
Certified CNF Translations
for Pseudo-Boolean Solving
Stephan Gocht #Ñ

Lund University, Sweden
University of Copenhagen, Denmark

Ruben Martins # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Jakob Nordström # Ñ

University of Copenhagen, Denmark
Lund University, Sweden

Andy Oertel #Ñ

Lund University, Sweden
University of Copenhagen, Denmark

Abstract
The dramatic improvements in Boolean satisfiability (SAT) solving since the turn of the millennium
have made it possible to leverage state-of-the-art conflict-driven clause learning (CDCL) solvers for
many combinatorial problems in academia and industry, and the use of proof logging has played a
crucial role in increasing the confidence that the results these solvers produce are correct. However,
the fact that SAT proof logging is performed in conjunctive normal form (CNF) clausal format
means that it has not been possible to extend guarantees of correctness to the use of SAT solvers for
more expressive combinatorial paradigms, where the first step is an unverified translation of the
input to CNF.

In this work, we show how cutting-planes-based reasoning can provide proof logging for solvers
that translate pseudo-Boolean (a.k.a. 0-1 integer linear) decision problems to CNF and then run
CDCL. To support a wide range of encodings, we provide a uniform and easily extensible framework
for proof logging of CNF translations. We are hopeful that this is just a first step towards providing
a unified proof logging approach that will also extend to maximum satisfiability (MaxSAT) solving
and pseudo-Boolean optimization in general.

2012 ACM Subject Classification Theory of computation → Program verification; Hardware →
Theorem proving and SAT solving; Theory of computation → Logic and verification

Keywords and phrases pseudo-Boolean solving, 0-1 integer linear program, proof logging, certifying
algorithms, certified translation, CNF encoding, cutting planes

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.16

Supplementary Material Software (Source Code and Experimental Data):
https://doi.org/10.5281/zenodo.6610581 [30]

Funding Stephan Gocht: Swedish Research Council grant 2016-00782.
Ruben Martins: National Science Foundation award CCF-1762363 and Amazon Research Award.
Jakob Nordström: Swedish Research Council grant 2016-00782 and Independent Research Fund
Denmark grant 9040-00389B.
Andy Oertel: Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

Acknowledgements The authors wish to acknowledge helpful and stimulating discussions with
Bart Bogaerts and Ciaran McCreesh. We are particularly grateful to Bart for sharing the manu-
script [59] using a very elegant reification technique that we wish we would have thought of, and

© Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 16; pp. 16:1–16:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.gocht@cs.lth.se
https://stephangocht.github.io/
https://orcid.org/0000-0002-5459-3134
mailto:rubenm@andrew.cmu.edu
https://sat-group.github.io/ruben/
https://orcid.org/0000-0003-1525-1382
mailto:jn@di.ku.dk
http://www.jakobnordstrom.se
https://orcid.org/0000-0002-2700-4285
mailto:andy.oertel@cs.lth.se
https://aoertel.de/
https://orcid.org/0000-0001-9783-6768
https://doi.org/10.4230/LIPIcs.SAT.2022.16
https://doi.org/10.5281/zenodo.6610581
https://doi.org/10.5281/zenodo.6610581
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Certified CNF Translations for Pseudo-Boolean Solving

we believe it would be worth exploring whether similar ideas could be used in our framework to
improve the efficiency of verification. We are also thankful for discussions and feedback at the
workshops Pragmatics of SAT and Proof eXchange for Theorem Proving in 2021, where a preliminary
version of this work was presented, and we would like to extend a special thanks to the SAT ’22
anonymous reviewers for a wealth of comments and questions that helped to improve this manuscript
considerably.

1 Introduction

Boolean satisfiability (SAT) solving has witnessed striking improvements over the last couple
of decades, starting with the introduction of conflict-driven clause learning (CDCL) [44, 48],
and this has led to a wide range of applications including large-scale problems in both
academia and industry [9]. The conflict-driven paradigm has also been successfully exported
to other areas such as maximum satisfiability (MaxSAT), pseudo-Boolean (PB) solving,
constraint programming (CP), and mixed integer linear programming (MIP). As modern
combinatorial solvers are used to attack ever more challenging problems, and employ ever
more sophisticated heuristics and optimizations to do so, the question arises whether we can
trust the results they produce. Sadly, it is well documented that state-of-the-art CP and
MIP solvers can return incorrect solutions [1, 17, 29]. For SAT solvers, however, analogous
problems [11] have been successfully addressed by the introduction of proof logging, requiring
that solvers should be certifying [46] in the sense that they output machine-verifiable proofs
of their claims that can be verified by a stand-alone proof checker.

A number of different proof logging formats have been developed for SAT solving, including
RUP [34, 58], TraceCheck [8], DRAT [35, 36, 62], GRIT [19], and LRAT [18]. Since 2013
the SAT competitions [56] require solvers to be certifying, with DRAT established as the
standard format. It would be highly desirable to have such proof logging also for stronger
combinatorial solving paradigms, but while methods such as DRAT are extremely powerful
in theory, the limitation to a clausal format makes it hard to capture more advanced forms
of reasoning in a succinct way. A more fundamental concern is that it is not clear how
these proof logging methods should deal with input that is not presented in conjunctive
normal form (CNF). One way to address this problem could be to allow extensions to the
DRAT format [2], but another approach pursued in recent years is to develop stronger proof
logging methods based on more expressive formalisms such as binary decision diagrams [4],
algebraic reasoning [39, 40, 41, 53], pseudo-Boolean reasoning [26, 31, 32], and integer linear
programming [15, 24].

Our Contribution. In this work, we consider the use of CDCL for pseudo-Boolean solving,
where the pseudo-Boolean input (i.e., a 0-1 integer linear program) is translated to CNF
and passed to a SAT solver, as pioneered in MiniSat+ [23]. The two solvers NaPS [49, 55]
and Open-WBO [50, 45] using this approach were among the top performers in the latest
pseudo-Boolean evaluation [52]. While DRAT proof logging can certify unsatisfiability of the
translated formula, it cannot prove correctness of the translation, not only since there is no
known method of carrying out PB reasoning efficiently in DRAT (except for constraints with
small coefficients [13]), but also, and more fundamentally, because the input is not in CNF.

We demonstrate how to instead use the cutting planes proof method [16], enhanced with
a rule for introducing extension variables [33], to show that the CNF formula resulting from
the translation can be derived from the original pseudo-Boolean constraints. Since this
method is a strict extension of DRAT , we can combine the proof for the translation with

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:3

Figure 1 Proof logging workflow for pseudo-Boolean solving (our contribution in blue boldface).

the SAT solver DRAT proof log (with appropriate syntactic modifications). In this way we
achieve end-to-end verification of the pseudo-Boolean solving process using the proof checker
VeriPB [60], as illustrated in Figure 1.

One challenge when certifying PB-to-CNF translations is that there are many different
ways of encoding pseudo-Boolean constraints into CNF (as catalogued in, e.g., [51]), and
it is time-consuming (and error-prone) to code up proof logging for every single encoding.
However, many of the encodings can be understood as first designing a circuit to evaluate
whether the PB constraint is satisfied, and then writing down a CNF formula enforcing the
computation of this circuit. An important part of our contribution is that we develop a
general proof logging method for a wide class of such circuits. The pseudo-Boolean format
used for proof logging makes it easy to derive 0-1 linear inequalities describing the circuit
computations, and once this has been done the clauses in the CNF translation can simply
be obtained by so-called reverse unit propagation (RUP) [34, 58], obviating the need for
complicated syntactic proofs. We have applied this method to the sequential counter [57],
totalizer [3], generalized totalizer [38] and binary adder network [23, 61] encodings, and report
results from an empirical evaluation.

We note that a stronger result would be to certify equivalence of the original pseudo-
Boolean formula F and the translated CNF formula F ′, in the sense that (a) any satisfying
assignment α to F could be extended to an assignment α′ also to the new variables introduced
during translation that would satisfy F ′, and that (b) any satisfying assignment α′ to F ′ also
satisfies F . The tools we develop can reach this more ambitious goal in principle, but since
some additional technical problems arise along the way we have to leave this as future work.

Outline of This Paper. After discussing preliminaries in Section 2, we illustrate our method
for the sequential counter encoding in Section 3. Section 4 presents the general framework,
and we discuss how to apply it to adder networks in Section 5 (but due to space constraints,
most of the details, and all discussion of the totalizer and generalized totalizer encodings,
are deferred to Appendices A and B.) We report data from our experimental evaluation in
Section 6 and conclude with a discussion of some directions for future research in Section 7.

2 Preliminaries

Let us start with a review of some standard material that can also be found in, e.g., [14, 33].
A literal ℓ over a Boolean variable x is x itself or its negation x, where variables can be
assigned values 0 (false) or 1 (true), so that x = 1− x. For notational convenience, we
define x

.= x (where we use .= to denote syntactic equality). We write [n] = {1, 2, . . . , n} to
denote the n first positive integers, and sometimes write x⃗ = {xi | i ∈ [n]} to denote a set
of variables, where the size n of the set understood from context (or is not important). A
pseudo-Boolean (PB) constraint is a 0-1 linear inequality

C
.=

∑
iaiℓi ≥ A , (1)

SAT 2022

16:4 Certified CNF Translations for Pseudo-Boolean Solving

which without loss of generality we always assume to be in normalized form [5]; i.e., all
literals ℓi are over distinct variables and the coefficients ai and the degree (of falsity) A are
non-negative integers. The normalized form of the negation of the pseudo-Boolean constraint
C in (1) is the constraint

¬C
.=

∑
iaiℓi ≥

∑
iai −A + 1 (2)

(encoding that the sum of the coefficients of falsified literals in C is so large that coefficients of
satisfied literals can contribute at most A− 1). We use equality constraints C

.=
∑

iaiℓi = A

as syntactic sugar for the pair of inequalities Cgeq .=
∑

iaiℓi ≥ A and C leq .=
∑

i−aiℓi ≥ −A

(with the latter converted to normalized form). We write
∑

iaiℓi ▷◁ A for ▷◁∈ {≥,≤, =}
for constraints that are either inequalities or equalities. A pseudo-Boolean formula is a
conjunction F =

∧
j Cj of PB constraints. A cardinality constraint is a PB constraint with

all coefficients equal to 1. If the degree is also 1, then ℓ1 + · · ·+ ℓk ≥ 1 is equivalent to the
(disjunctive) clause ℓ1∨· · ·∨ℓk, and so CNF formulas are just special cases of pseudo-Boolean
formulas.

