
Certified CNF Translations for Pseudo-Boolean Solving (Extended Abstract)∗

Stephan Gocht1,2 , Ruben Martins3 , Jakob Nordström2,1 and Andy Oertel1,2
1Lund University

2University of Copenhagen
3Carnegie Mellon University

{stephan.gocht, andy.oertel}@cs.lth.se, jn@di.ku.dk, rubenm@andrew.cmu.edu

Abstract
The dramatic improvements in Boolean satisfiabil-
ity (SAT) solving since the turn of the millennium
have made it possible to leverage conflict-driven
clause learning (CDCL) solvers for many combi-
natorial problems in academia and industry, and
the use of proof logging has played a crucial role
in increasing the confidence that the results these
solvers produce are correct. However, the fact that
SAT proof logging is performed in conjunctive nor-
mal form (CNF) clausal format means that it has
not been possible to extend guarantees of correct-
ness to the use of SAT solvers for more expressive
combinatorial paradigms, where the first step is an
unverified translation of the input to CNF.
In this work, we show how cutting-planes-based
reasoning can provide proof logging for solvers that
translate pseudo-Boolean (a.k.a. 0-1 integer linear)
decision problems to CNF and then run CDCL. We
are hopeful that this is just a first step towards pro-
viding a unified proof logging approach that will
extend to maximum satisfiability (MaxSAT) solv-
ing and pseudo-Boolean optimization in general.

1 Introduction
Boolean satisfiability (SAT) solving has witnessed striking
improvements over the last decades, starting with the intro-
duction of conflict-driven clause learning (CDCL) [Marques-
Silva and Sakallah, 1999; Moskewicz et al., 2001], and this
has led to a wide range of applications to large-scale prob-
lems in both academia and industry [Biere et al., 2021]. The
conflict-driven paradigm has also been successfully exported
to other areas such as maximum satisfiability (MaxSAT),
pseudo-Boolean (PB) solving, constraint programming (CP),
and mixed integer programming (MIP). As combinatorial
solvers are used to attack ever more challenging problems, the
question arises whether we can trust the results they produce.
Sadly, it is well-documented that state-of-the-art CP and MIP
solvers can return incorrect solutions [Akgün et al., 2018;

∗This is an abbreviated version of a paper published in the Pro-
ceedings of the 25th International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT ’22).

Cook et al., 2013; Gillard et al., 2019]. For SAT solvers,
however, analogous problems [Brummayer et al., 2010] have
been successfully addressed by the introduction of proof log-
ging, requiring that solvers should be certifying [McConnell
et al., 2011] in the sense that they output machine-verifiable
proofs of their claims.

A number of different proof formats have been developed
for SAT solving, and since 2013 the SAT competitions require
solvers to be certifying, with DRAT [Wetzler et al., 2014] es-
tablished as the standard format. Such proof logging would
be highly desirable also for stronger combinatorial solving
paradigms, but while methods such as DRAT are extremely
powerful in theory, the limitation to a clausal format makes
it hard to capture more advanced forms of reasoning con-
cisely. A more fundamental concern is how these proof log-
ging methods should deal with input that is not presented
in conjunctive normal form (CNF). One way to address this
problem could be to extend the DRAT format [Baek et al.,
2021], but another approach pursued in recent years is to de-
velop stronger proof logging methods based on more expres-
sive formalisms, such as binary decision diagrams [Barnett
and Biere, 2021], algebraic reasoning [Kaufmann et al., 2022;
Kaufmann and Biere, 2021], pseudo-Boolean reasoning [Elf-
fers et al., 2020; Gocht et al., 2020; Gocht and Nordström,
2021; Bogaerts et al., 2022], and integer linear program-
ming [Cheung et al., 2017; Eifler and Gleixner, 2021].

In this work, we consider the use of CDCL for pseudo-
Boolean solving, where the pseudo-Boolean input (i.e., a 0-1
integer linear program) is translated to CNF and passed to a
SAT solver, as pioneered in MINISAT+ [Eén and Sörensson,
2006]. While DRAT proof logging can certify unsatisfiability
of the translated formula, it cannot prove correctness of the
translation, not only since there is no known method of car-
rying out PB reasoning efficiently in DRAT (except for con-
straints with small coefficients [Bryant et al., 2022]), but also,
and more fundamentally, because the input is not in CNF.

