessors such as MaxPre [IB]22, KBSJ17] take
a slightly different objective-centric view [B]J19] of MaxSAT instances ¥ = (F, O)
as consisting of a CNF formula F and an objective function O = }}; ¢j¢j + W to
be minimized under assignments p satisfying F. A WCNF MaxSAT instance
FW = (Fy, Fs) is converted into objective-centric form OsMaxSAT(F") = (F, O)
by letting the formula F = Fy U{C V bc | C € Fs,|C| > 1} of OsMaxSAT(F ")
consist of the hard clauses of 7" and the non-unit soft clauses in Fs, each extended
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with a fresh variable bc that does not appear in any other clause. The objective
O =3 (D)eFs w®p + > wCbe contains literals ¢ for all unit soft clauses ¢ in Fg as
well as literals for all new variables bc, with coefficients equal to the weights of the
corresponding soft clauses. In other words, each unit soft clause ¢ € Fs of weight

w is transformed into the term w - ¢ in the objective function O, and each non-unit
soft clause C is transformed into the hard clause C V b¢ paired with the unit soft

clause (bc) with same weight as C. The following observation summarizes the
properties of OBjMaxSAT(F V) that are central to our work.

Observation 1. For any solution p to a WCNF MaxSAT instance F" there exists a
solution p’ to (F,0) = OBiMaxSAT(F™) with O(p’) = cost(FW, p). Conversely, if
o’ is a solution to OBIMAXSAT(F "), then there exists a solution p of F" for which
cost(FW, p) < O(p").

For the second part of the observation, the reason O(p’) is only an upper bound
on cost(F ", p) is that the encoding forces b to be true whenever C is not satisfied
by an assignment but not vice versa.

An objective-centric MaxSAT instance (F, O), in turn, clearly has the same
optimum as the pseudo-Boolean optimization problem of minimizing O subject
to PB(F). For the end-to-end formal verification, the fact that this coincides
with opr(F ") needs to be formalized into theorems as shown in Figure 4.

3 Proof Logging for MaxSAT Preprocessing

We now discuss how pseudo-Boolean proof logging can be used to reason about
correctness of MaxSAT preprocessing steps. Our approach maintains the invariant
that the current working instance in the preprocessor is synchronized with the
PB constraints in the core set C as described in Section 2.2. At the end of each
preprocessing step (i.e., application of a preprocessing technique) the set of derived
constraints O is empty. All constraints derived in the proof as described in this
section are moved to the core set, and constraints are always removed by checked
deletion from the core set. Full technical details are in Appendix A.

3.1 Overview

All our preprocessing steps maintain equioptimality, which means that if prepro-
cessing of the WCNF MaxSAT instance " yields the output instance #,", then
the equality opr(F") = oprr(¥,") is guaranteed to hold. Our preprocessing is
certified, meaning that we provide a machine-verifiable proof justifying this claimed
equality. Our discussion below focuses on input instances that have solutions, but
our techniques also handle the—arguably less interesting—case of "V not having
solutions; details are in Appendix A.5.

An overview of the workflow of our certifying MaxSAT preprocessor is shown
in Figure 1. Given a WCNF instance " as input, the preprocessor proceeds in five
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Figure 1: Overview of the five stages of certified MaxSAT preprocessing of a WCNF
instance FW. The middle column contains the state of the working MaxSAT instance
as a WCNF instance and a lower bound on its optimum cost (Stages 1-2), or as an
objective-centric instance (Stages 3-5). The right column contains a tuple (C, O) with the
set C of core constraints, and objective O, respectively, of the proof after each stage.

stages (illustrated on the left in Figure 1), and then outputs a preprocessed MaxSAT
instance 7" together with a pseudo-Boolean proof that opt(OBMaxSAT(F ")) =
opt(OB/MaxSAT(7,")). For certified MaxSAT preprocessing, this proof can then
be fed to a formally verified checker as in Section 4 to verify that (a) the initial core
constraints in the proof correspond exactly to the clauses in OBMaxSAT(F "),
(b) each step in the proof is valid, and (c) the final core constraints in the proof
correspond exactly to the clauses in OsMaxSAT(%," ). Below, we provide more
details on the five stages of the preprocessing flow.

Stage 1: Initialization.

An input WCNF instance " is transformed to pseudo-Boolean format by con-
verting it to an objective-centric representation (F°, 0%) = OsMaxSAT(F ") and
then representing all clauses in F” as pseudo-Boolean constraints as described
in Section 2.2. The VErIPB proof starts out with core constraints PB(F’) and
objective O°. The preprocessor maintains a lower bound on the optimal cost of the
working instance, which is initialized to 0 for the input #".
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Stage 2: Preprocessing on the Initial WCNF Representation.

During preprocessing on the WCNF representation, a (very limited) set of sim-
plification techniques are applied on the working formula. At this stage the
preprocessor removes duplicate, tautological, and blocked clauses [JBH10]. Ad-
ditionally, hard unit clauses are unit propagated and clauses subsumed by hard
clauses are removed. Importantly, the preprocessor is performing these simplifica-
tions on a WCNF MaxSAT instance where it deals with hard and soft clauses. As
the pseudo-Boolean proof has no concept of hard or soft clauses, the reformulation
steps must be expressed in terms of the constraints in the proof. The next example
illustrates how reasoning with different types of clauses is logged in the proof.

Example 1. Suppose the working instance has two duplicate clauses C and D.
If both are hard, then the proof has two identical constraints PB(C) and PB(D)
in the core set, and PB(D) can be deleted since it follows from PB(C) by reverse
unit propagation (RUP). If D is instead a non-unit soft clause, the proof has the
constraint PB(D V bp) and the term wPbp in the objective, where bp does not
appear in any other constraint. Then in the proof we (1) remove the RUP constraint
PB(D V bp), (2) introduce bp > 1 by redundance-based strengthening using the
witness {bp — 0}, (3) remove the term wPbp from the objective, and (4) delete

bp > 1 with the witness {bp — 0}.

Stage 3: Conversion to Objective-Centric Representation.