A (partial) assignment ρ is a (partial) function from variables to {0, 1}. Applying ρ

to a constraint C as in (1) yields the constraint C↾ρ obtained by substituting values for
all assigned variables, shifting constants to the right-hand side, and adjusting the degree
appropriately, and for a formula F we define F↾ρ=

∧
j Cj↾ρ. The constraint C is satisfied

by ρ if
∑

ρ(ℓi)=1 ai ≥ A (or, equivalently, if the restricted constraint C↾ρ has a non-positive
degree and is thus trivial). An assignment ρ satisfies F

.=
∧

j Cj if it satisfies all Cj , in which
case F is satisfiable. A formula without satisfying assignments is unsatisfiable. Two formulas
are equisatisfiable if they are both satisfiable or both unsatisfiable.

Cutting planes as defined in [16] is a method for iteratively deriving new constraints C

implied by a PB formula F . If C and D are previously derived constraints, or are axiom
constraints in F , then any positive integer linear combination of these constraints can be
derived. (By a linear combination of two equality constraints C and D, we mean the identical
linear combinations of Cgeq and Dgeq and C leq and Dleq, respectively.) We can also add
literal axioms ℓi ≥ 0 to a previously derived constraint. For a constraint

∑
i ai · ℓi ≥ A in

normalized form, we can use division by a positive integer d to derive
∑

i ⌈ai/d⌉ℓi ≥ ⌈A/d⌉,
dividing and rounding up the degree and coefficients, and it is sometimes convenient to also
include a saturation rule deriving

∑
i min{ai, A} · ℓi ≥ A from

∑
i ai · ℓi ≥ A. We remark

that the soundness of the division and saturation rules as stated depends on the constraints
being presented in normalized form.

For PB formulas F , F ′ and constraints C, C ′, we say that F implies or models C, denoted
F |= C, if any assignment satisfying F must also satisfy C, and we write F |= F ′ if F |= C ′

for all C ′ ∈ F ′. It is clear that any collection of constraints F ′ derived (iteratively) from F

by cutting planes are implied in this sense, and cutting planes is an implicationally complete
method in the sense that any implied constraint can also be derived syntactically.

A constraint C is said to unit propagate the literal ℓ under ρ if C↾ρ cannot be satisfied
unless ℓ is set to true. During unit propagation on F under ρ, we extend ρ iteratively by
assignments to any propagated literals until an assignment ρ′ is reached under which no
constraint C ∈ F is propagating, or under which some constraint C propagates a literal that
has already been assigned to the opposite value. The latter scenario is called a conflict, since
ρ′ violates the constraint C in this case. We say that F implies C by reverse unit propagation
(RUP), and that C is a RUP constraint with respect to F , if F ∧ ¬C unit propagates to
conflict under the empty assignment. It is not hard to see that F |= C holds if C is a RUP
constraint, but the opposite direction is not necessarily true.

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:5

𝑠𝑖−1, 𝑗

𝑠𝑖−1, 𝑗−1

ℓ𝑖

𝑠𝑖, 𝑗

&

≥ 1

(a) Logic circuit of single component. (b) Circuit for 4 input literals counting up to 4.

Figure 2 Circuit representation of the sequential counter encoding.

In addition to deriving constraints C that are implied by F , we will also need a way
of adding so-called redundant constraints D having the property that F and F ∧ D are
equisatisfiable. For this purpose we will use the reification rules – special cases of the
redundance rule in [33] – saying that we can introduce the reified constraints

z ⇒
∑

iaiℓi ≥ A
.= Az +

∑
iaiℓi ≥ A (3a)

z ⇐
∑

iaiℓi ≥ A
.=

(∑
iai −A + 1

)
· z +

∑
iaiℓi ≥

∑
iai −A + 1 (3b)

provided that z is a fresh variable that is not in the formula and has not appeared previously
in the derivation.

A moment of thought reveals that the constraint (3a) says that if z is true, then
∑

iaiℓi ≥ A

has to hold, and this explains the notation z ⇒
∑

i aiℓi ≥ A introduced for this constraint.
In an analogous fashion, the constraint (3b) says that if

∑
iaiℓi ≥ A holds, then z has to be

true. We will write z ⇔
∑

i aiℓi ≥ A for the conjunction of the constraints (3a) and (3b).
Adding such reification constraints preserves equisatisfiability, since any satisfying assignment
to F can be extended by setting the fresh variable z as required to satisfy the implications.

3 Certified CNF Translation Using the Sequential Counter Encoding

To give a concrete illustration of our approach for proving the correctness of translations of
pseudo-Boolean constraints, in this section we consider how to convert cardinality constraints∑n

i=1 ℓi ▷◁ k to CNF using the sequential counter encoding [57]. This encoding is based on a
circuit summing up the input bits one by one, with intermediate variables si,j for i ∈ [n]
and j ∈ [i] evaluating to true if and only if

∑i
t=1 ℓt ≥ j. The variables si,j can be computed

inductively as in Figure 2a by the formula

si,j ↔ ((ℓi ∧ si−1,j−1) ∨ si−1,j) (4)

saying that si,j is true either if the first i− 1 literals add up to j − 1 and the ith literal is
true, or if already the first i − 1 literals add up to j. The circuit constructed in this way,
shown in Figure 2b, can be partitioned into n blocks, where the ith block computes the
variables si,j for j ∈ [i] from the ith input bit ℓi and the variables si−1,j in the previous
block. Identifying such blocks in the circuit is a key component in our method for proving
that the CNF translation is correct.

SAT 2022

16:6 Certified CNF Translations for Pseudo-Boolean Solving

For the sequential counter circuit, we obtain the CNF encoding of the constraint∑n
i=1 ℓi ▷◁ k by translating each component in Figure 2a (as described by Equation (4)) to

the clausal constraints

ℓi + si−1,j−1 + si,j ≥ 1 (5a)
si−1,j + si,j ≥ 1 (5b)

ℓi + si−1,j + si,j ≥ 1 (5c)
si−1,j−1 + si,j ≥ 1 (5d)

for i ∈ [n] and j ∈ [i]. For all i we set si,0 = 1 and simplify, so that constraint (5a) turns
into ℓi + si,1 ≥ 1 and constraint (5d) is satisfied and disappears. We also set si−1,i = 0, so
that (5c) becomes ℓi + si,i ≥ 1 and (5b) is satisfied and disappears.

Once clauses (5a)–(5d) have been generated for all circuit components, we obtain a
greater-than-or-equal-to-k constraint by adding the unit clause sn,k ≥ 1. Analogously,
a less-than-or-equal-to-k constraint is enforced using the clause sn,k+1 ≥ 1. A common
optimization, known as k-simplification, is to omit clauses corresponding to the computation
of variables si,j for j > k + 1, as such variables are not relevant for deciding whether the
cardinality constraint is true or not.

As a preparation for our proof logging discussions, let us study the variables si,j in more
detail, ignoring k-simplification for now. Since si,j is true if and only if

∑i
t=1 ℓt ≥ j holds,

for all i ∈ [n] we should be able to deduce∑i
j=1ℓj =

∑i
j=1si,j . (6)

However, the sequential counter circuit computes the variables si,j in the ith block using
only the variables si−1,j from the previous block and the literal ℓi, and so if we only reason
locally about the ith block what we can derive is the equality

ℓi +
∑i−1

j=1si−1,j =
∑i

j=1si,j . (7)

If we look at the variables on wires entering and exiting the ith block of the circuit, we see
that Equation (7) specifies that the sum of the inputs is equal to the sum of the outputs. If
we represent the circuit in Figure 2b as a graph with every block contracted into a single node
and the literals ℓi in the cardinality constraint collected into another separate node, then
every ith block node has an incoming edge from the literals node and (for i > 1) another edge
from the (i− 1)st block node, and an outgoing edge to the (i + 1)st block node (or, for i = n,
to a special sink node that we can also introduce). If we label the incoming edges by ℓi and∑i−1

j=1 si−1,j and the outgoing edge by
∑i

j=1 si,j , as shown in Figure 3a, then we can view (7)
as saying that for all vertices in the graph the sum of the labels of input edges should be
equal to the sum of the output edge. We will refer to this as a preservation equality. What is
not at all obvious from this particular example, but what we will show in later sections, is
that many CNF translations of pseudo-Boolean constraints can be represented as graphs
with preservation equalities in a similar way, though sometimes with larger coefficients in the
linear combinations of the literals. And, jumping ahead a bit, our main contribution in this
paper is a generic proof logging method that will certify correctness for any CNF encoding
that can be represented in this graph framework with preservation equalities.

To see how such a graph representation might be useful, note that by traversing the
graph and doing a telescoping sum of the preservation equalities for all nodes we can easily
derive (6). From this, in turn, it is clear that a constraint on the input variables

∑n
j=1ℓi ▷◁ k

implies the same constraint on the output variables, and formally this can be obtained by
one final telescoping sum step combining

∑n
j=1ℓi ▷◁ k and

∑n
j=1ℓi =

∑n
j=1sn,j to get

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:7

(a) Graph without k-simplification.

(b) Graph with k-simplification for k = 1.

Figure 3 Graph representation of the sequential counter encoding.