We demonstrate how to instead use the cutting planes proof
system [Cook et al., 1987], enhanced with a rule for in-
troducing extension variables [Gocht and Nordström, 2021],
to show that the CNF formula resulting from the transla-
tion can be derived from the original pseudo-Boolean con-
straints. Since this method is a strict extension of DRAT ,
we can combine the proof for the translation with the SAT
solver DRAT proof log. In this way, we achieve end-to-end

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6436



Figure 1: Proof logging workflow for pseudo-Boolean solving with
our contribution highlighted in blue boldface.

verification of the pseudo-Boolean solving process using
the proof checker VERIPB [Gocht and Nordström, 2021;
Bogaerts et al., 2022] as illustrated in Figure 1.

One challenge when certifying PB-to-CNF translations
is that there are many different ways of encoding pseudo-
Boolean constraints into CNF (as catalogued in, e.g., [Philipp
and Steinke, 2015]), and it is time-consuming (and error-
prone) to code up proof logging for every single encoding.
However, many of the encodings can be understood as first
designing a circuit to evaluate whether the PB constraint is
satisfied, and then writing down a CNF formula enforcing the
computation of this circuit. An important part of our con-
tribution is that we develop a general proof logging method
for a wide class of such circuits. The PB format makes it
easy to derive 0-1 linear inequalities describing the circuit
computations, and once this has been done the clauses in the
CNF translation can simply be obtained by so-called reverse
unit propagation (RUP) [Goldberg and Novikov, 2003; Van
Gelder, 2008], obviating the need for complicated syntactic
proofs. We apply this method to the sequential counter [Sinz,
2005], totalizer [Bailleux and Boufkhad, 2003], generalized
totalizer [Joshi et al., 2015] and binary adder network [Eén
and Sörensson, 2006; Warners, 1998] encodings, and report
results from an empirical evaluation of the efficiency of proof
generation and verification.

This paper is only an abbreviated version of the SAT ’22
conference paper [Gocht et al., 2022]. We refer the reader
to the SAT ’22 conference paper or the upcoming full-length
version for all the details omitted below.

2 Example: Sequential Counter Encoding
In the interest of brevity, let us give a concrete example of
how to certify CNF translations of cardinality constraints us-
ing the sequential counter encoding [Sinz, 2005], introduc-
ing the necessary terminology and notation as we go along
(and referring the reader to, e.g., [Buss and Nordström, 2021;
Gocht and Nordström, 2021] for more detailed background).

A literal ℓ over a Boolean variable x is x itself or its nega-
tion x, where variables can be assigned values 0 (false) or
1 (true), so that x = 1− x. A pseudo-Boolean (PB) con-
straint C is a 0-1 linear inequality

∑
iaiℓi ≥ A, which,

without loss of generality, can be assumed to be in nor-
malized form [Barth, 1995]; i.e., all literals ℓi are over dis-
tinct variables and the coefficients ai and the degree (of fal-
sity) A are non-negative integers. We use equality constraints∑

iaiℓi = A as syntactic sugar for the corresponding pair
of inequalities. A pseudo-Boolean formula is a conjunction
of PB constraints. A cardinality constraint is a PB constraint
with all coefficients equal to 1. If the degree is also 1, then the

constraint ℓ1 + · · ·+ ℓk ≥ 1 is equivalent to the (disjunctive)
clause ℓ1 ∨ · · · ∨ ℓk, and so a CNF formula is just a special
case of a pseudo-Boolean formula.