In order to apply more simplification rules in a cost-preserving way, the working
instance 7"1W = (F5, F2) at the end of Stage 2 is converted into the corresponding
objective-centric representation that takes the lower-bound s inferred during
Stage 1 into account. More specifically, the preprocessor next converts its working
MaxSAT instance into the objective-centric instance ¥ = (F?, O + 18) where
(F2,0?%) = OMaxSAT(F,").

Here it is important to note that at the end of Stage 2, the core constraints C'
and objective O of the proof are not necessarily PB(F?) and O? + L, respectively.
Specifically, consider a unit soft clause (f) of #,"V obtained by shrinking a non-unit

soft clause C 2 (£) of the input instance, with weight w®. Then the objective
function O? in the preprocessor will include the term w® ¢ that does not appear in
the objective function O! in the proof. Instead, O! contains the term w bc and C!
the constraint ¢ + bc > 1 where bc is the fresh variable added to C in Stage 1. In
order to “sync up” the working instance and the proof we (1) introduce ¢ + be =1
to the proof with the witness {bc — 0}, (2) update O' by adding w®¢ — w b,
(3) remove the constraint ¢ + bc > 1 with the witness {bc — 0}, and (4) remove
the constraint £ + bc > 1 with witness {bc — 1}. The same steps are logged for
all soft unit clauses of 7"1W obtained during Stage 2. In the following stages, the
preprocessor will operate on an objective-centric MaxSAT instance whose clauses
correspond exactly to the core constraints of the proof.
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Stage 4: Preprocessing on the Objective-Centric Representation.

During preprocessing on the objective-centric representation, more simplifica-
tion techniques are applied to the working objective-centric instance and logged
to the proof. We implemented proof logging for a wide range of preprocess-
ing techniques. These include MaxSAT versions of rules commonly used in
SAT solving like bounded variable elimination (BVE) [EB05, SP04], bounded
variable addition [MHB13], blocked clause elimination [JBH10], subsumption
elimination, self-subsuming resolution [EB05, OGMS02], failed literal elimina-
tion [Fre95, LB01, ZM88], and equivalent literal substitution [Bra04, Li00, VG05].
We also cover MaxSAT-specific preprocessing rules like TrimMaxSAT [PRB21],
(group)-subsumed literal (or label) elimination (SLE) [BS]J16, KBSJ17], intrinsic
at-most-ones [IMM19, IBJ22], binary core removal (BCR) [Gim64, KBSJ17], label
matching [KBSJ17], and hardening [ABGL12, IBJ22, MHM12]. Here we give exam-
ples for BVE, SLE, label matching, and BCR—the rest are detailed in Appendix A.
In the following descriptions, let (F, O) be the current objective-centric working
instance.

Bounded Variable Elimination (BVE) [EBO5, SP04]. BVE eliminates from F a
variable x that does not appear in the objective by replacing all clauses in which
either x or x appears with the non-tautological clausesin {CVD | CVx € F,DVx €
F}.

An application of BVE is logged as follows: (1) each non-tautological constraint
PB(C v D) is added by summing the existing constraints PB(C Vv x) and PB(D V X)
and saturating, after which (2) each constraint of the form PB(C V x) and PB(D Vv X)
is deleted with the witness x — 1 or x — 0, respectively.

Label Matching [KBSJ17]. Label matching allows merging pairs of objective
variables that can be deduced to not both be set to 1 by optimal solutions. Assume
that (i) F contains the clauses C V bc and D V bp, (ii) bc and bp are objective
variables with the same coefficient w in O, and (iii) C Vv D is a tautology. Then
label matching replaces bc and bp with a fresh variable bcp, i.e., replaces C V bc
and D V bp with C V becp and D V bep and adds —wbe — wbp + wbep to O.

As C V D is a tautology there is some literal £ such that { € C and ¢ € D. Label
matching is logged via the following steps: (1) introduce the constraint bc +bp > 1
with the witness {b¢c — ¢, bp — F}, (2) introduce the constraints bcp +bc+bp >2
and bcp + bc + bp > 1 by redundance; these correspond to bcp = bc + bp which
holds even though the variables are binary due to the constraint added in the first
step, (3) update the objective by adding —wbc — wbp + wbcp to it, (4) introduce
the constraints PB(C V bcp) and PB(D V bep) which are RUP, (5) delete PB(C V bc)
and PB(D V bp) with the witness {bc — ¢,bp — £}, (6) delete the constraint
bep +be +bp > 2 with the witness {bc — 0,bp — 0} and bep +be +bp > 1 with
the witness {bc — 1,bp — 0}, (7) delete bc + bp > 1 with the witness {bc — 0}.
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Subsumed Literal Elimination (SLE) [BSJ16, IBJ22]. Given two non-objective
variables x and y such that (i) {C|C e F,ye C} c{C|C e F,x € C}and
(i) {C|CeF,xeC} c{C|CeF,Yy e C}, subsumed literal elimination (SLE)
allows fixing x = 1 and y = 0. This is proven by (1) introducing x > land y > 1,
both with witness {x — 1, y — 0}, (2) simplifying the constraint database via
propagation, and (3) deleting the constraints introduced in the first step as neither
X nor y appears in any other constraints after simplification.

If x and y are objective variables, the application of SLE additionally requires
that: (iii) the coefficient in the objective of x is at most as high as the coefficient of
y. Then the value of x is not fixed as it would incur cost. Instead, only y = 0 is
fixed and y removed from the objective. Intuitively, conditions (i) and (ii) establish
that the values of x and y can always be flipped to 0 and 1, respectively, without
falsifying any clauses. If neither of the variables is in the objective, this flip does
not increase the cost of any solutions. Otherwise, condition (iii) ensures that the
flip does not make the solution worse, i.e., increase its cost.

Binary Core Removal (BCR) [Gim64, KBSJ17]. Assume that the following four
prerequisites hold: (i) F contains a clause bc V bp for two objective variables b¢c
and bp, (ii) bc and bp have the same coefficient w in O, (iii) the negations bc
and bp do not appear in any clause of F, and (iv) both bc and bp appear in at
least one other clause of F but not together in any other clause of F. Binary core
removal replaces all clauses containing bc or bp with the non-tautological clauses
in{CVDVbcp | CVbc eF,DVbp € F}, where bcp is a fresh variable, and
modifies the objective function by adding —wbc — wbp + wbcp + w to it.