∑n
j=1sn,j ▷◁ k . (8)

Another important property of the variables si,j is that they do not just take any values
satisfying (7), but are ordered – since si,j encodes

∑i
t=1 ℓt ≥ j, it follows that si,j cannot be

true unless also si,j′ is true for all j′ < j. This can be expressed by ordering constraints

si,j ≥ si,j+1 i ∈ [n] , j ∈ [i− 1] , (9)

which are semantically implied by the circuit encoding.
Taking this view of the circuit encoding, the task of certifying the correctness of

the CNF translation becomes surprisingly simple. If we can derive the pseudo-Boolean
constraints (7)–(9), then it can be verified that the clauses of the sequential counter encoding
(i.e., (5a)–(5d) plus sn,k+1 ≥ 1 and/or sn,k ≥ 1) all follow by reverse unit propagation. This
is so since when asserting the clauses to false, the ordering constraints (9) will propagate
enough variables si,j for (7) to be falsified.

To see how to obtain the constraints (7)–(9), note that we already discussed above how
to derive (8) by a telescoping sum over constraints (7), which is straightforward to do with
standard cutting planes rules. To get constraints on the form (7), we can use reification to
define the meaning of the variables si,j by constraints

si,j ⇔ ℓi +
∑i−1

j=1si−1,j ≥ j (10)

(with notation as introduced in (3a)–(3b) in Section 2). If we do this in increasing order
for i and j, then si,j is fresh in (10) and so these are valid derivation steps. From the
constraints (10) we can then derive (7) and (9) as illustrated in the next example.

▶ Example 1. Let us consider how to derive the preservation equality

ℓ3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 (11)

SAT 2022

16:8 Certified CNF Translations for Pseudo-Boolean Solving

for block 3 in Figure 3a. We want s3,j to be true precisely when ℓ3 + s2,1 + s2,2 ≥ j for
j = 1, 2, 3, and we can enforce this by reification steps as in (10), which results in constraints

s3,1 + ℓ3 + s2,1 + s2,2 ≥ 1 (12a)
2s3,2 + ℓ3 + s2,1 + s2,2 ≥ 2 (12b)
3s3,3 + ℓ3 + s2,1 + s2,2 ≥ 3 (12c)
3s3,1 + ℓ3 + s2,1 + s2,2 ≥ 3 (12d)
2s3,2 + ℓ3 + s2,1 + s2,2 ≥ 2 (12e)
s3,3 + ℓ3 + s2,1 + s2,2 ≥ 1 (12f)

when written out explicitly in pseudo-Boolean form.
By design, the constraints (12a)–(12f) implies (11). By the implicational completeness of

cutting planes there is a derivation of this fact, i.e., of the two pseudo-Boolean inequalities

s3,1 + s3,2 + s3,3 + ℓ3 + s2,1 + s2,2 ≥ 3 (13a)
s3,1 + s3,2 + s3,3 + ℓ3 + s2,1 + s2,2 ≥ 3 (13b)

encoding the equality (11). To construct such a derivation, we first derive (13a) by processing
the constraints (12a)–(12c) in order while maintaining the invariant∑i

j=1s3,j + ℓ3 + s2,1 + s2,2 ≥ i , (14)

where i is the number of processed constraints. We start with (12a), for which the invariant
holds, and add (12b) and divide by 2 to obtain s3,1 + s3,2 + ℓ3 + s2,1 + s2,2 ≥ 2. Multiplying
the latter constraint by 2, adding it to (12c), and finally dividing by 3 results in the
constraint (13a) as desired. The derivation of (13b) is completely analogous, except we
process (12d)–(12f) in reverse order. That is, we first add (12f) and (12e) and divide by 2 to
get s3,1 + s3,2 + ℓ3 + s2,1 + s2,2 ≥ 2, and then multiply this constraint by 2, add to (12d),
and divide by 3 to obtain our target constraint (13b).

For the ordering constraints (9), which in normalized form are written as

s3,j + s3,j+1 ≥ 1 , (15)

we first add (12d) and (12b) to get 3s3,1 + 2s3,2 ≥ 2, which when divided by 3 becomes
s3,1 + s3,2 ≥ 1. In the same way, adding (12e) and (12c) yields 2s3,2 + 3s3,3 ≥ 2, which we
divide by 3 to obtain s3,2 + s3,3 ≥ 1. This concludes our example.

To obtain the encoding with k-simplification, the most naive approach would be to simply
omit the clauses enforcing correct values for the variables si,j that are not used. However,
this could incur a significant overhead in the proof logging when k is small, as we would
always introduce O

(
n2)

intermediate variables instead of the O(kn) variables actually used
in the final encoding. To avoid this overhead, we can introduce “overflow variables” si,k+2
that do not encode that the first i bits sum to k + 2 but instead ensure that the equality

ℓi +
∑k+1

j=1 si−1,j =
∑k+2

j=1 si,j (16)

holds. To maintain the equality of sums over incoming and outcoming edges in our graph
representation, we label the edge to the next block by

∑k+1
j=1 si,j instead of

∑i
j=1 si,j , and

introduce an additional edge going directly to the sink with the label si,k+2 (see Figure 3b).
Note that without the additional variable si,k+2 we could not guarantee equality, as we would
have k + 2 literals on the left-hand side and only k + 1 variables on the right-hand side.

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:9

▶ Example 2. To apply k-simplification for k = 1 to Figure 3a, the output from block 3 to
block 4 should only contain the sum of the two variables s3,1 + s3,2. To preserve equality of
the sums of inputs and outputs, we add an edge from block 3 to the sink labelled s3,3 as in
Figure 3b.

When using k-simplification, we can derive an analogue of (6) by a telescoping sum of all
preservation equalities (16) yielding

∑n
i=1

(
ℓi +

∑k+1
j=1 si−1,j

)
=

∑n
i=1

(∑k+2
j=1 si,j

)
, which

simplifies to
∑n

i=1 ℓi =
∑n

i=1 si,k+2 +
∑k+1

j=1 sn,j .

4 A General Framework for Certifying CNF Translations

As discussed in the introduction, there is a rich selection of encodings of pseudo-Boolean
constraints in CNF. In this section, we develop a unified framework to provide proof logging
for a wide range of different translations. Our approach is to represent encodings as directed
graphs with preservation equalities between the incoming and outgoing edges of each node,
as in our example in Figure 3, so that all clauses in the encoding can be obtained by reverse
unit propagation from (telescoping sums over) these equalities. In this way, the whole proof
logging task is reduced to considering a few generic ways of deriving preservation equalities.
Let us start with a formal definition of the graph representation.

▶ Definition 3 (Arithmetic Graph). Let ai, ci be integers, ℓi Boolean literals, and oi Boolean
variables. An arithmetic graph with input

∑
i aiℓi and output

∑
i cioi is a directed multi-graph

G = (V, E) that satisfies the following conditions:
1. Every edge e ∈ E has a label of the form

∑
i be

i ye
i for each edge e ∈ E, where be

i are
integers and ye

i Boolean variables.
2. There is a unique source node s that has only outgoing edges, and these edges are labelled

by input literals ℓi in such a way that
∑

i aiℓi =
∑

(s,v)=e∈E

∑
i be

i ye
i .

3. There is a unique sink t that has only incoming edges, and these edges are labelled by
output variables oi in such a way that

∑
i cioi =

∑
(v,t)=e∈E

∑
i be

i ye
i .

4. For all other nodes, which we refer to as the inner nodes, the preservation equality∑
(u,v)=e∈E

∑
i

be
i ye

i =
∑

(v,w)=e∈E

∑
i

be
i ye

i , (17)

saying that the sum of the incoming edges equals the sum of the outgoing edges, can be
derived using cutting planes with reification over variables on outgoing edges.

The rest of this section will be devoted to discussing how preservation equalities (17) can
be derived for different types of pseudo-Boolean expressions. Before doing so, let us just
note for the record that if we have an arithmetic graph for an encoding of a pseudo-Boolean
constraint, then by a telescoping argument as in Section 3 we can derive that the same
constraint applies to the output of the graph.

▶ Proposition 4. Given an arithmetic graph with input
∑

i aiℓi and output
∑

i cioi and a PB
constraint

∑
i aiℓi ▷◁ k for ▷◁∈ {≥,≤, =}, we can derive

∑
i cioi ▷◁ k using cutting planes.

Proof. By item 4 in Definition 3, we can derive preservation equalities (17) for all inner
nodes in the graph. By making a graph traversal and adding all these equalities together (i.e.,
adding separately all greater-than-or-equal constraints and all less-than-or-equal constraints,
as explained in Section 2), we obtain

∑
i aiℓi =

∑
i cioi, and combining this with

∑
i aiℓi ▷◁ k

yields
∑

i cioi ▷◁ k as desired. ◀

SAT 2022

16:10 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 1 General algorithm for translating PB constraints to CNF with proof logging.
1: procedure translate_and_certify(C, f, G, F)
2: ▷ input: pseudo-Boolean constraint C of the form

∑n
i=1 aiℓi ▷◁ k, with ▷◁∈ {≥,≤, =}

3: ▷ input: arithmetic graph G = (V, E) with input
∑

i aiℓi and output
∑

i cioi

4: ▷ input: function f that takes a node and derives its preservation equality
5: ▷ input: set of clauses F with CNF encoding to be derived
6: sum constraints f(v) for v ∈ V in topological order to obtain

∑
i aiℓi =

∑
i cioi

7: combine
∑

i aiℓi =
∑

i cioi and C to obtain
∑

i cioi ▷◁ k

8: derive each clause in the CNF encoding F with reverse unit propagation (RUP)

Once the bound on the input literals is translated to a bound on the output variables,
all clauses of the CNF encoding will follow by reverse unit propagation. This results in the
general proof logging method shown in Algorithm 1. Note that the nodes of the graph should
be traversed in topological order when deriving the preservation equalities– this is so that
the variables used in the reification steps are all fresh.