To convert a cardinality constraint
∑n

i=1 ℓi ▷◁ k (where
▷◁ denotes ≥, ≤, or =) to CNF using the sequential counter
encoding, one constructs a circuit summing up the input bits
one by one, with intermediate variables si,j for i ∈ [n] and
j ∈ [i] being true if and only if

∑i
t=1 ℓt ≥ j holds. The

variables si,j can be computed as in Figure 2a by the formula

si,j ↔ ((ℓi ∧ si−1,j−1) ∨ si−1,j) (1)

saying that si,j is true either if the first i − 1 literals add
up to j − 1 and the ith literal is true, or if already the first
i− 1 literals add up to j. The circuit constructed in this way,
shown in Figure 2b, can be partitioned into n blocks, where
the ith block computes si,j for j ∈ [i] from the ith input
bit ℓi and the variables si−1,j in the previous block. One then
obtains the CNF encoding by translating each component in
Figure 2a (as described by Equation (1)) to the clausal con-
straints

ℓi + si−1,j−1 + si,j ≥ 1 (2a)
si−1,j + si,j ≥ 1 (2b)

ℓi + si−1,j + si,j ≥ 1 (2c)
si−1,j−1 + si,j ≥ 1 (2d)

for i ∈ [n] and j ∈ [i] (where we write these disjunctive
clauses in the pseudo-Boolean form that will be used in our
proofs). For all i one sets si,0 = 1, so that constraint (2a)
simplifies to ℓi + si,1 ≥ 1 and constraint (2d) is satisfied
and disappears. In the same way, si−1,i = 0 simplifies (2c)
to ℓi + si,i ≥ 1, and (2b) is satisfied and disappears. Once
clauses (2a)–(2d) have been generated for all circuit compo-
nents, one obtains a greater-than-or-equal-to-k constraint by
adding the unit clause sn,k ≥ 1. Analogously, a less-than-or-
equal-to-k constraint is enforced using the clause sn,k+1 ≥ 1.

Our goal is to produce a cutting planes proof that the re-
sulting CNF formula correctly encodes the original cardinal-
ity constraint. Since si,j is true if and only if

∑i
t=1 ℓt ≥ j

holds, for all i ∈ [n] we should be able to deduce∑i
j=1ℓj =

∑i
j=1si,j . (3)

However, the sequential counter circuit computes the vari-
ables si,j in the ith block using only the variables si−1,j from
the previous block and the literal ℓi, and so if we only reason
locally about the ith block what we can derive is the equality

ℓi +
∑i−1

j=1si−1,j =
∑i

j=1si,j . (4)

If we look at the variables on wires entering and exiting the
ith block of the circuit, we see that Equation (4) specifies
that the sum of the inputs is equal to the sum of the outputs.
This means that if we traverse the blocks and do a telescoping
sum, we can easily derive (3). From this, in turn, it is clear
that a constraint on the input variables

∑n
j=1ℓi ▷◁ k implies

the same constraint on the output variables, and formally this
can be obtained by one final telescoping sum step combining∑n

j=1ℓi ▷◁ k and
∑n

j=1ℓi =
∑n

j=1sn,j to get∑n
j=1sn,j ▷◁ k . (5)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6437



𝑠𝑖−1, 𝑗

𝑠𝑖−1, 𝑗−1

ℓ𝑖

𝑠𝑖, 𝑗

&

≥ 1

(a) Logic circuit for single component. (b) Circuit for 4 input literals counting up to 4.

Figure 2: Circuit representation of the sequential counter encoding.

Another important property of the variables si,j is that they
do not just take any values satisfying (4), but are ordered—
since si,j encodes

∑i
t=1 ℓt ≥ j, it follows that si,j cannot

be true unless also si,j′ is true for all j′ < j. This can be
expressed by ordering constraints

si,j − si,j+1 ≥ 0 i ∈ [n] , j ∈ [i− 1] , (6)

which are semantically implied by the circuit encoding.
Taking this view of the circuit encoding, the task of cer-

tifying the correctness of the CNF translation becomes sur-
prisingly simple. If we can derive the pseudo-Boolean
constraints (4)–(6), then it can be verified that the clauses
of the sequential counter encoding (i.e., (2a)–(2d) plus
sn,k+1 ≥ 1 and/or sn,k ≥ 1) all follow by reverse unit prop-
agation, meaning that the clauses can just be claimed as true
with the proof left to the proof checker. This is so since when
asserting the clauses to false, the ordering constraints (6) will
propagate enough variables si,j for (4) to be falsified.