BCR is logged as a combination of the so-called intrinsic at-most-ones tech-
nique [IMM19, IBJ22] and BVE. Applying intrinsic at most ones on the variables b¢c
and bp introduces anew clause (b¢c Vbp Vbep) and adds —wbce —wbp +wbcp +w to
the objective. Our proof for intrinsic at most ones is the same as the one presented
in [BBN*23]. As this step removes bc and bp from the objective, both can now be
eliminated via BVE.

Stage 5: Constant Removal and Output.

After objective-centric preprocessing, the final objective-centric instance (F3, 0%) is
converted back to a WCNF instance. Before doing so, the constant term W5 of O3
is removed by introducing a fresh variable b"3, and setting F* = F3 A (b"3) and
O* = O3 — W5 + W3b"5. This step is straightforward to prove.

Finally, the preprocessor outputs the WCNF instance 7" = (F4, Ff) that
has F* as hard clauses. the set Ff of soft clauses consists of a unit soft clause

(€) of weight ¢ for each term c - £ in O* The preprocessor also outputs the
final proof of the fact that the minimum-cost of solutions to the pseudo-Boolean
formula PB(F°) under O is the same as that of PB(F*) under O%, i.e. that
opT(OBIMAXSAT(F ™)) = OPT(OB]MAXSAT(TPW)).
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3.2 Worked Example of Certified Preprocessing

Table 1: Example proof produced by a certifying preprocessor. The column (ID) refers to
constraint IDs in the pseudo-Boolean proof. The column (Step) indexes all proof logging
steps and is used when referring to the steps in the discussion. The letter w is used for the
witness substitution in redundance-based strengthening steps.

Step | ID Type | Justification Objective
1 D add x; +x, > 1 | input x1 + 2bq + 3by
2 2 addx; 21 | input X1+ 2by + 3by
3 (3) add x3+x4+b1 =1 input X1 + 2by + 3by
4 4) add x4 +x5+by > 1 input x1 + 2b1 + 3b,

Unit propagation: fix x, = 0, constraint (2)
5 (5) addx; =1 | (1)+(2) X1+ 2b1 + 3by
6 delete (1) | RUP x1 + 2b1 + 3b,
7 delete 2) | w: {x» — 0} X1+ 2b1 + 3by
Unit propagation; fix x1 = 1, constraint (5)
8 add —x; + 1toobj. | (5) 2by +3by + 1
9 delete 5) | w: {x3 — 1} 2b1 +3by + 1
BVE: eliminate x4
0 | @ |29 _ (3) + (4) 2b1 +3by +1
X3+b1+x5+by>1
11 delete (3) | w: {x4 — 0} 2b1 +3by + 1
12 delete (4) | w: {x4 — 1} 2b1 +3by + 1
Subsumed literal elimination: by
13 | () addby >1 | w:{by = 0,by =1} | 2by +3by+1
14 add —3b, to obj. | (7) 2b1 +1
15 8) | addxs+bi+x5=1 | (6)+(7) 2b1 + 1
16 delete (6) | RUP 2b1 +1
17 delete (7) | w: {by — 0} 2b1 +1
Remove objective constant
18 ) addbs; >1 | w:{bs—> 1} 2b1 +1
19 add b3 — 1 to obj. ) 2b1 + b3

We give a worked-out example of certified preprocessing of the instance
FW = (Fg,Fs) where Fy = {(x1 V x3), (X2)} and three soft clauses: (X1) with
weight 1, (x3 V x4) with weight 2, and (x4 V X5) with weight 3. The proof for one
possible execution of the preprocessor on this input instance is detailed in Table 1.

During Stage 1 (Steps 1-4 in Table 1), the core constraints of the proof are
initialized to contain the four constraints corresponding to the hard and non-unit
soft clauses of ¥ (IDs (1)—(4) in Table 1), and the objective to x +2b; +3by, where
b1 and b, are fresh variables added to the non-unit soft clauses of ™.

During Stage 2 (Steps 5-9), the preprocessor fixes x, = 0 via unit propagation
by removing x; from the clause (x1 V x3), and then removing the unit clause (x>).
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The justification for fixing x, = 0 are Steps 5-7. Next the preprocessor fixes x; = 1
which (i) removes the hard clause (x1), and (ii) increases the lower bound on the
optimal cost by 1. The justification for fixing x1 = 1 are Steps 8 and 9 of Table 1. At
this point—at the end of Stage 2—the working instance 7"V = (F},, F{) has F}, = {}
and Fé ={(x3 Vx4), (x4 V X5)}.

In Stage 3, the preprocessor converts its working instance into the objective-
centric representation (F, O) where F = {(x3 V X4 V b1), (x4 VX5 V b2)} and O =
2b1 + 3b; + 1, which exactly matches the core constraints and objective of the proof
after Step 9. Thus, in this instance, the conversion does not result in any proof
logging steps. Afterwards, during Stage 4 (Steps 10-17), the preprocessor applies
BVE in order to eliminate x4 (Steps 10-12) and SLE to fix b to 0 (Steps 13-17).
Finally, Steps 18 and 19 represent Stage 5, i.e., the removal of the constant 1 from
the objective. After these steps, the preprocessor outputs the preprocessed instance

?;DW = (Fg, Fg), where FII; ={(x3VXx5Vb1),(b3)} and Fg contains two clauses: (b1)
with weight 2, and (b3) with weight 1.

4 \Verified Proof Checking for Preprocessing Proofs

This section presents our new workflow for formally verified, end-to-end proof
checking of MaxSAT preprocessing proofs based on pseudo-Boolean reasoning;
an overview of this workflow is shown in Figure 2. To realize this workflow, we
extended the VErIPB tool and its proof format to support a new output section
for declaring (and checking) reformulation guarantees between input and output
PBO instances (Section 4.1); we similarly modified CaxePB [GMM™*24] a verified
proof checker to support the updated proof format (Section 4.2); finally, we built a
verified frontend, CaxePBwcnNr, which mediates between MaxSAT WCNF instances
and PBO instances (Section 4.3). Our formalization is carried out in the HOL4
proof assistant [SN08] using CakeML tools [GMKN17, MO14, TMK™*19] to obtain
a verified executable implementation of CAKEPBwcNE.