Let us now discuss three different ways of representing values of natural numbers that
are used in preservation equality for inner nodes. Perhaps the most straightforward way to
encode a number j with domain A = {0, 1, . . . , m} ⊆ N0 with Boolean variables is to write j

in unary with variables zi so that j =
∑

i∈[m] zi. In such an encoding we can also require,
using constraints zi ≥ zi+1, that the variables zi are ordered so that zi is true if and only
if j ≥ i. This means that listing the variables in reverse order zm, zm−1, . . . , z1 yields the
number j written in unary (after a prefix of zeros). This is known as the order encoding, and
this type of representation is used in the sequential counter [57] and totalizer [3] encodings.
We can certify the correctness of this encoding as stated in the next proposition (where we
defer all proofs in what follows to Appendix A due to space constraints).

▶ Proposition 5 (Unary Sum). For literals ℓi and fresh variables zi, i ∈ [n], the constraints∑n
i=1ℓi =

∑n
i=1zi (18a)

zi ≥ zi+1 i ∈ [n− 1] (18b)

can be derived in O(n) steps in cutting planes with reification.

A concrete illustration of how these derivations can be done was given in Example 1 (with
ℓ3, s2,1, and s2,2 playing the roles of the literals ℓi and s3,j , j ∈ [3], being the fresh variables).

When encoding the value of a number j that can only take a small number of values in
a large range, it is wasteful to introduce variables for all values in the range. For example,
if j ∈ {0, 50, 75}, then the first 50 variables in a full unary representation are either all
true or all false, but will never take different values. In such cases we can instead use what
we will refer to as a sparse unary encoding, where in our example j ∈ {0, 50, 75} would be
represented as 50 · z50 + 25 · z75, where we enforce z50 ≥ z75. More formally, for a (finite)
domain A ⊆ N0 and variables z⃗ = {zi | i ∈ A ∪ {∞}} we define

sparse(z⃗, A) .=
∑

i∈A\{0}(i− pred(i, A)) · zi , (19a)

where pred(i, A) = max{j ∈ A ∪ {0} | j < i}, and we also use constraints

zi ≥ zsucc(i,A) i ∈ A \ {max (A)} (19b)

to enforce that the variables zi are ordered, where succ(i, A) = min{j ∈ A | j > i}. This
representation is used in the sequential weight counter [37] and generalized totalizer [38]
encodings, and we can certify correctness for it as stated next.

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:11

▶ Proposition 6 (Sparse Unary Sum). Let A, B ⊆ N0 be given with sparse encodings
sparse(x⃗, A) and sparse(y⃗, B) as in (19a)–(19b). Then for E = {i + j | i ∈ A, j ∈ B}
and fresh variables z⃗ we can derive

sparse(x⃗, A) + sparse(y⃗, B) = sparse(z⃗, E) (20a)
zi ≥ zsucc(i,E) i ∈ E \ {max (E)} (20b)

in cutting planes with reification using O(|A| · |B|) steps.

As in the case of the unary sum in Proposition 5, adding the constraints (20a)–(20b)
maintains equisatisfiability, because the fresh variables z⃗ are free to take values so that the
constraints are satisfied. The general idea is again to introduce z⃗ via reification, but the rest
of the proof of Proposition 6 gets a bit more complicated – we have to perform a brute-force
search on the possible combinations of values for A and B, showing that the equality holds
in all cases, and provide a proof log for the correctness of this backtracking search.

If we perform sums repeatedly as in Proposition 6, then the size of the domain can
double in every step in the worst case, leading to an exponential explosion (this happens,
for instance, if all values in the domains are distinct powers of 2). The third encoding we
consider addresses this worst-case scenario by using a binary encoding j =

∑⌊log2(m)⌋
i=0 2i · zi.

To compute the binary representation, it is sufficient – as we will discuss next in Section 5 –
to compose multiple full adders, which compute the sum of up to three input bits, using a
binary adder circuit as described in [23].

▶ Proposition 7. For literals ℓ1, ℓ2, ℓ3 and fresh variables c, s, we can derive the equality

ℓ1 + ℓ2 + ℓ3 = 2c + s (21)

in cutting planes with reification using O(1) steps.

Again, it should be clear that this maintains equisatisfiability, since the carry-out bit c

and sum bit s can be set appropriately. To derive (21) we first reify

c⇔ ℓ1 + ℓ2 + ℓ3 ≥ 2 (22a)
s⇔ ℓ1 + ℓ2 + ℓ3 + 2c ≥ 3 (22b)

and then multiply (22a) by 2, add (22b), and divide the result by 3. To show how this
works for the ⇒-direction of the reification, 2 times (22a) is 4c + 2ℓ1 + 2ℓ2 + 2ℓ3 ≥ 4, adding
3s + ℓ1 + ℓ2 + ℓ3 + 2c ≥ 3 as in (22b) yields 6c + 3s + 3ℓ1 + 3ℓ2 + 3ℓ3 ≥ 7, and dividing by 3
gives us 2c + s + ℓ1 + ℓ2 + ℓ3 ≥ 3 as desired. We refer the reader to [33] for more details.

5 Certifying the Binary Adder Network Encoding

The idea behind the binary adder encoding [23] is to use an adder network to compute the
value of

∑
i aiℓi as a binary number

∑bits
i=0 2ioi, where bits =

⌊
log2(

∑
i ai)

⌋
is the required bit

width, and then compare this to the right-hand side constant in the constraint
∑

i aiℓi ▷◁ k.
To recapitulate the algorithm for adder network construction in [23], let us say that

a 2m-bit is a literal representing the numerical value 2m and that a 2m-bucket is a queue
of 2m-bits. We use [m]2 to denote the binary representation of a natural number m. The
algorithm starts by initializing each 2m-bucket with all literals ℓi in

∑
i aiℓi ▷◁ k such that

the 2m-bit of
[
ai

]
2 is 1. Then for m in increasing order we repeat the following procedure:

While there are at least 2 elements in the 2m-bucket, dequeue three bits x, y, z, or set z = 0 if

SAT 2022

16:12 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 2 Construction of adder network [23]. Procedure full_adder adds full adder to network.
1: procedure adder_network(b)
2: ▷ input: vector of buckets b

3: for i from 0 to b.size() do
4: while bi.size()≥ 2 do
5: if bi.size() = 2 then
6: (x, y)← bi.dequeue()
7: (c, s)← full_adder(x, y, 0)
8: else
9: (x, y, z)← bi.dequeue()

10: (c, s)← full_adder(x, y, z)
11: bi.enqueue(s)
12: bi+1.enqueue(c)

source

Adder

Adder Adder Adder

sink

20-bit 21-bit 22-bit 23-bit

x1 + x3 + x4

x5

s1

s2

2c1

2c2

2s3

4c3

4x1 + 4x2

4s4
8c4

Figure 4 Layout of arithmetic graph for adder network encoding of 5x1 + 4x2 + x3 + x4 + x5.

there are exactly 2 bits left. Use x, y, and z as input for a new full adder with fresh variables
c and s as output (these are just placeholder names), and insert s in the 2m-bucket and c in
the 2m+1-bucket (possibly creating a new bucket). See Algorithm 2 for the pseudocode.

The arithmetic graph is obtained from the adder network by representing each full adder
by a node. Each inner node constructed from a 2m-bucket has 3 input edges with labels
2m · x, 2m · y, and 2m · z and 2 output edges with labels 2m · s and 2m+1 · c. An example for
the PB expression 5x1 + 4x2 + x3 + x4 + x5 is shown in Figure 4. The preservation equality
can be derived using Proposition 7 and multiplying the resulting equality x + y + z = 2c + s

by 2m to obtain 2m · x + 2m · y + 2m · z = 2m+1 · c + 2m · s. When the construction algorithm
ends, each 2m-bucket has at most one 2m-bit left, and we connect the corresponding edges
to the sink, resulting in an output of the form

∑bits
i=0 2i · oi. If the 2i-bucket is empty, oi is

fixed to 0.
Each full adder of the network is encoded to CNF using clauses

x + y + z + s ≥ 1 x + y + z + s ≥ 1
y + z + c ≥ 1 x + y + z + s ≥ 1 y + z + c ≥ 1 x + y + z + s ≥ 1
x + z + c ≥ 1 x + y + z + s ≥ 1 x + z + c ≥ 1 x + y + z + s ≥ 1
x + y + c ≥ 1 x + y + z + s ≥ 1 x + y + c ≥ 1 x + y + z + s ≥ 1

(23)

which are all RUP with respect to the preservation equality x + y + z = 2c + s.

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:13

To compare the constant k in the PB constraint with the output of the circuit, we encode
a bitwise comparison x⃗ ≥ y⃗ for bit vectors x⃗ and y⃗, where x⃗ = obits · · · o1o0 and y⃗ = [k]2
or vice versa, depending on whether we want to encode

∑n
i=1 aiℓi ≥ k or

∑n
i=1 aiℓi ≤ k,

respectively. For
∑n

i=1 aiℓi = k, comparisons for both directions are performed. If the sizes of
the two vectors are different, the shorter vector is padded with 0, after which the constraints

xi + yi +
∑bits

j=i xjyj + xjyj ≥ 1 i = 0, 1, . . . , bits (24)

are added to the CNF encoding. Since either x⃗ or y⃗ is a vector of constant bits, the
constraints (24) are indeed clauses. If for a fixed index i we have that x⃗ and y⃗ differ in
some coordinate j > i, then

∑bits
j=i+1 xjyj + xjyj ≥ 1 holds, and the ith clause is satisfied.