To see how to obtain the constraints (4)–(6), note that we
already discussed above how to derive (5) by a telescop-
ing sum over constraints (4), which is straightforward to do
with standard cutting planes rules. To get constraints on the
form (4), we can first use the redundance-based strengthen-
ing rule in [Gocht and Nordström, 2021] to derive the reified
constraints

j · si,j + ℓi +
∑i−1

j=1si−1,j ≥ j (7a)

(i− j + 1) · si,j + ℓi +
∑i−1

j=1si−1,j ≥ i− j + 1 (7b)

(which together can be seen to enforce the equivalence si,j ⇔
ℓi +

∑i−1
j=1si−1,j ≥ j). If we do this in increasing order

for i and j, then si,j is a fresh variable for each new pair of
constraints (7a)–(7b), which can be shown to imply that these
are valid derivation steps. From the constraints (7a)–(7b) we
can then derive (4) and (6) (though these steps are slightly
trickier, and we refer to [Gocht et al., 2022] for the details).

The fact that we can perform all the derivations on 0-1 lin-
ear inequalities using cutting planes reasoning make the steps

very efficient (and quite elegant). Although the final con-
straints we need to derive to prove the correctness of the CNF
translation are all clausal, it turns out to be very helpful to be
able to use 0-1 inequalities in intermediate steps.

3 Experimental Evaluation
To evaluate the proof logging methods developed in this pa-
per, we have implemented certified translations to CNF for
the sequential counter, totalizer, generalized totalizer, and bi-
nary adder network encodings in the tool VERITASPBLIB.
This tool takes a pseudo-Boolean formula in OPB for-
mat [Roussel and Manquinho, 2016] and returns a CNF trans-
lation together with a proof logging certificate. We have em-
ployed the verifier VERIPB [Gocht and Nordström, 2021;
Bogaerts et al., 2022] to check the certificate returned by
VERITASPBLIB, and have used the SAT solver KISSAT (http:
//fmv.jku.at/kissat/) in a lightly modified version outputting
DRAT proofs in pseudo-Boolean format, to solve the CNF
formula. Finally, we have conjoined the certificates from the
CNF translation and the SAT solving and verified the end-to-
end pipeline with VERIPB.

Our evaluation aimed to answer the following questions:
1. Can we use our end-to-end framework to verify the re-

sults of CDCL-based pseudo-Boolean solving, and how
efficient is the verification?

2. How long does the verification of the proof take when
compared to the translation of the PB formula to CNF?

3.1 End-to-End Solving and Verification
We evaluated VERITASPBLIB on 1,534 formulas from the
PB Evaluation 2016. Table 1 shows how VERITASPBLIB
can be used to generate a CNF formula that can be solved by
KISSAT and verified by VERIPB. For instances with cardi-
nality constraints (Card), we use the sequential counter and
totalizer encodings to translate those constraints to CNF. For
instances with general PB constraints (PB), our translations
use the adder network and generalized totalizer (GTE) encod-
ings. Finally, for instances with both cardinality and general

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6438

http://fmv.jku.at/kissat/
http://fmv.jku.at/kissat/


Translation Solving

Category #Inst Encoding #CNF #Veri #Solved #Verified
SAT UNSAT SAT UNSAT

Card 772 Sequential 772 772 139 480 133 479
Totalizer 772 772 139 475 130 474

PB 444 Adder 444 444 179 167 178 165
GTE 425 414 164 162 150 151

Card+PB 308 Seq+Adder 306 296 134 152 128 151

Table 1: Number of translated, solved and verified instances for each encoding.

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
on

sequential
totalizer

adder
gte

seq+adder

Figure 3: Comparison between translation and verification.

PB constraints (Card+PB), we use the sequential counter en-
coding for cardinality constraints and the adder network en-
coding for PB constraints, henceforth denoted by Seq+Adder.