In the workflow in Figure 2, the MaxSAT preprocessor produces a reformulated
output WCNF together with a proof of equioptimality with the input WCNE. This
proof is elaborated by VErIPB and then checked by CaxePBwcnF, resulting in a
verified verdict—in case of success, the input and output WCNFs are equioptimal.
This workflow also supports verified checking of WCNF MaxSAT solving proofs
(where the output parts of the flow are omitted).

4.1 Output Section for Pseudo-Boolean Proofs

Given an input PBO instance (F, O), the VErIPB proof system as described in Sec-
tion 2.1 maintains the invariant that the core constraints C (and current objective)
are equioptimal to the input instance. Utilizing this invariant, the new output
section for VERIPB proofs allows users to optionally specify an output PBO instance
(F’, O’) at the end of a proof. This output instance is claimed to be a reformulation
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Figure 2: Workflow for end-to-end verified MaxSAT preprocessing proof checking.

of the input which is either: (i) derivable, i.e., satisfiability of F implies satisfiability
of F/, (ii) equisatisfiable to F, or (iii) equioptimal to (F, O). These are increasingly
stronger claims about the relationship between the input and output instances.
After checking a pseudo-Boolean derivation, VErIPB runs reformulation checking
which, e.g., for equioptimality, checks that C C F’, F’ C C, and that the respective
objective functions are syntactically equal after normalization; other reformulation
guarantees are checked analogously.

The VErIPB tool supports an elaboration mode [GMM*24], where in addition to
checking the proof it also converts it from augmented format to kernel format. The
augmented format contains syntactic sugar rules to facilitate proof logging for
solvers and preprocessors like MaxPrg, while the kernel format is supported by
the formally verified proof checker CakePB. The new output section is passed
unchanged from augmented to kernel format during elaboration.

4.2 Verified Proof Checking for Reformulations

There are two main verification tasks involved in extending CaxePB with support for
the output section. The first task is to verify soundness of all cases of reformulation
checking. Formally, the equioptimality of an input PBO instance fil, obj and its
output counterpart fml’, obj’ is specified as follows:

sem_output fiml obj None fml’ obj’ Equioptimal =
Yo. (3w. satisfies w fml A eval_obj obj w < v) <
(Fw'. satisfies w’ fml’ A eval_obj obj’ w’ < v)

This definition says that, for all values v, the input instance has a satisfying
assignment with objective value less than or equal to v iff the output instance
also has such an assignment; note that this implies (as a special case) that fml is
satisfiable iff fml’ is satisfiable. The verified correctness theorem for CAkePB says
that if CAkePB successfully checks a pseudo-Boolean proof in kernel format and
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prints a verdict declaring equioptimality, then the input and output instances are
indeed equioptimal as defined in sem_output.

The second task is to develop verified optimizations to speedup proof steps
which occur frequently in preprocessing proofs; some code hotspots were also
identified by profiling the proof checker against proofs generated by MaxPre.
Similar (unverified) versions of these optimizations are also used in VerIPB. These
optimizations turned out to be necessary in practice—they mostly target steps
which, when naively implemented, have quadratic (or worse) time complexity in
the size of the constraint database.

Optimizing Reformulation Checking. The most expensive step in reformulation
checking for the output section is to ensure that the core constraints C are included
in the output formula and vice versa (possibly with permutations and duplicity).
Here, CaxePB normalizes all pseudo-Boolean constraints involved to a canonical
form and then copies both C and the output formula into respective array-backed
hash tables for fast membership tests.

Optimizing Redundance and Checked Deletion Rules. A naive implementation
of these two rules would require iterating over the entire constraints database when
checking all subproofs in (1) for the right-hand-side constraints (C U D U {C})I,
U{O > O Iy}. An important observation here is that preprocessing proofs
frequently use substitutions w that only involve a small number of variables
(often a single variable, which in addition is fresh in the important special case of
reification constraints z < C encoding that z is true precisely when the constraint C
is satisfied). Consequently, most of the constraints (C U D U {C})I', can be skipped
when checking redundance because they are unchanged by the substitution.
Similarly, the constraint O > O, is expensive to construct when the objective O
contains many terms, but this construction can be skipped if no variables being
substituted occur in O. CakePB stores a lazily-updated mapping of variables to
their occurrences in the constraint database and the objective, which it uses to
detect these cases.

The occurrence mapping just discussed is crucial for performance due to the
frequency of steps involving witnesses for preprocessing proofs, but incurs some
memory overhead in the checker. More precisely, every variable occurrence in any
constraint in the database corresponds to exactly one ID in the mapping. Thus, the
overhead of storing the mapping is in the worst case quadratic in the number of
constraints, but it is still linear in the total space usage for the constraints database.

4.3 Verified WCNF Frontend

The CaxkePBwcenr frontend mediates between MaxSAT WCNF problems and
pseudo-Boolean optimization problems native to CakePB. Accordingly, the cor-
rectness of CAKEPBwcnF is stated in terms of MaxSAT semantics, i.e., the encoding,
underlying pseudo-Boolean semantics, and proof system are all formally verified.
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sat_hard w wfml = v C. mem (0,C) wfml = sat_clause w C
weight_clause w (n,C) £ if sat_clause w C then 0 else n
cost w wfml = sum (map (weight_clause w) wfml)

opt_cost wfml £ if ~3w. sat_hard w wfml then None
else Some (minset { cost w wfml | sat_hard w wfml })

Figure 3: Formalized semantics for MaxSAT WCNF problems.

+ wfml_to_pbf wfml = (obj,pbf) A F wfml_to_pbf wfml = (obj,pbf) A
satisfies w (set pbf) = sat_hard w wfml =
Jw’. sat_hard w’ wfml A Jw'. satisfies w’ (set pbf) A
cost w’ wfml < eval_obj obj w eval_obj obj w’ = cost w wfml

+ full_encode wfml = (obj,pbf) A full_encode wfml’ = (obj’,pbf’) A
sem_output (set pbf) obj None (set pbf’) obj’ Equioptimal =
opt_cost wfml = opt_cost wfml’

Figure 4: Correctness theorems for the WCNF-to-PB encoding.