Otherwise, if xi = 1 or yi = 0 we have xi + yi ≥ 1 and the clause is again satisfied, which is
in order since the comparison x⃗ ≥ y⃗ cannot fail for the 2i-bit if all more significant bits are
equal. If none of these cases apply, then the clause reduces to xiyi + xiyi ≥ 1. This enforces
that it must not be the case that all more significant bits are equal but that xi = 0 and
yi = 1, because if so we have x⃗ < y⃗. The clauses (24) are RUP with respect to the constraint∑bits

i=0 2i · oi ▷◁ k, which we obtain from the arithmetic graph using Proposition 4. To see this,
note that asserting (24) to false will set all 2j-bits for j > i equal but the 2i-bits to opposite
values, which immediately falsifies

∑bits
i=0 2i · oi ▷◁ k.

6 Experimental Evaluation

To evaluate the proof logging methods developed in this paper, we have implemented certified
translations to CNF for the sequential counter [57], adder network [23], totalizer [3], and
generalized totalizer [38] encodings in a tool VeritasPBLib. This tool takes a pseudo-
Boolean formula in OPB format [54] and returns a CNF translation with a proof logging
certificate. We have employed the verifier VeriPB [60] to check the certificate returned
by VeritasPBLib, and have used the solver Kissat [42], in a lightly modified version
outputting DRAT proofs in pseudo-Boolean format,1 to solve the CNF formula. Finally, we
have conjoined the certificates from the CNF translation and the SAT solving and verified
the end-to-end pipeline with VeriPB. See [30] for source code and experimental data.

The experiments were conducted on Amazon EC2 r5.large instances (2 vCPU) with
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz CPUs, 16 GB of memory, and gp2
volumes. We ran one process on each instance with a memory limit of 15 GB and a time
limit of 7,200 seconds for verifying the proof with VeriPB, and a time limit of 1,800 seconds
for CNF translation with VeritasPBLib and SAT solving with Kissat. We gave additional
time for verification, which tends to be slower than solving the problem.

To evaluate VeritasPBLib, we collected 1,803 pseudo-Boolean formulas from the
PB 2016 Evaluation.2 These instances can be partitioned into formulas with (1) only
clauses (279 instances), (2) clauses and cardinality constraints (772 instances), (3) clauses
and general PB constraints (444 instances), and (4) clauses, cardinality and general PB
constraints (308 instances). Since this work targets the verification of formulas with non-
clausal constraints, we excluded the 279 pure CNF formula instances, as those can already be
certified with existing techniques. Our evaluation aimed to answer the following questions:

1 This modified version of Kissat with pseudo-Boolean proof logging is available at https://gitlab.
com/MIAOresearch/kissat_fork.

2 These pseudo-Boolean benchmarks are available at http://www.cril.univ-artois.fr/PB16/.

SAT 2022

https://gitlab.com/MIAOresearch/kissat_fork
https://gitlab.com/MIAOresearch/kissat_fork
http://www.cril.univ-artois.fr/PB16/

16:14 Certified CNF Translations for Pseudo-Boolean Solving

Table 1 Number of translated, solved and verified instances for each encoding.

Translation Solving

Category #Inst Encoding #CNF #Veri #Solved #Verified
SAT UNSAT SAT UNSAT

Card 772 Sequential 772 772 139 480 133 479
Totalizer 772 772 139 475 130 474

PB 444 Adder 444 444 179 167 178 165
GTE 425 414 164 162 150 151

Card+PB 308 Seq+Adder 306 296 134 152 128 151

1. Can we use our end-to-end framework to verify the results of CDCL-based pseudo-Boolean
solving, and how efficient is the verification?

2. How long does verification of the proof logging take when compared to the translation of
the pseudo-Boolean formula to CNF?

End-to-End Solving and Verification. Table 1 shows how VeritasPBLib can be used to
generate a CNF formula that can be solved by Kissat and verified by VeriPB. For instances
with cardinality constraints (Card), we use the sequential and totalizer encodings to translate
those constraints to CNF. For instances with general PB constraints (PB), we translate such
constraints using the adder network and generalized totalizer (GTE) encodings. Finally, for
instances with both cardinality and general PB constraints (Card+PB), we use the sequential
encoding for cardinality constraints and the adder network encoding for PB constraints,
henceforth denoted by Seq+Adder . Even though other combinations of cardinality and
PB encodings could be explored, the goal of this work is not to find the best performing
encodings but to show that we can verify the final result for a variety of encodings.

The column #CNF shows for how many instances VeritasPBLib successfully generated
the CNF translation, which is almost all. The exceptions are 19 instances using GTE and
2 instances using the Seq+Adder encoding. In those cases, the number of clauses generated
is too large and exceeds the resource limits used in our evaluation.

The column #Veri under Translation shows results for VeriPB verification of the
translation certificate from VeritasPBLib. Except for a few instances for GTE and
Seq+Adder yielding large proofs, VeriPB is successful. Note that if the translation check
passes, then this guarantees that the CNF encoding does not remove any solutions of the PB
formula.

The columns #Solved and #Verified under Solving show how many instances can be
solved by Kissat, and from those how many can be verified by VeriPB. If a satisfiable
formula is verified, this means that all clauses learned by Kissat are also valid for the original
pseudo-Boolean formula, as is the satisfying assignment found. If an unsatisfiable formula is
verified, then a correct proof of unsatisfiability for the PB formula has been produced.

We can verify 99% of the solved unsatisfiable instances, which shows that the current
proof-of-concept approach is already practical in this setting. For satisfiable formulas we can
verify 95% of the solved instances. However, even when VeriPB does not terminate within
the timeout limit, we can still certify that the satisfying assignment found by the SAT solver
is valid for the original PB formula. We note that there is still ample room for performance
improvements in VeriPB proof checking – in particular, when it comes to verifying the
DRAT proofs produced by the SAT solver, which do not even use pseudo-Boolean reasoning,
but are simply clausal proofs syntactically rewritten in pseudo-Boolean format. Making
VeriPB faster at validating such proofs would further increase the number of instances that
could be verified, but work in that direction is orthogonal to the contributions of this paper.

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:15

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
og

gi
n
g

sequential
totalizer

(a) Cardinality formulas.

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
og

gi
n
g

adder
gte

seq+adder

(b) General pseudo-Boolean formulas.

Figure 5 Comparison between CNF file size and proof logging file size in KiB.

Translation and Verification. Turning our focus to the certified translation only, our
experiments show that the average overhead in running time for proof logging is a factor
of 2–3 for all encodings except GTE , which incurs around a factor 5 in overhead. However,
since translation is fast for the majority of instances (see Figure 6), the additional overhead
of proof logging is not an issue when translating the pseudo-Boolean formulas to CNF.

This overhead can be explained by the proofs being larger than the generated CNF
formulas, as shown in Figure 5. For most instances the proof size seems to be within
a constant factor of the CNF formula size, but for a collection of crafted vertex cover
problems [25] the sequential counter encoding turns out to require proofs of super-linear
size. These instances contain a constraint enforcing a constant fraction of the literals in the
formula to be false, which is a worst-case scenario for the sequential counter encoding. While
the number of clauses in the CNF translation is still linearly related to the number of steps
in the proof, each reification step in the unary sum derivation in Proposition 5 introduces a
constraint of linear size, making the total proof size quadratic. It would be desirable to find
a more efficient derivation that only requires linear proof size.

Figure 6 compares the time for VeritasPBLib to generate the CNF translation and
VeriPB to verify it. The verification overhead is far from negligible, but not unreasonable.
Over all encodings, for 75% of benchmarks verification takes at most 49 times longer than
translation, and for 98% of benchmarks at most 100 times longer. While some overhead is
natural, since the translation algorithm can just output a claimed proof while the verifier
needs to perform the calculations to actually check it, our experiments indicate the need to
improve the efficiency both of the verifier and of the proof logging methods used.

7 Concluding Remarks

In this work, we develop a general framework for certified translations of pseudo-Boolean
constraints into CNF using cutting-planes-based proof logging. Since our method is a strict
extension of DRAT , the proof for the translation can be combined with a SAT solver DRAT
proof log to provide, for the first time, end-to-end verification for CDCL-based pseudo-
Boolean solvers. Our use of the cutting planes method is not only crucial to deal with the
pseudo-Boolean format of the input, but the expressivity of the 0-1 linear constraints also
allows us to certify the correctness of the translation to CNF in a concise and elegant way.

SAT 2022

16:16 Certified CNF Translations for Pseudo-Boolean Solving

10�410�310�210�1 100 101 102 103 104 105

10�4

10�3

10�2

10�1

100
101
102
103
104
105

timeout

memout

translation

ve
ri
fi
ca
ti
on

sequential
totalizer

(a) Cardinality formulas.

10�410�310�210�1 100 101 102 103 104 105

10�4

10�3

10�2

10�1

100
101
102
103
104
105

timeout

memout

translation

ve
ri
fi
ca
ti
on

adder
gte

seq+adder

(b) General pseudo-Boolean formulas.

Figure 6 Comparison between CNF translation and verification of corresponding proof logging.

While there is still room for performance improvements in proof logging and verification,
the experimental evaluation shows that our approach is feasible in practice. We believe that
the generality of our method, which expresses the proof logging steps in terms of simple
operations on a graph representation of the PB-to-CNF translation, is an important aspect
of our work. However, it should be noted that for some sorting network encodings found to
be particularly efficient in [23], such as the odd-even merge sorters [6] used in MiniSat+, we
do not yet know of a nice way of capturing them in the framework developed in this paper.
The same problem applies to encodings based on binary decision diagrams BDDs [12], and
we leave this as future work.

As discussed already in the introduction, our paper does not quite reach the goal of
certifying equivalence of the original pseudo-Boolean formula F and the CNF translation F ′.
In one direction, it is clear that as long as F ′ is derived from F using cutting planes with
reification, any satisfying assignment α to F yields a unique extended assignment α′ ⊇ α

satisfying F ′ by giving all newly introduced variables the values determined by the reification
rules (3a)–(3b). In the other direction, however, we do not formally establish that the CNF
translation F ′ is as strong as the original pseudo-Boolean formula F in the sense that any
satisfying assignment α′ for F ′ is guaranteed to also satisfy F . As a quick technical detour,
one way of achieving such guarantees would be, after having derived all clauses in F ′, to erase
all constraints in F using the “checked deletion” rule in [10], and to only allow standard,
implicational, cutting planes rules in the proof that the deleted constraint can be rederived
from what is left in the constraint database. This is certainly doable in principle, but we
currently know of no clean and simple way to formalize this in our graph-based translation
framework. The problem of certifying equivalence of the original formula and the translation
is therefore another topic that we have to leave as future research.