The column #CNF shows for how many instances
VERITASPBLIB successfully generated the CNF translation,
which is almost all. The exceptions are 19 instances using
GTE and 2 instances using the Seq+Adder encoding. In those
cases, the number of clauses generated is too large and ex-
ceeds the resource limits used in our evaluation.

The column #Veri presents for how many instances
VERIPB verified the translation certificate from VERITAS-
PBLIB. Except for a few instances for GTE and Seq+Adder
yielding large proofs, VERIPB is successful. If the trans-
lation check passes, then this guarantees that the CNF en-
coding does not remove any solutions of the pseudo-Boolean
formula. The columns #Solved and #Verified under Solving
show how many instances can be solved by KISSAT, and from
those, how many can be verified by VERIPB. If a satisfiable
formula is verified, then all clauses learned by KISSAT are
also valid for the original PB formula, as is the satisfying as-
signment found, and for an unsatisfiable instance we know
that the PB input was also unsatisfiable. We can verify 99%
of the solved unsatisfiable instances and 95% of satisfiable
instances, which shows the feasibility of our approach.

3.2 Translation and Verification
Turning our focus to the certified translation only, our exper-
iments show that the average overhead in running time for
proof logging is a factor of 2–3 for all encodings except GTE,

which incurs around a factor 5 in overhead. However, since
the translation to CNF is fast for the majority of instances, the
additional overhead of proof logging is not an issue.

Figure 3 compares the time for VERITASPBLIB to gener-
ate the CNF translation and VERIPB to verify it. The veri-
fication overhead is far from negligible, but is not unreason-
able. Over all encodings, for 75% of benchmarks verification
takes at most 49 times longer than translation, and for 98%
of benchmarks at most 100 times longer. While some over-
head is natural, since the translation algorithm can just output
a claimed proof while the verifier needs to perform the cal-
culations to actually check it, our experiments do show that
there is room for further improvements in efficiency both for
the verifier and for the proof logging methods.

4 Concluding Remarks
In this work, we develop a general framework for certified
translations of linear pseudo-Boolean constraints into CNF
using cutting-planes-based proof logging. Since our method
is a strict extension of DRAT , the proof for the PB-to-CNF
translation can be combined with a SAT solver DRAT proof
log to provide, for the first time, end-to-end verification for
CDCL-based PB solvers. Our use of cutting planes is not
only crucial to deal with the PB input format, but the expres-
sivity of the 0-1 linear constraints also allows us to certify the
correctness of the translation to CNF in a concise and elegant
way. While there is still room for performance improvements
in proof logging and verification, our evaluation shows that
this approach is feasible in practice. One bottleneck is that
the pseudo-Boolean proof checker VERIPB is comparatively
slow at verifying DRAT proofs—this could be addressed by
having the SAT solver output LRAT proofs instead.

We wish to stress that we view certified PB-to-CNF trans-
lations only as a first step. In the conference version of this
paper, we expressed optimism that the techniques we have de-
veloped could also be extended to core-guided MaxSAT solv-
ing [Fu and Malik, 2006], and such results have very recently
been announced in [Berg et al., 2023]. While designing ef-
ficient proof logging for other MaxSAT approaches such as
implicit hitting sets (IHS) [Davies and Bacchus, 2011] and
abstract cores [Berg et al., 2020] seems more challenging, we
are hopeful that our work could lead to a unified proof log-
ging method for all of modern MaxSAT solving, and also for
pseudo-Boolean optimization using cutting-planes-based rea-
soning as in [Devriendt et al., 2021a; Devriendt et al., 2021b;
Elffers and Nordström, 2018; Le Berre and Parrain, 2010;
Smirnov et al., 2021; Smirnov et al., 2022].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6439



Acknowledgements
The authors wish to acknowledge helpful and stimulating dis-
cussions with Bart Bogaerts and Ciaran McCreesh. We are
particularly grateful to Bart for sharing the manuscript [Van-
desande et al., 2022] using a very elegant reification tech-
nique that we wish we would have thought of. We believe it
would be worth exploring whether similar ideas could be used
in our framework to improve the efficiency of verification.