In order to trust CakePBwcNE, one only has to carefully inspect the formal definition
of MaxSAT semantics shown in Figure 3 to make sure that it matches the informal
definition in Section 2.2. Here, each clause C is paired with a natural number
n, where n = 0 indicates a hard clause and when n > 0 it is the weight of C.
The optimal cost of a weighted CNF formula wfinl is None (representing o) if no
satisfying assignment to the hard clauses exist; otherwise, it is the minimum cost
among all satisfying assignments to the hard clauses.

There and Back Again. CakePBwcNr contains a verified WCNF-to-PB encoder
implementing the encoding described in Section 2.2. Its correctness theorems are
shown in Figure 4, where the two lemmas in the top row relate the satisfiability
and cost of the WCNF to its PB optimization counterpart after running wenf_to_pbf
(and vice versa), see Observation 1. Using these lemmas, the final theorem (bottom
row) shows that equioptimality for two (encoded) PB optimization problems can
be translated back to equioptimality for the input and preprocessed WCNFs.

Putting Everything Together. The final verification step is to specialize the
end-to-end machine code correctness theorem for CakePB to the new frontend.
The resulting theorem for CakePBwcnr is shown abridged in Figure 5; a detailed
explanation of similar CakeEML-based theorems is available elsewhere [GMM™*24,
THM23] so we do not go into details here. Briefly, the theorem says that whenever
the verdict string “s VERIFIED OUTPUT EQUIOPTIMAL” is printed (as a suffix) to
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+ cake_pb_wenf_run ¢l fs mc ms =
Jout err.
extract_fs fs (cake_pb_wenf_io_events ¢l fs) =
Some (add_stdout (add_stderr fs err) out) A
(length ¢l = 4 A isSuffix "s VERIFIED OUTPUT EQUIOPTIMAL\n" out =
Jwfml wfml’.
get_fml fs (el 1 cl) = Some wfml A get_fml fs (el 3 cl) = Some wfml’ A
opt_cost wfml = opt_cost wfiml’)

Figure 5: Abridged final correctness theorem for CAKEPBWCNE.

the standard output by an execution of CAkePBwcnF, then the two input files given
on the command line parsed to equioptimal MaxSAT WCNF instances.

5 Experiments

We upgraded the MaxSAT preprocessor MaxPre 2.1 [IB]22, ]BIJ23, KBSJ17] to Max-
PrE 2.2, which produces proof logs in the VErRIPB format [BMM*23]. MaxPre 2.2 is
available at the MaxPRre 2 repository [Maxa]. The generated proofs were elaborated
using VERIPB [Ver] and then checked by the verified proof checker CAKEPBwcNE.
As benchmarks we used the 558 weighted and 572 unweighted MaxSAT instances
from the MaxSAT Evaluation 2023 [Max23].

The experiments were conducted on 11th Gen Intel(R) Core(TM) i5-1145G7 @
2.60GHz CPUs with 16 GB of memory, a solid state drive as storage, and Rocky
Linux 8.5 as operating system. Each benchmark ran exclusively on a node and the
memory was limited to 14 GB. The time for MaxPre was limited to 300 seconds.
There is an option to let MaxPre know about this time limit, but we did not use this
option since MaxPre then decides which techniques to try based on how much
time remains. This would have made it very hard to get reliable measurements of
the overhead when proof logging is switched on in the preprocessor. The time
limits for both VErIPB and CakePBwcNF were set to 6000 seconds to get as many
instances checked as possible.

The main focus of our evaluation was the default setting of MaxPre, which
does not use some of the techniques mentioned in Section 3 (or Appendix A). We
also conducted experiments with all techniques enabled to check the correctness
of the proof logging implementation for all preprocessing techniques. The data
and source code from our experiments can be found in [IOT*24].

The goal of the experiments was to answer the following questions:

RQ1. How much extra time is required to write the proof for the preprocessor?
RQ2. How long does proof checking take compared to proof generation?

To answer the first question, in Figure 6 we compare MaxPre with and
without proof logging. In total, 1081 instances were successfully preprocessed by
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Figure 6: Proof logging overhead for Max-  Figure 7: MaxPRe vs. combined proof
PrE. checking running time.

MaxPre without proof logging. With proof logging enabled, 8 fewer instances
were preprocessed due to either time- or memory-outs. For the successfully
preprocessed instances, the geometric mean of the proof logging overhead is
46% of the running time, and 95% of the instances were preprocessed with proof
logging in at most twice the time required without proof logging.

Our comparison between proof generation and proof checking is based on the
1073 instances for which preprocessing with proof logging was successful. Out
of these, 1021 instances were successfully checked and elaborated by VeriPB. For
991 instances the verdicts were confirmed by the formally verified proof checker
CakePBwcnF, with the remaining instances being time- or memory-outs. This
shows the practical viability of our approach, as the vast majority of preprocessing
proofs were checked within the resource limits.

A scatter plot comparing the running time of MaxPre with proof logging
enabled against the combined checking process is shown in Figure 7. For the
combined checking time, we only consider the instances that have been successfully
checked by CakePBwcenr. In the geometric mean, the time for the combined verified
checking pipeline of VErIPB elaboration followed by CakePBwcnr checking is 113x
the preprocessing time of MaxPre. A general reason for this overhead is that
the preprocessor has more MaxSAT application-specific context than the pseudo-
Boolean checker, so the preprocessor can log proof steps without performing the
actual reasoning while the checker must ensure that those steps are sound in an
application-agnostic way. An example for this is reification: as the preprocessor
knows its reification variables are fresh, it can easily emit redundance steps that
witness on those variables; but the checker has to verify freshness against its
own database. Similar behaviour has been observed in other applications of
pseudo-Boolean proof logging [GMNO22, HOGN24].
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To analyse further the causes of proof checking overhead, we also compared
VERIPB to CakePBwent. The checking of the elaborated kernel proof with CAxePB-
WCNF is 6.7x faster than checking and elaborating the augmented proof with
VErIPB. This suggests that the bottleneck for proof checking is VeriPB; VErIPB
without elaboration is about 5.3x slower than CAkePBwcNF. As elaboration is a
necessary step before running CakePBwcnF, improving the performance of VeriIPB
would benefit the performance of the pipeline as a whole. One specific feature
that seems desirable would be to augment RUP rule applications with LRAT-style
hints [CHH*17], so that VEriPB would not need to perform unit propagation
to elaborate RUP steps to cutting planes derivations. Though these types of
engineering challenges are important to address, they are beyond the scope of the
current paper and we have to leave them as future work.