Concluding this section, we wish to emphasize that we view pseudo-Boolean decision
problems as only a first step, and believe that the techniques in this paper should also be
sufficient to support proof logging for MaxSAT solvers, including derivation of clauses added
during core extraction and objective function reformulation in core-guided solving [28, 47].
While designing efficient proof logging for MaxSAT approaches such as implicit hitting sets
(IHS) [20] and abstract cores [7] seems more challenging, we are still hopeful that our work
could lead to a unified proof logging method not only for SAT-based optimization but
also for pseudo-Boolean solving and optimization using cutting-planes-based reasoning as
in [21, 22, 27, 43].

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:17

References

1 Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Meta-
morphic testing of constraint solvers. In Proceedings of the 24th International Conference on
Principles and Practice of Constraint Programming (CP ’18), volume 11008 of Lecture Notes
in Computer Science, pages 727–736. Springer, August 2018.

2 Seulkee Baek, Mario Carneiro, and Marijn J. H. Heule. A flexible proof format for SAT
solver-elaborator communication. In Proceedings of the 27th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS ’21), volume 12651 of
Lecture Notes in Computer Science, pages 59–75. Springer, March–April 2021.

3 Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean cardinality con-
straints. In Proceedings of the 9th International Conference on Principles and Practice of
Constraint Programming (CP ’03), volume 2833 of Lecture Notes in Computer Science, pages
108–122. Springer, September 2003.

4 Lee A. Barnett and Armin Biere. Non-clausal redundancy properties. In Proceedings of the
28th International Conference on Automated Deduction (CADE-28), volume 12699 of Lecture
Notes in Computer Science, pages 252–272. Springer, July 2021.

5 Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean op-
timization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, January
1995.

6 Kenneth E. Batcher. Sorting networks and their applications. In Proceedings of the Spring
Joint Computer Conference of the American Federation of Information Processing Societies
(AFIPS ’68), volume 32, pages 307–314, April 1968.

7 Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set MaxSat
solving. In Proceedings of the 23rd International Conference on Theory and Applications of
Satisfiability Testing (SAT ’20), volume 12178 of Lecture Notes in Computer Science, pages
277–294. Springer, July 2020.

8 Armin Biere. Tracecheck. http://fmv.jku.at/tracecheck/, 2006.
9 Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of

Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2nd edition, February 2021.

10 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry
and dominance breaking for combinatorial optimisation. In Proceedings of the 36th AAAI
Conference on Artificial Intelligence (AAAI ’22), February 2022. To appear.

11 Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of
SAT and QBF solvers. In Proceedings of the 13th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in Computer
Science, pages 44–57. Springer, July 2010.

12 Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677–691, August 1986.

13 Randal E. Bryant, Armin Biere, and Marijn J. H. Heule. Clausal proofs for pseudo-Boolean
reasoning. In Proceedings of the 28th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’22), volume 13243 of Lecture Notes in
Computer Science, pages 443–461. Springer, April 2022.

14 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

15 Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming
results. In Proceedings of the 19th International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer Science,
pages 148–160. Springer, June 2017.

SAT 2022

http://fmv.jku.at/tracecheck/

16:18 Certified CNF Translations for Pseudo-Boolean Solving

16 William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

17 William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-
bound approach for exact rational mixed-integer programming. Mathematical Programming
Computation, 5(3):305–344, September 2013.

18 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt, Matt Kaufmann, and Peter Schneider-
Kamp. Efficient certified RAT verification. In Proceedings of the 26th International Conference
on Automated Deduction (CADE-26), volume 10395 of LNCS, pages 220–236. Springer, 2017.

19 Luís Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution
proof checking. In Proceedings of the 23rd International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’17), volume 10205 of LNCS, pages
118–135. Springer, 2017.

20 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT
instances. In Proceedings of the 17th International Conference on Principles and Practice of
Constraint Programming (CP ’11), volume 6876 of Lecture Notes in Computer Science, pages
225–239. Springer, September 2011.

21 Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer
linear programming with pseudo-Boolean conflict-driven search. Constraints, 26(1–4):26–55,
October 2021. Preliminary version in CPAIOR ’20.

22 Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström, and Peter Stuckey. Cutting
to the core of pseudo-Boolean optimization: Combining core-guided search with cutting planes
reasoning. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21),
pages 3750–3758, February 2021.

23 Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, March 2006.

24 Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed
integer programming. In Proceedings of the 22nd International Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO ’21), volume 12707 of Lecture Notes in
Computer Science, pages 163–177. Springer, May 2021.

25 Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc Vinyals. Using combinatorial
benchmarks to probe the reasoning power of pseudo-Boolean solvers. In Proceedings of the
21st International Conference on Theory and Applications of Satisfiability Testing (SAT ’18),
volume 10929 of Lecture Notes in Computer Science, pages 75–93. Springer, July 2018.

26 Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences
using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI ’20), pages 1486–1494, February 2020.

27 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI ’18),
pages 1291–1299, July 2018.

28 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proceedings of the
9th International Conference on Theory and Applications of Satisfiability Testing (SAT ’06),
volume 4121 of Lecture Notes in Computer Science, pages 252–265. Springer, August 2006.

29 Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints.
In Proceedings of the 25th International Conference on Principles and Practice of Constraint
Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582.
Springer, October 2019.

30 Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Experimental repository
for “Certified CNF translations for pseudo-Boolean solving”. Available at https://doi.org/
10.5281/zenodo.6610581, June 2022.

31 Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and
James Trimble. Certifying solvers for clique and maximum common (connected) subgraph
problems. In Proceedings of the 26th International Conference on Principles and Practice of
Constraint Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages
338–357. Springer, September 2020.

https://doi.org/10.5281/zenodo.6610581
https://doi.org/10.5281/zenodo.6610581

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:19

32 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets
cutting planes: Solving with certified solutions. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

33 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence
(AAAI ’21), pages 3768–3777, February 2021.

34 Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE ’03), pages 886–891, March 2003.

35 Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking
clausal proofs. In Proceedings of the 13th International Conference on Formal Methods in
Computer-Aided Design (FMCAD ’13), pages 181–188, October 2013.

36 Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with
extended resolution. In Proceedings of the 24th International Conference on Automated
Deduction (CADE-24), volume 7898 of Lecture Notes in Computer Science, pages 345–359.
Springer, June 2013.

37 Steffen Hölldobler, Norbert Manthey, and Peter Steinke. A compact encoding of pseudo-
Boolean constraints into SAT. In Proceedings of KI 2012: Advances in Artificial Intelligence,
the 35th Annual German Conference on AI, volume 7526 of Lecture Notes in Computer Science,
pages 107–118. Springer, 2012.

38 Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for
pseudo-Boolean constraints. In Proceedings of the 21st International Conference on Principles
and Practice of Constraint Programming (CP ’15), volume 9255 of Lecture Notes in Computer
Science, pages 200–209. Springer, August–September 2015.

39 Daniela Kaufmann, Paul Beame, Armin Biere, and Jakob Nordström. Adding dual variables
to algebraic reasoning for circuit verification. In Proceedings of the 25th Design, Automation
and Test in Europe Conference (DATE ’22), pages 1435–1440, March 2022.

40 Daniela Kaufmann and Armin Biere. AMulet 2.0 for verifying multiplier circuits. In Proceedings
of the 27th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS ’21), volume 12652 of Lecture Notes in Computer Science, pages 357–364.
Springer, March–April 2021.

41 Daniela Kaufmann, Mathias Fleury, and Armin Biere. The proof checkers Pacheck and
Pastèque for the practical algebraic calculus. In Proceedings of the 20th Conference on Formal
Methods in Computer-Aided Design (FMCAD ’20), pages 264–269, September 2020.

42 Kissat SAT solver. http://fmv.jku.at/kissat/.
43 Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,

Boolean Modeling and Computation, 7:59–64, July 2010.
44 João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999. Preliminary version
in ICCAD ’96.

45 Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT
solver. In Proceedings of the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages
438–445. Springer, July 2014.

46 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying al-
gorithms. Computer Science Review, 5(2):119–161, May 2011.

47 António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João P. Marques-
Silva. Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints,
18(4):478–534, October 2013.

48 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference (DAC ’01), pages 530–535, June 2001.

SAT 2022

http://fmv.jku.at/kissat/

16:20 Certified CNF Translations for Pseudo-Boolean Solving

49 NaPS (Nagoya pseudo-Boolean solver). https://www.trs.cm.is.nagoya-u.ac.jp/projects/
NaPS/.

50 Open-WBO: An open source version of the MaxSAT solver WBO. http://sat.inesc-id.pt/
open-wbo/.

51 Tobias Philipp and Peter Steinke. PBLib – a library for encoding pseudo-Boolean constraints
into CNF. In Proceedings of the 18th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’15), volume 9340 of Lecture Notes in Computer Science, pages
9–16. Springer, September 2015.

52 Pseudo-Boolean competition 2016. http://www.cril.univ-artois.fr/PB16/, July 2016.
53 Daniela Ritirc, Armin Biere, Manuel Kauers, A Bigatti, and M Brain. A practical polynomial

calculus for arithmetic circuit verification. In 3rd International Workshop on Satisfiability
Checking and Symbolic Computation (SC2 ’18), pages 61–76, 2018.

54 Olivier Roussel and Vasco M. Manquinho. Input/output format and solver requirements for
the competitions of pseudo-Boolean solvers. Revision 2324. Available at http://www.cril.
univ-artois.fr/PB16/format.pdf, January 2016.