Stephan Gocht and Jakob Nordström were supported
by the Swedish Research Council grant 2016-00782,
and Jakob Nordström also received funding from the In-
dependent Research Fund Denmark grant 9040-00389B.
Ruben Martins was supported by National Science Founda-
tion award CCF-1762363 and an Amazon Research Award,
and Andy Oertel was supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation.

References
[Akgün et al., 2018] Özgür Akgün, Ian P. Gent, Christopher

Jefferson, Ian Miguel, and Peter Nightingale. Metamor-
phic testing of constraint solvers. In Proc. 24th Inter-
national Conference on Principles and Practice of Con-
straint Programming (CP ’18), pages 727–736, 2018.

[Baek et al., 2021] Seulkee Baek, Mario Carneiro, and Mar-
ijn J. H. Heule. A flexible proof format for SAT solver-
elaborator communication. In Proc. 27th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’21), pages 59–75, 2021.

[Bailleux and Boufkhad, 2003] Olivier Bailleux and Yacine
Boufkhad. Efficient CNF encoding of Boolean cardinality
constraints. In Proc. 9th International Conference on Prin-
ciples and Practice of Constraint Programming (CP ’03),
pages 108–122, 2003.

[Barnett and Biere, 2021] Lee A. Barnett and Armin Biere.
Non-clausal redundancy properties. In Proc. 28th Interna-
tional Conference on Automated Deduction (CADE-28),
pages 252–272, 2021.

[Barth, 1995] Peter Barth. A Davis-Putnam based enu-
meration algorithm for linear pseudo-Boolean optimiza-
tion. Technical Report MPI-I-95-2-003, Max-Planck-
Institut für Informatik, 1995.

[Berg et al., 2020] Jeremias Berg, Fahiem Bacchus, and
Alex Poole. Abstract cores in implicit hitting set MaxSat
solving. In Proc. 23rd International Conference on Theory
and Applications of Satisfiability Testing (SAT ’20), pages
277–294, 2020.

[Berg et al., 2023] Jeremias Berg, Bart Bogaerts, Jakob
Nordström, Andy Oertel, and Dieter Vandesande. Certi-
fied core-guided MaxSAT solving. In Proc. 29th Interna-
tional Conference on Automated Deduction (CADE-29),
2023. To appear.

[Biere et al., 2021] Armin Biere, Marijn J. H. Heule, Hans
van Maaren, and Toby Walsh, editors. Handbook of Satis-
fiability, volume 336 of Frontiers in Artificial Intelligence
and Applications. IOS Press, 2nd edition, 2021.

[Bogaerts et al., 2022] Bart Bogaerts, Stephan Gocht, Cia-
ran McCreesh, and Jakob Nordström. Certified symmetry
and dominance breaking for combinatorial optimisation.
In Proc. 36th AAAI Conference on Artificial Intelligence
(AAAI ’22), pages 3698–3707, 2022.

[Brummayer et al., 2010] Robert Brummayer, Florian Lons-
ing, and Armin Biere. Automated testing and debugging of
SAT and QBF solvers. In Proc. 13th International Confer-
ence on Theory and Applications of Satisfiability Testing
(SAT ’10), pages 44–57, 2010.

[Bryant et al., 2022] Randal E. Bryant, Armin Biere, and
Marijn J. H. Heule. Clausal proofs for pseudo-Boolean
reasoning. In Proc. 28th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS ’22), pages 443–461, 2022.

[Buss and Nordström, 2021] Samuel R. Buss and Jakob
Nordström. Proof complexity and SAT solving. In Biere
et al. [2021], chapter 7, pages 233–350.

[Cheung et al., 2017] Kevin K. H. Cheung, Ambros M.
Gleixner, and Daniel E. Steffy. Verifying integer pro-
gramming results. In Proc. 19th International Conference
on Integer Programming and Combinatorial Optimization
(IPCO ’17), pages 148–160, 2017.

[Cook et al., 1987] William Cook, Collette Rene Coullard,
and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, 1987.