6 Conclusion

In this work, we show how to use pseudo-Boolean proof logging to certify
correctness of the MaxSAT preprocessing phase, extending previous work for the
main solving phase in unweighted model-improving solvers [VDB22] and general
core-guided solvers [BBN*23]. As a further strengthening of previous work, we
present a fully formally verified toolchain which provides end-to-end verification
of correctness.

In contrast to SAT solving, there is a rich variety of techniques in maximum
satisfiability solving, and it still remains to design pseudo-Boolean proof logging
methods for general, weighted, model-improving MaxSAT solvers [ES06, LP10,
PRB18] and implicit hitting set (IHS) MaxSAT solvers [DB11, DB13] with abstract
cores [BBP20]. Nevertheless, our work adds further weight to the conclusion that
pseudo-Boolean reasoning seems like a very promising foundation for MaxSAT
proof logging. We are optimistic that this work is another step on the path towards
general adoption of proof logging in the context of SAT-based optimization.
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Appendix A Complete Overview of Proof Logging for
MaxSAT Preprocessing

In this appendix, we provide a complete overview of proof logging for the
preprocessing techniques implemented by MaxPre. As we already presented
proof logging for bounded variable elimination, subsumed literal elimination,
label matching and binary core removal in Section 3 of the paper, we do not present
those techniques here. In addition, we do not include intrinsic at-most-ones (even
though implemented in MaxPre), as it is already discussed in [BBN*23].

A.1 Fixing Variables

Many of the preprocessing techniques can fix variables (or literals) to either 0 or 1.
We describe here the generic procedure that is invoked when a variable is fixed.
Assume that a preprocessing technique decides to fix ¢ = 1 for a literal ¢. Then, in
the preprocessor, each clause C V { is replaced by clause C, i.e., falsified literal ¢ is
removed. Additionally, each clause C V { is removed (as they are satisfied when
{=1).

In the proof, we do the following. First, the technique that fixes ¢ = 1, ensures
that constraint ¢ > 1 is in the core constraints of the proof. It may be that { > 1is
already in the core constraints of the proof (i.e. instance has a unit clause (¢)), or it
may be that ¢ > 1 needs to be introduced as a new constraint. The details on how
¢ > 11is introduced depends on the specific technique that is fixing £ = 1. Now,
assuming ¢ > 1 is in the core constraints, the following procedure is invoked.

(1) If £ or £ appears in the objective function, the objective function is updated.

(2) For each clause C V ¢, the constraint PB(C) is introduced as a sum of PB(C V ¢)
and ¢ > 1.

(3) Each constraint PB(C V ) is deleted (as a RUP constraint).

(4) Finally, the core constraint £ > 1 is deleted last with witness {¢ — 1}.

A.2 Preprocessing on the Initial WCNF Representation

We explain the preprocessing techniques that can be applied during preprocessing
on the WCNF representation, detailing especially how the different types of clauses
are handled. The preprocessing techniques applied on the WCNF representation
only modify a clause C by either removing a literal £ from C or removing C entirely.
With this intuition, given an input WCNF instance " = (Fy, Fs) and a working

instance ﬁw = (F}i, Fé) each clause in 7’1W is one of the following three types:
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(1) A hard clause C € F%I that is a subset or equal to a hard clause C C C°"8 € Fy
of FW.

(2) An originally unit soft clause, i.e., a soft clause C € F; that is equal to a unit soft
clause in Fg.

(3) An originally non-unit soft clause, i.e., C € Fg that is a subset or equal to a
non-unit soft clause C € C°8 € Fg of FW.

With this we next detail how the preprocessing rules permitted on the WCNF
representation are logged. In the following, we assume a fixed working WCNF
instance.

Duplicate Clause Removal.

In the paper we discussed how to log the removal of two duplicate clauses C and
D when: (i) both are hard, or (ii) C is hard and D is an originally non-unit soft
clause. Here we detail the remaining cases.

Assume first that both C and D are originally non-unit duplicate soft clauses
with weights w® and wP, respectively. Then the proof has the core constraints
PB(C V bc) and PB(D V bp) and its objective the terms w bc and wPbp. The
removal of D is logged as follows.

(1) Introduce the constraints: be + bp > 1 with the witness {bc — 0} and
bc + bp = 1, with the witness {bp — 0} to the core set. These encode b¢ = bp.

(2) Update the objective by adding —w“b¢ + wCbp to it, conceptually increasing
the coefficient of bp by wC.

(3) Remove the constraints introduced in step (1) using the same witnesses.
(4) Remove the (RUP) constraint PB(D V bc¢).

If C = (¢) is originally a unit soft clause but D = (¥) is originally a non-unit soft
clause, then the core constraints of the proof include constraint PB(¢ V bp) and
the objective of the proof the terms w“¢ and wPbp. The removal of D is logged
similarly to the previous case with the literal bc replaced with ¢.

The case of two duplicate originally unit soft clauses does not require proof
logging since the corresponding terms in the objective are automatically summed.

Tautology Removal.

If a clause is a tautology, it is also a RUP clause. Thus, a tautological hard clause
is simply deleted. The removal of a tautological soft clause additionally requires
updating the objective.

More specifically, assume C is a tautological soft clause of weight w®. Then C
is originally non-unit, so the proof has a constraint PB(C V bc¢) and its objective the
term w bc. The removal of C is logged with the following steps:
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(1) Delete the (RUP) constraint PB(C V b¢).

(2) Introduce the constraint be > 1 with witness {bc — 0} and move the new
constraint to the core set.

ate the objective by adding —w™b¢ to it.
(3) Upd he objective by adding Cp i

(4) Remove the constraint introduced in step (2) with the same witness.

Unit Propagation of Hard Clauses.

If the instance contains a (hard) unit clause (1), the literal [ is fixed to 1 with the
method of fixing variables described in Section A.1.

Removal of Empty Soft Clauses.