55 Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint
in band form and related techniques for PB-solvers. IEICE Transactions on Information and
Systems, 98-D(6):1121–1127, June 2015.

56 The international SAT Competitions web page. http://www.satcompetition.org.
57 Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In

Proceedings of the 11th International Conference on Principles and Practice of Constraint
Programming (CP ’05), volume 3709 of Lecture Notes in Computer Science, pages 827–831.
Springer, October 2005.

58 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th International
Symposium on Artificial Intelligence and Mathematics (ISAIM ’08), 2008. Available at
http://isaim2008.unl.edu/index.php?page=proceedings.

59 Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT
solver. Manuscript, 2022.

60 VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/MIAOresearch/VeriPB.
61 Joost P. Warners. A linear-time transformation of linear inequalities into conjunctive normal

form. Information Processing Letters, 68(2):63–69, 1998.
62 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking

and trimming using expressive clausal proofs. In Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of
Lecture Notes in Computer Science, pages 422–429. Springer, July 2014.

A Derivations for Proof Logging Building Blocks

In this appendix we provide the missing technical details for Section 4. Let us start by
explaining our proof logging notation, which is similar to what is used in VeriPB proof files.

The proof is constructed line by line using the proof_log(·) function, with each call to
this function adding a new pseudo-Boolean constraint derived from previous lines in the
proof. Every constraint in the proof gets a unique identifier, and we can write down cutting
planes derivations of new constraints in reverse polish notation using these identifiers to refer
to previous constraints. For example, given previously derived constraints with identifiers
C and D, calling “proof_log(pol C 2 d D 3 * + s)” divides C by 2 (and rounds up),
multiplies D by 3, adds the two constraints obtained in this way, applies saturation, and
returns the resulting constraint. A reverse unit propagation (RUP) constraint C can be
added using ‘proof_log(rup C)’. The syntax we use for deriving a constraint by reification is
“proof_log(red z ⇒ C ; z 0)” and “proof_log(red z ⇐ C ; z 1)” (where this somewhat
cryptic notation is due to that reification is a special case of the redundance rule in [33]).
We use “▷” to denote comments in the pseudocode.

https://www.trs.cm.is.nagoya-u.ac.jp/projects/NaPS/
https://www.trs.cm.is.nagoya-u.ac.jp/projects/NaPS/
http://sat.inesc-id.pt/open-wbo/
http://sat.inesc-id.pt/open-wbo/
http://www.cril.univ-artois.fr/PB16/
http://www.cril.univ-artois.fr/PB16/format.pdf
http://www.cril.univ-artois.fr/PB16/format.pdf
http://www.satcompetition.org
http://isaim2008.unl.edu/index.php?page=proceedings
https://gitlab.com/MIAOresearch/VeriPB

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:21

Algorithm 3 Deriving a unary sum over fresh variables zi.

1: procedure derive_unary_sum(C ′)
2: ▷ input: C ′ of the form

∑n
i=1ℓi =

∑n
i=1 zi and describing the constraint to be derived

3: ▷ the zi variables need to be fresh, the left-hand side is the sum to be encoded
4: for j from 1 to k do
5: Dgeq

j , Dleq
j ← reify(zj ⇔

∑n
i=11 · ℓi ≥ j) ▷ Step 3.1: introduce variables

6: Cgeq ← derive_sum(Dgeq
1 , Dgeq

2 , . . . , Dgeq
n) ▷ Step 3.2: derive

∑n
i=1ℓi ≥

∑n
i=1zi

7: C leq ← derive_sum(Dleq
n , Dleq

n−1, . . . , Dleq
1) ▷ Step 3.3: derive

∑n
i=1ℓi ≤

∑n
i=1zi

8: for i from 1 to k − 1 do
9: derive_ordering(Dleq

i , Dgeq
i+1) ▷ Step 3.4: derive zi ≥ zi+1, i ∈ [n− 1]

10: return Cgeq, C leq

Algorithm 4 Reify
∑n

i=1aiℓi ≥ j using the fresh variable zj .

1: procedure reify(zj ⇔
∑n

i=1aiℓi ≥ j)
2: Cgeq ←

∑n
i=1aiℓi + jzj ≥ j ▷ zj ⇒

∑n
i=1aiℓi ≥ j

3: proof_log(red Cgeq ; zj 0)
4: C leq ←

∑n
i=1aiℓi + (

∑n
i=1 ai − j + 1)zj ≥

∑n
i=1 ai − j + 1 ▷ zj ⇐

∑n
i=1aiℓi ≥ j

5: proof_log(red C leq ; zj 1)
6: return Cgeq, C leq

A.1 Deriving Unary Sum Constraints
Deriving the unary sum constraints∑n

i=1ℓi ≥
∑n

i=1zi (25a)∑n
i=1ℓi ≤

∑n
i=1zi (25b)

zi ≥ zi+1 i ∈ [n− 1] (25c)

in Proposition 5 for fresh variables zj is described in Algorithm 3, which is split into four steps.
Step 3.1 is to introduce the fresh variables zj as reifications of the constraints

∑n
i=1ℓi ≥ j,

which is shown in Algorithm 4 for the more general case of arbitrary positive coefficients.
In Step 3.2 the lower bound (25a) is derived using Algorithm 5 maintaining the invariant∑n

i=1ℓi +
∑j

i=1 zi ≥ j. For the base case j = 1, the invariant is equivalent to the reification
constraint z1 ⇒

∑n
i=1ℓi ≥ 1, which in normalized form is

∑n
i=1ℓi + z1 ≥ 1 and hence this

case is covered. For the inductive step, to go from j to j + 1 we multiply the invariant by j

and add the reification constraint zj+1 ⇒
∑n

i=1ℓi ≥ j + 1, which is
∑n

i=1ℓi + (j + 1)zj+1 ≥
j + 1 in normalized form, to get (j + 1)

∑n
i=1ℓi + j

∑j
i=1 zi + (j + 1)zj+1 ≥ j2 + j + 1.

Note that j2 + j + 1 = (j + 1)2 − j and hence division by j + 1 and rounding up yields∑n
i=1ℓi +

∑j
i=1 zi + zj+1 ≥ j + 1, i.e., the invariant for j + 1. For j = k + 1 the invariant is

the normalized form of (25a).
In Step 3.3 the upper bound (25b) is again derived using Algorithm 5, except that the

constraints are processed in reverse order (just as in Example 1 on page 7).
In Step 3.4 the ordering constraint is derived in Algorithm 6, using the reification

constraints: We add the constraints used for reification, that is zj+1 ⇒
∑n

i=1aiℓi ≥ j + 1 and
zj ⇐

∑n
i=1aiℓi ≥ j. In normalized form these two constraints are (j + 1)zj+1 +

∑n
i=1aiℓi ≥

j +1 and (m−j +1)zj +
∑n

i=1aiℓi ≥ m−j +1, where m =
∑n

i=1 ai. Adding both constraints
together yields (m− j + 1)zj + (j + 1)zj+1 ≥ 2 and we get the desired ordering constraint
after division by a large enough number, such as m.

SAT 2022

16:22 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 5 Derive sum of reification variables.
1: procedure derive_sum(D1, . . . , Dn)
2: ▷ input: Dj is of the form

∑n
i=1 ℓi + jzj ≥ j

3: C ← D1
4: for j from 2 to n do ▷ Invariant: C :

∑n
i=1ℓi +

∑j
i=1 zi ≥ j

5: proof_log(pol C j − 1 * Dj + j d)
6: C ← ((j − 1) · C + Dj)/j

7: return C

Algorithm 6 Deriving an ordering constraint zA ≥ zB from the reification constraints.
1: procedure derive_ordering(C, D)
2: ▷ input: C is of the form zA ⇒

∑n
i=1aiℓi ≥ A

3: ▷ input: D is of the form zB ⇐
∑n

i=1aiℓi ≥ B

4: divisor ←
∑n

i=1 ai

5: ▷ derive zA ≥ zB if A < B

6: proof_log(pol C D + divisor d)

A.2 Deriving Sparse Unary Sum Constraints
Let us now prove Proposition 6 by presenting and analyzing Algorithm 7, which given two
numbers in sparse unary representation derives their sum. Just as for the unary sum, we
start in Step 7.1 by introducing the required fresh variables via reification. However, we
only need to introduce the variables with index in E. If k-simplification is used, then also
variables with index bigger than k need to be introduced, as without them equality cannot
be derived. The ordering constraints can be derived as before using Algorithm 6.

In Step 7.2 we introduce a variable zeq which is true if and only if the equality to be
derived is true. Since an equality is actually two inequalities, we need to introduce separate
variables zgeq, zleq for each inequality and then combine them into zeq.

In Step 7.3 we derive zeq ≥ 1 by checking all combinations of values in A and B, which
requires O(|A| · |B|) steps. Asymptotically, this is the same number of steps required to
compute which elements are in E, so this is still linear in the time needed to construct the
encoding.

In Step 7.4 we use that zeq ≥ 1 and hence zgeq = zleq = 1, which allows us to derive
sparse(x⃗, A) + sparse(y⃗, B) ≥ sparse(z⃗, E) and sparse(x⃗, A) + sparse(y⃗, B) ≤ sparse(z⃗, E) by
removing zgeq and zleq from the constraints introduced in Step 7.2.

Algorithm 8 describes in detail how to derive zeq ≥ 1 by checking all combinations of
values in A and B. Let us illustrate how the algorithm works with an example. Let A = {0, 2}
and B = {0, 2, 4}. After the first iteration of the outer loop in Algorithm 8 the clauses

x2+y2+ zeq ≥ 1 (26a)
x2+y2+y4+zeq ≥ 1 (26b)
x2+ y4+zeq ≥ 1 (26c)

have been derived. Deriving (26a) by RUP sets x2 = y2 = zeq = 0. This causes the ordering
constraints to propagate all variables in x⃗ and y⃗. As all x⃗ and y⃗ variables are set, the
reification constraints introduced in Step 7.1 will cause all z⃗ variables to propagate. As the
constraints reified in Step 7.2 are satisfied, zgeq = zleq = 1 is propagated and hence zeq should
be 1. However, we already set zeq to 0, which is a contradiction showing that (26a) can be
derived. Deriving the other clauses works analogously.