[Cook et al., 2013] William Cook, Thorsten Koch, Daniel E.
Steffy, and Kati Wolter. A hybrid branch-and-bound
approach for exact rational mixed-integer programming.
Mathematical Programming Computation, 5(3):305–344,
2013.

[Davies and Bacchus, 2011] Jessica Davies and Fahiem Bac-
chus. Solving MAXSAT by solving a sequence of sim-
pler SAT instances. In Proc. 17th International Confer-
ence on Principles and Practice of Constraint Program-
ming (CP ’11), pages 225–239, 2011.

[Devriendt et al., 2021a] Jo Devriendt, Ambros Gleixner,
and Jakob Nordström. Learn to relax: Integrating 0-1 in-
teger linear programming with pseudo-Boolean conflict-
driven search. Constraints, 26(1–4):26–55, 2021.

[Devriendt et al., 2021b] Jo Devriendt, Stephan Gocht, Emir
Demirović, Jakob Nordström, and Peter Stuckey. Cut-
ting to the core of pseudo-Boolean optimization: Com-
bining core-guided search with cutting planes reasoning.
In Proc. 35th AAAI Conference on Artificial Intelligence
(AAAI ’21), pages 3750–3758, 2021.

[Eén and Sörensson, 2006] Niklas Eén and Niklas
Sörensson. Translating pseudo-Boolean constraints
into SAT. Journal on Satisfiability, Boolean Modeling and
Computation, 2(1-4):1–26, 2006.

[Eifler and Gleixner, 2021] Leon Eifler and Ambros
Gleixner. A computational status update for exact rational
mixed integer programming. In Proc. 22nd International
Conference on Integer Programming and Combinatorial
Optimization (IPCO ’21), pages 163–177, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6440



[Elffers and Nordström, 2018] Jan Elffers and Jakob Nord-
ström. Divide and conquer: Towards faster pseudo-
Boolean solving. In Proc. 27th International Joint
Conference on Artificial Intelligence (IJCAI ’18), pages
1291–1299, 2018.

[Elffers et al., 2020] Jan Elffers, Stephan Gocht, Ciaran Mc-
Creesh, and Jakob Nordström. Justifying all differences
using pseudo-Boolean reasoning. In Proc. 34th AAAI
Conference on Artificial Intelligence (AAAI ’20), pages
1486–1494, 2020.

[Fu and Malik, 2006] Zhaohui Fu and Sharad Malik. On
solving the partial MAX-SAT problem. In Proc. 9th Inter-
national Conference on Theory and Applications of Satis-
fiability Testing (SAT ’06), pages 252–265, 2006.

[Gillard et al., 2019] Xavier Gillard, Pierre Schaus, and
Yves Deville. SolverCheck: Declarative testing of con-
straints. In Proc. 25th International Conference on Prin-
ciples and Practice of Constraint Programming (CP ’19),
pages 565–582, 2019.

[Gocht and Nordström, 2021] Stephan Gocht and Jakob
Nordström. Certifying parity reasoning efficiently using
pseudo-Boolean proofs. In Proc. 35th AAAI Conference on
Artificial Intelligence (AAAI ’21), pages 3768–3777, 2021.

[Gocht et al., 2020] Stephan Gocht, Ciaran McCreesh, and
Jakob Nordström. Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In Proc. 29th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI ’20), pages 1134–1140, 2020.

[Gocht et al., 2022] Stephan Gocht, Ruben Martins, Jakob
Nordström, and Andy Oertel. Certified CNF translations
for pseudo-Boolean solving. In Proc. 25th International
Conference on Theory and Applications of Satisfiability
Testing (SAT ’22), pages 16:1–16:25, 2022.

[Goldberg and Novikov, 2003] Evgueni Goldberg and
Yakov Novikov. Verification of proofs of unsatisfiability
for CNF formulas. In Proc. Conference on Design, Au-
tomation and Test in Europe (DATE ’03), pages 886–891,
2003.

[Joshi et al., 2015] Saurabh Joshi, Ruben Martins, and
Vasco M. Manquinho. Generalized totalizer encoding for
pseudo-Boolean constraints. In Proc. 21st International
Conference on Principles and Practice of Constraint Pro-
gramming (CP ’15), pages 200–209, 2015.