If the instance contains an empty soft clause C—either as input or as a consequence
of e.g., unit propagation—it is removed and the lower bound increased by its
weight wC. If C was originally non-unit, the core constraints of the proof contain
the constraint bc > 1 and the objective the term w“b¢. The removal of C is logged
by the following steps:

(1) Update the objective by adding ~w b¢ + w®.
(2) Delete the constraint b¢ > 1 with the witness {b¢c — 1}.

If C = (¢) is an originally unit soft clause the objective is updated in conjunction
with the literal ¢ getting fixed to 0, as described in Section A.1. Thus, no further
steps are required.

Blocked Clause Elimination (BCE) [JBH10].

Our implementation of BCE considers a clause C V ¢ blocked (on the literal ¢) if for
each clause D V ¢ there is a literal £’ € D for which ¢’ € C.

When preprocessing on the objective-centric representation, BCE considers
only literals ¢ for which neither ¢ nor ¢ appears in the objective function. During
initial WCNF preprocessing stage, there are no requirements for literal . (Notice
that whenever there is a unit clause (?), C Vv {is not blocked on the literal ¢.)

The removal of a blocked clause is logged as the deletion of the corresponding
constraint PB(C V ¢) with the witness {¢{ — 1}. If C V { is an (originally non-unit)
soft clause, the objective function is also updated exactly as with tautology removal.

Subsumption Elimination.

A clause D is subsumed by the clause C if C € D. Whenever the subsuming clause
C is hard, D is removed as a RUP clause. If D is soft, the objective function is
updated exactly as with tautology removal.
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A.3 Preprocessing on Objective-Centric Representation

We detail how the preprocessing techniques that are applied on the objective-
centric representation (F, O) of the working instance are logged. In addition to
these, the preprocessor can also apply the techniques detailed in Section A.2.

TrimMaxSAT [PRB21].

The TrimMaxSAT technique heuristically looks for a set of literals N s.t. every
solution p to F assigns each ¢ € N to 0, or more formally, F entails the unit
clause (¢). All such literals are fixed by the generic procedure (recall Section A.1).
The literals to be fixed are identified by iterative calls to an (incremental) SAT
solver [ES03, MLM21] under different assumptions.

In order to log the TrimMaxSAT technique we log the proof produced by each
SAT solver call into the derived set of constraints in our PB proof. After the set
N is identified, we make |N| extra SAT calls, one for each £ € N. Each call is
made assuming the value of £ to 1. Due to the properties of TrimMaxSAT and
SAT-solvers, the result will be UNSAT, after which ¢ > 1 will be RUP w.r.t to
the current set of core and derived constraints. As such it is added and moved
to core in order to invoke the generic variable fixing procedure. Finally, when
TrimMaxSAT will not be used any more, all constraints added to the derived set by
the SAT solver are removed.

Self-Subsuming Resolution (SSR) [EB05, 0GMS02].

Given clauses C V [ and D V ¢ such that C subsumes D and / is not in the objective,
SSR substitutes D for D V {. The proof has two steps: (1) Introduce PB(D) as a new
RUP constraint. (2) Remove PB(D V ) as it is RUP.

Group-Subsumed Label Elimination (GSLE) [KBSJ17].

Let b be an objective variable that has the coefficient ¢’ in O, and L a set of
objective variables such that each b; € L has coefficient ¢’ in O. Assume then that
(i) ¢ > ¥,cp €', (ii) the negation of b or any variables in L do not appear in any
clauses, and (iii) {C | b € C} € {D | 3b € L : b € D}. Then, an application of GSLE
fixes b = 0. To prove an application of GSLE, we introduce the constraint b > 1
with the witness {b — 0,b; — 1| b; € L}, and invoke the generic variable fixing
procedure detailed in Section A.1 to fix b = 0.

Bounded Variable Addition (BVA) [MHB13].

Consider a set of literals Mj; and a set of clauses M. s C F, such that for all
{ € Mjy and C € Mg, each clause (C \ My; U {£}) is either in F or a tautology.
Then an application of BVA adds the clauses Sy = {({ Vx) | | € My} and
S+ ={(C\ M) U{x} | C € My}, and removes the clauses C \ M;.



A. Complete Overview of Proof Logging for MaxSAT Preprocessing 237

An application of BVA is logged as follows: (1) Add the constraint PB(C) for
each C € Sz with the witness {x — 0}. (2) Add the constraint PB(C) for each
C € S, with the witness {x — 1}. (3) Delete each constraint PB(C) for C € M as
a RUP constraint.

Structure-based Labelling [KBSJ17].

Given an objective variable b and a clause C that is blocked on the literal ¢, when
b =1, an application of structure-based labelling replaces C with C V b. The proof
is logged as follows: (1) Introduce the constraint PB(C V b) that is RUP. (2) Delete
the constraint PB(C) with the witness {{ — 1}.

Failed Literal Elimination (FLE) [Fre95, LBO1, ZM88].

A literal ¢ is failed (denoted ¢ + 1) if setting £ = 1 allows unit propagation to
derive a conflict (i.e., an empty clause). An application of FLE fixes { = 0 when { is
a failed literal for which ¢ is not in the objective.

In addition to standard FLE, MaxPre implements an extension that also fixes a

literal ¢ = 0if: (i) {isnot in the objective function (ii) each clause in F that contains ¢
also contains some other literal ¢’ that is implied by ¢ by unit propagation (denoted
t+, 1), ie., setting { = 1 also fixes {’ = 1 after a sequence of unit propagation
steps is applied.

Logging FLE. For a failed literal { the constraint ¢ > 1is RUP. For the extended
technique the constraint ¢ > 1 is introduced with the witness {¢ — 0}. Afterwards
the generic procedure for fixing literals described in Section A.1 is invoked.

Implied Literal Detection.

If both a literal ¢; and its negation ¢; imply another literal £, by unit propagation
(i.e., propagating either ¢ = 1 or ¢ = 0 also propagates ¢, = 1), the preprocessor
fixes b, = 1.

As an extension to this technique, the preprocessor also fixes £, = 1 if (i) &
implies ¢, by unit propagation, (ii) neither ¢; nor ¢, appear in the objective function
in either polarity, and (iii) each clause containing ¢, also contains some other literal
¢ that is implied by ¢; by unit propagation.