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:23

Algorithm 7 Deriving a sparse unary sum over fresh variables z⃗.

1: procedure derive_sparse_unary_sum(C ′)
2: ▷ input: C ′ of the form sparse(x⃗, A) + sparse(y⃗, B) = sparse(z⃗, E) and describing the

constraint to be derived such that A, B ⊆ N, E = {i + j|i ∈ A, j ∈ B}
3: ▷ Step 7.1: Introduce variables as reification and derive ordering.
4: for j ∈ E \ {0} do
5: Dgeq

j , Dleq
j ← reify(zj ⇔ sparse(x⃗, A) + sparse(y⃗, B) ≥ j)

6: for i ∈ E \ {0, max (E)} do
7: derive_ordering(Dleq

i , Dgeq
succ(i,E)) ▷ derive zi ≥ zsucc(i,E)

8: ▷ Step 7.2: : reify constraint to be derived
9: Cgeq, _← reify(zgeq ⇔ sparse(x⃗, A) + sparse(y⃗, B) ≥ sparse(z⃗, E))

10: C leq, _← reify(zleq ⇔ sparse(x⃗, A) + sparse(y⃗, B) ≤ sparse(z⃗, E))
11: reify(zeq ⇔ zgeq + zleq ≥ 2)
12: ▷ Step 7.3: derive that zeq ≥ 1
13: try_all_values(sparse(x⃗, A), sparse(y⃗, B), zeq)
14: ▷ Step 7.4: derive constraint to be derived from its reification
15: M ← max(A) + max(B) ▷ Coefficient so that reification variables get eliminated.
16: D ← zgeq ≥ 1
17: proof_log(rup D); proof_log(pol Cgeq D M * +)
18: Cgeq ← Cgeq + M ·D
19: D ← zleq ≥ 1
20: proof_log(rup D); proof_log(pol C leq D M * +)
21: C leq ← C leq + M ·D
22: return Cgeq, C leq

If we add all clauses in (26) together, we are left with 3x2 + 3zeq ≥ 1, which is saturated
to obtain x2 + zeq ≥ 1. Analogously, in the second iteration we derive x2 + zeq ≥ 1, which
added to the result of the first iteration yields 2zeq ≥ 1 and using saturation we get zeq ≥ 1.

A.3 Deriving Binary Adder Network Constraints
Algorithm 9 provides the details for the derivation of (and proof logging for) the preservation
equality (21) for a single binary full adder, and this establishes Proposition 7.

B Certifying the Totalizer and Generalized Totalizer Encodings

The totalizer and generalized totalizer encoding accumulate the input in the form of a
balanced binary tree. The totalizer encodes cardinality constraints and uses the order
encoding to represent values, while the generalized totalizer encodes general pseudo-Boolean
constraints and uses a sparse representation. An example of an arithmetic graph for the
generalized totalizer encoding is shown in Figure 7. The nodes are combined in form of a
binary tree, where we ensure that the value is preserved for each inner node. To perform
k-simplification, the arithmetic graph has additional edges that go directly to the sink node.
The formal definition of the arithmetic graph for the (generalized) totalizer encoding is as
follows.

▶ Definition 8 (Arithmetic graph for the generalized totalizer encoding). Given a linear
sum

∑
i aiℓi over n variables, let G be a binary tree with edges directed towards the root r,

leaves si for i ∈ [n] and an additional sink node t with an edge (r, t). The edge (si, v)

SAT 2022

16:24 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 8 Given a reified sparse unary sum, derive that the reification variable is true.
1: procedure fix(sparse(x⃗, A), a)
2: return xa + xsucc(a,A) ▷ replace x0 by 1 and x∞ by 0
3: procedure try_all_values(sparse(x⃗, A), sparse(y⃗, B), zeq)
4: Couter ← 0 ≥ 0
5: for i ∈ A do
6: Cinner ← 0 ≥ 0
7: for j ∈ B do
8: ▷ a (respectively b) is the value encoded by sparse(x⃗, A) (sparse(y⃗, B))
9: ▷ encode that (a = i ∧ b = j)⇒ zeq

10: D ← fix(sparse(x⃗, A), i) + fix(sparse(y⃗, B), j) + zeq ≥ 1
11: proof_log(rup D); proof_log(pol Cinner D +)
12: Cinner ← Cinner + D

13: proof_log(pol Couter Cinner s +)
14: Couter ← Couter + saturate(Cinner)
15: proof_log(pol Couter s)
16: Couter ← saturate(Couter)
17: return Couter ▷ Couter is now zeq ≥ 1

Algorithm 9 Proof logging for the encoding of a single full adder.
1: procedure full_adder(x, y, z)
2: Dgeq

carry, Dleq
carry ← reify(c⇔ x + y + z ≥ 2)

3: Dgeq
sum, Dleq

sum ← reify(s⇔ x + y + z + 2c ≥ 3)
4: Dgeq ← (2 ·Dgeq

carry + Dgeq
sum)/3

5: proof_log(pol Dgeq
carry 2 * Dgeq

sum + 3 d)
6: Dleq ← (2 ·Dleq

carry + Dleq
sum)/3

7: proof_log(pol Dleq
carry 2 * Dleq

sum + 3 d)
8: return Dgeq, Dleq, c, s ▷ D is the preservation equality of the full adder

is labelled with aixi. For an inner node v with two incoming edges labelled sparse(x⃗, A)
and sparse(y⃗, B), the outgoing edge is labelled sparse(z⃗, E), where z⃗ are fresh variables and
E = {i+j | i ∈ A, j ∈ B}. All si are combined into a single source node. For k-simplification
we split sparse(z⃗, E) =

∑
i∈E aizi into

∑
i≤succ(k,E) aizi and

∑
i>succ(k,E) aici.

To see that this graph is an arithmetic graph, we only need to check that we can derive
the preservation equality for each inner node. We can use Proposition 6 to derive the required
preservation equality. Proposition 6 also requires to have ordering constraints on the input
literals. However, it is easy to see by an inductive argument that the ordering constraints on
the literals can also be derived as we process the nodes in topological order. For the base
case, edges from source nodes only contain a single literal, which is vacuously ordered. For
inner nodes we get the ordering constraints by applying Proposition 6. If E contains all
integers between 0 and max(E), we can use Proposition 5 to derive the preservation equality,
which requires O(|E|) steps instead of O(|A| · |B|) steps and hence reduces overhead.

S. Gocht, R. Martins, J. Nordström, and A. Oertel 16:25

source

sink

x1 x2 x3 x4 2x5 2x6 2x7 2x8

z11 + z12 z21 + z22 2z32 + 2z34 2z42 + 2z44

z51 + z52 + z53 2z62 + 2z64

∑7

i=1
z7i

z54 2z66 + 2z68

Figure 7 Layout of the arithmetic graph for the generalized totalizer encoding of x1 + x2 + x3 +
x4 + 2x5 + 2x6 + 2x7 + 2x8 ≤ 2. Edges introduced for k-simplification are colored cyan.

For each inner node in the graph with incoming edge labels sparse(x⃗, A) and sparse(y⃗, B),
the (generalized) totalizer encoding contains the clauses

xi + yj + zi+j ≥ 1 i ∈ A, j ∈ B (27a)
xsucc(i,A) + ysucc(j,B) + zsucc(i+j,E) ≥ 1 i ∈ A, j ∈ B (27b)

for succ(i, A) = min{j | j ∈ A ∪ {∞}, j > i} (where compared to Section 4 we have added an
element ∞) and for x0, y0 replaced by 1 and x∞, y∞, z∞ by 0, with ensuing simplification.

For the proof logging of the CNF encoding we can simply add all clauses using reverse
unit propagation. A RUP check of (27a) will assign xi = yj = 1 and zi+j = 0. The ordering
constraints on x⃗, y⃗ will propagate variables in x⃗, y⃗ to true so that sparse(x, A) + sparse(y, B)
has a value of at least i + j, while the ordering constraints on z⃗ will propagate variables in z⃗

to false so that sparse(z, E) can only take a value strictly less than i + j. This will violate the
preservation equality sparse(z, E) = sparse(x, A) + sparse(y, B), showing that (27a) is indeed
a RUP clause. Deriving the clause (27b) works analogously.

To enforce a pseudo-Boolean constraint
∑

i aiℓi ▷◁ k, we first derive a bound on the
output of the arithmetic graph

∑
i cioi ▷◁ k, using Proposition 4. Then we can derive unit

clauses on the output via reverse unit propagation.
To encode

∑
i aiℓi ≥ k or

∑
i aiℓi ≤ k the unit clause zsucc(k−1,E) ≥ 1 or zsucc(k,E) ≥ 1

is added, respectively. This clause is RUP, as the derived sum
∑

i cioi has a value of at
most k − 1 or at least k + 1 and thus the constraint

∑
i cioi ≥ k or

∑
i cioi ≤ k is falsified,

respectively. To encode
∑

i aiℓi = k both unit clauses are added.

SAT 2022

	1 Introduction
	2 Preliminaries
	3 Certified CNF Translation Using the Sequential Counter Encoding
	4 A General Framework for Certifying CNF Translations
	5 Certifying the Binary Adder Network Encoding
	6 Experimental Evaluation
	7 Concluding Remarks
	A Derivations for Proof Logging Building Blocks
	A.1 Deriving Unary Sum Constraints
	A.2 Deriving Sparse Unary Sum Constraints
	A.3 Deriving Binary Adder Network Constraints

	B Certifying the Totalizer and Generalized Totalizer Encodings