[Kaufmann and Biere, 2021] Daniela Kaufmann and Armin
Biere. AMulet 2.0 for verifying multiplier circuits. In
Proc. 27th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems
(TACAS ’21), pages 357–364, 2021.

[Kaufmann et al., 2022] Daniela Kaufmann, Paul Beame,
Armin Biere, and Jakob Nordström. Adding dual variables
to algebraic reasoning for circuit verification. In Proc.
25th Design, Automation and Test in Europe Conference
(DATE ’22), pages 1435–1440, 2022.

[Le Berre and Parrain, 2010] Daniel Le Berre and Anne Par-
rain. The Sat4j library, release 2.2. Journal on Satisfiabil-
ity, Boolean Modeling and Computation, 7:59–64, 2010.

[Marques-Silva and Sakallah, 1999] João P. Marques-Silva
and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Comput-
ers, 48(5):506–521, 1999.

[McConnell et al., 2011] Ross M. McConnell, Kurt
Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certify-
ing algorithms. Computer Science Review, 5(2):119–161,
2011.

[Moskewicz et al., 2001] Matthew W. Moskewicz, Conor F.
Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proc.
38th Design Automation Conference (DAC ’01), pages
530–535, 2001.

[Philipp and Steinke, 2015] Tobias Philipp and Peter
Steinke. PBLib – a library for encoding pseudo-Boolean
constraints into CNF. In Proc. 18th International Confer-
ence on Theory and Applications of Satisfiability Testing
(SAT ’15), pages 9–16, 2015.

[Roussel and Manquinho, 2016] Olivier Roussel and
Vasco M. Manquinho. Input/output format and
solver requirements for the competitions of pseudo-
Boolean solvers. Revision 2324. Available at
http://www.cril.univ-artois.fr/PB16/format.pdf, 2016.

[Sinz, 2005] Carsten Sinz. Towards an optimal CNF encod-
ing of Boolean cardinality constraints. In Proc. 11th Inter-
national Conference on Principles and Practice of Con-
straint Programming (CP ’05), pages 827–831, 2005.

[Smirnov et al., 2021] Pavel Smirnov, Jeremias Berg, and
Matti Järvisalo. Pseudo-Boolean optimization by im-
plicit hitting sets. In Proc. 27th International Conference
on Principles and Practice of Constraint Programming
(CP ’21), pages 51:1–51:20, 2021.

[Smirnov et al., 2022] Pavel Smirnov, Jeremias Berg, and
Matti Järvisalo. Improvements to the implicit hitting set
approach to pseudo-Boolean optimization. In Proc. 25th
International Conference on Theory and Applications of
Satisfiability Testing (SAT ’22), pages 13:1–13:18, 2022.

[Van Gelder, 2008] Allen Van Gelder. Verifying RUP proofs
of propositional unsatisfiability. In 10th International
Symposium on Artificial Intelligence and Mathematics
(ISAIM ’08), 2008.

[Vandesande et al., 2022] Dieter Vandesande, Wolf De Wulf,
and Bart Bogaerts. QMaxSATpb: A certified MaxSAT
solver. In Proc. 16th International Conference on
Logic Programming and Non-monotonic Reasoning (LP-
NMR ’22), pages 429–442, 2022.

[Warners, 1998] Joost P. Warners. A linear-time transforma-
tion of linear inequalities into conjunctive normal form.
Information Processing Letters, 68(2):63–69, 1998.

[Wetzler et al., 2014] Nathan Wetzler, Marijn J. H. Heule,
and Warren A. Hunt Jr. DRAT-trim: Efficient checking
and trimming using expressive clausal proofs. In Proc.
17th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’14), pages 422–429, 2014.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Sister Conferences Best Papers Track

6441

http://www.cril.univ-artois.fr/PB16/format.pdf

	Introduction
	Example: Sequential Counter Encoding
	Experimental Evaluation
	End-to-End Solving and Verification
	Translation and Verification

	Concluding Remarks