Logging Implied Literals. For some intuition, note that ¢; + _ £ does not in
general imply £, F. {1. Thus, there is no guarantee that £, > 1 would be RUP.
Given that 4 + £ and 2 k.. {2, the proof is instead logged as follows:

(1) Add ¢1 + 6, > 1and & + 6, > 1 that are both RUP.
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(2) Introduce the constraint ¢, > 1 by divide the sum of constraints introduced in
step (1) by 2. Move the new constraint to the core constraints.

(3) Delete the constraints introduced in step (1).
(4) Invoke the generic procedure detailed in Section A.1 to fix ¢, = 1.

The extended technique is logged by first adding the constraint ¢; + ¢, > 1
with the witness {{, — 1}. For some intuition, if the constraint is falsified, the
assumptions guarantee that ¢’ = 1 so the value of {, can be flipped without
falsifying other constraints.

Equivalent Literal Substitution [Bra04, Li00, VGO5].

If6 + 6 and 2 F. {5, the equivalent literal technique substitutes ¢; with f,. As
an extension to this technique, the same substitution is applied also in cases where
the following three conditions hold: (i) #1 + £, (ii) neither ¢; nor ¢, appear in the
objective function in either polarity, and (iii) £, implies some other literal in each
clause containing ¢, by unit propagation.

Logging Equivalent Literals. An application of equivalent literal substitution is
logged as follows.

(1) Introduce the clauses 2 + 6 >1and & + €, > 1 as RUP. In the case of the
extended technique, {; + {2 > 1 is added with the witness {, — 0}.

(2) For each clause C V ¢, replace PB(C V ¢;) with PB(C V £,) with the RUP rule.
(3) For each clause C V {1, replace PB(C v 1) with PB(C V {5) with the RUP rule.

(4) If 4 or 0 appear in the objective function, replace them with ¢, and 0,
respectively.

(5) Remove the constraints introduced in step (1).

Hardening [ABGL12, IBJ22, MHM12].

Given an upper bound U B for the optimal cost of (F, O) and an objective variable
b that has a coefficient w” > UB in O, hardening fixes b = 0. Proof logging for
hardening has been previously studied in [BBN*23]. In [BBN*23], however, the
hardening is done with the presence of so-called objective-improving constraints,
i.e., constraints of form O < UB — 1, where UB is the cost of the best currently
known solution. In the context of preprocessing where the preprocessor should
provide an equioptimal instance as an output, introducing objective-improving
constraints to the instance is not possible. Instead, given a solution p to F with cost
O(p) = UB and an objective variable b with w” > UB, we introduce the constraint

b > 1 with p as the witness and then invoke the generic procedure for fixing
variables, as detailed in Section A.1.
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A.4 Conversion to WCNF — Renaming Variables

In the final stage of preprocessing, MaxPRre converts the instance to WCNEF. The
conversion removes the objective constant as described in Section 3.1 of the main
paper. Additionally, the conversion ‘renames’ (some of) the variables.

There are two reasons for renaming variables. The first is to remove any gaps
in the indexing of variables. In WCNE, variables are named with integers. During
preprocessing, some variables in the instance might have been eliminated from
the instance. At the end MaxPre compacts the range of variables to be continuous
and start from 1. The second reason for renaming variables is to sync names
between WCNF and the pseudo-Boolean proof. In the pseudo-Boolean proofs, the
naming scheme of variables is different, valid variable names include, for instance,
x1, x2, y15, _b4. When a WCNF instance is converted to a pseudo-Boolean
instance, the variable i of the WCNF instance is mapped to the variable xi of the
pseudo-Boolean instance. For jth non-unit soft clause of a WCNF instance, the
conversion introduces a variable _bj. During preprocessing, the ‘proof logger’
of MaxPrEe takes care of mapping MaxPre variables to correct variable names in
proof. In the end, however, MaxPre produces an output WCNF file, and at this
point, each variable i of WCNF instance should again correspond to variable xi of
proof. Thus, for example, all _b-variables are replaced with x-variables.

Logging variable naming. Assume that the instance has a set of variables V
and for each x € V, we wish to use name f(x) instead of x in the end. We do
proof logging for variable renaming in two phases. (1) For each x € V, introduce
temporary variable t,, set x = t, and then ‘move’ all the constraints and the
objective function to the temporary namespace. The original constraints and
encodings for x = t, are then removed. (2) For each x € V, introduce f(x) = t,,
and ‘move’ the constraints and the objective to the final namespace. The temporary
constraints and encodings are then removed.

A.5 On Solution Reconstruction and Instances Solved During
Preprocessing

Finally, we note that while the focus of this work has been on certifying the
preservation of the costs of solutions, in practice our certified preprocessor also
allows reconstructing a minimum-cost solution to the input. More precisely,
consider an input WCNF instance ", a preprocessed instance ﬁ,w, and an
optimal solution p, to ﬁw. Then MaxPRre can compute an optimal solution p to
FW in linear time with respect to the number of preprocessing steps performed.
More details can be found in [KBSJ17].

Importantly, the optimality of a reconstructed solution can be easily verified
without considering how the reconstruction is implemented in practice; given that
we have verified the equioptimality of #" and ¥,", and that p, is an optimal
solution to ?},W, the optimality of reconstructed p to 7" can be verified by checking
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that (i) p indeed is a solution to ¥" (ii) The cost of p w.r.t. F" is equivalent to the
cost of p, w.rt. 7.

On a related note, MaxPRrE can actually solve some instances during preprocess-
ing, either by: (i) determining that the hard clauses do not have solutions, or (ii)
computing an optimal solution to some working instance. In practice (i) happens
by the derivation of the unsatisfiable empty (hard) clause and (ii) by the removal of
every single clause from the working instance. We have designed the preprocessor
to always terminate with an output WCNF and a proof of equioptimality rather
than producing different kinds of proofs.

If an empty hard clause is derived, the preprocessing is immediately terminated
and an output WCNF instance containing a single hard empty clause produced.
Additionally, an empty constraint 0 > 1 is added to the proof and all other core
constraints deleted by the RUP rule. Notice how the proof of equioptimality
between the input and output can in this case be seen as a proof of infeasibility of
the input hard clauses.

If all clauses are removed from the working instance, MaxPRE terminates and
outputs the instance obtained after constant removal (recall Stage 5 in Section 3)
on an instance without other clauses.
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