
Pseudo-Boolean Reasoning About States and
Transitions to Certify Dynamic Programming and
Decision Diagram Algorithms
Emir Demirović #

TU Delft, The Netherlands

Ciaran McCreesh #

University of Glasgow, Scotland

Matthew J. McIlree #

University of Glasgow, Scotland

Jakob Nordström #

University of Copenhagen, Denmark
Lund University, Sweden

Andy Oertel #

Lund University, Sweden
University of Copenhagen, Denmark

Konstantin Sidorov #

TU Delft, The Netherlands

Abstract
Pseudo-Boolean proof logging has been used successfully to provide certificates of optimality from a
variety of constraint- and satisifability-style solvers that combine reasoning with a backtracking or
clause-learning search. Another paradigm, occurring in dynamic programming and decision diagram
solving, instead reasons about partial states and possible transitions between them. We describe a
framework for generating clean and efficient pseudo-Boolean proofs for these kinds of algorithm, and
use it to produce certifying algorithms for knapsack, longest path, and interval scheduling. Because
we use a common proof system, we can also reason about hybrid solving algorithms: we demonstrate
this by providing proof logging for a dynamic programming based knapsack propagator inside a
constraint programming solver.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Discrete optimization

Keywords and phrases Proof logging, dynamic programming, decision diagrams

Digital Object Identifier 10.4230/LIPIcs.CP.2024.9

Supplementary Material Software: https://doi.org/10.5281/zenodo.12574620

Funding Emir Demirović : part of the XAIT lab funded by the Delft AI Labs programme.
Ciaran McCreesh: supported by a Royal Academy of Engineering research fellowship, and by the
Engineering and Physical Sciences Research Council [grant number EP/X030032/1].
Jakob Nordström: supported by the Swedish Research Council grant 2016-00782 and the Independent
Research Fund Denmark grant 9040-00389B.
Andy Oertel: supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.
Konstantin Sidorov: part of the XAIT lab funded by the Delft AI Labs programme.

© Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström, Andy Oertel, and
Konstantin Sidorov;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.demirovic@tudelft.nl
https://orcid.org/0000-0003-1587-5582
mailto:ciaran.mccreesh@glasgow.ac.uk
https://orcid.org/0000-0002-6106-4871
mailto:m.mcilree.1@research.gla.ac.uk
https://orcid.org/0009-0005-5042-0876
mailto:jn@di.ku.dk
https://orcid.org/0000-0002-2700-4285
mailto:andy.oertel@cs.lth.se
https://orcid.org/0000-0001-9783-6768
mailto:k.sidorov@tudelft.nl
https://orcid.org/0009-0009-0655-4200
https://doi.org/10.4230/LIPIcs.CP.2024.9
https://doi.org/10.5281/zenodo.12574620
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Pseudo-Boolean Reasoning About States and Transitions

Acknowledgements Part of this work was carried out while taking part in the semester program
Satisfiability: Theory, Practice, and Beyond in 2021 at the Simons Institute for the Theory of
Computing at UC Berkeley, and in the extended reunion of this semester program in the spring of
2023. This work has also benefited greatly from discussions during the Dagstuhl Seminars 22411
Theory and Practice of SAT and Combinatorial Solving and 23261 SAT Encodings and Beyond.

1 Introduction

It is sometimes vital that combinatorial solving algorithm implementations can be trusted to
give correct answers. To this end, when claiming that a problem has no solution, Boolean
satisfiability (SAT) solvers do not just assert unsatisfiability, but also provide an independently
verifiable proof of this fact, in one of several standard formats such as DRAT [20, 19, 35],
LRAT [10], or VeriPB [13]. The proof can then be inspected by a formally verified proof
checker to assert its correctness. This means the algorithm is certifying [28]: while we still
cannot trust that the implementation is correct, this does guarantee that if it ever gives an
incorrect answer, then we can detect it.

Of the above proof formats, VeriPB is the most general-purpose: as well as supporting
advanced SAT-solving techniques such as parity reasoning [18], symmetry and dominance
breaking [4], and MaxSAT optimisation [1], it has also been used for subgraph-finding
algorithms [16, 14, 15] and for constraint programming with a variety of global constraints
[17, 29]. In these latter settings, a VeriPB proof resembles a description of a backtracking
search tree, interleaved with justifications of facts obtained from inference algorithms or
constraint propagation. However, the VeriPB proof format has no direct notion of a search
tree. Instead, its underlying proof system is powerful enough to express implicational
reasoning. In particular, constraints may be reified and dereified, and if some fact can be
derived, it can also be derived under a sequence of guesses with (almost) no additional
effort. This is in contrast to, e.g., the VIPR proof format [8], which was designed specifically
for mixed integer programming and which has explicit notions of assumptions and closing
branches that function independently from other proof rules. An advantage of a sufficiently
powerful proof system that does not have a direct notion of search is that techniques like
restarts [16] and autotabulation [17] can be encoded without needing additions to the proof
system.

However, there are non-search-based ways of solving hard problems. Both dynamic
programming and decision diagram algorithms can be viewed as working with partial states,
and transitions between those states [22, 3]. In this work, we show that VeriPB can also
be used for efficient proof logging for algorithms that work with states and transitions,
rather than search, regardless of whether the algorithm uses memoisation, a matrix, or a
layer-by-layer construction. This is primarily because the pseudo-Boolean constraints and
extended cutting planes proof system underlying VeriPB makes it very clean to work with
implications.

Using a common system, rather than inventing a new proof system for dynamic pro-
gramming proofs, has several benefits: it allows us to reason about hybrid or nested solving
strategies that use more than one kind of algorithm, it avoids the need to reinvent proof
logging for various kinds of constraint and dominance reasoning, and it gives us immediate
access to a suite of proof checking tools which would otherwise be expensive to recreate.
To illustrate this, we have implemented proof logging for a knapsack constraint inside a
constraint programming solver, whose propagator involves reasoning about paths through
a dynamic programming table or decision diagram to detect loss of support for values in
constraint programming variables [34].

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:3

2 Background

Before we can talk about proofs for dynamic programming problems, we give a brief overview
of the VeriPB proof system, and outline how it has been used to generate proofs for
backtracking search algorithms.

2.1 Pseudo-Boolean Preliminaries
Although designed to support many different kinds of solvers, the foundations of the VeriPB
proof system are Boolean variables and pseudo-Boolean constraints. Let xi be a set of
Boolean variables ranging over 0 (false) and 1 (true). We write xi to mean 1− xi (i.e. not
x), and refer to xi and xi as literals. A pseudo-Boolean (PB) constraint over literals ℓi is
an inequality in the form

∑
i ciℓi ▷◁ A, where ▷◁ is either ≥ or ≤ and ci and A are integer

constants. A PB constraint can always be rewritten in normalised form
∑

i ciℓi ≥ A with all
literals over distinct variables and all ci and A non-negative, and when describing the proof
system we will assume constraints are normalised. A PB optimisation problem is a set of PB
constraints, together with an objective

∑
i ciℓi to be minimised.

Let C =
∑

i ciℓi ≥ A be a PB constraint, and y and yj be distinct literals. We define C to
mean

∑
i ciℓi ≤ A−1; ∧jyj ⇒ C to mean

∑
j Kyj+

∑
i ciℓi ≥ A where K = A−

∑
i min(ci, 0);

and y ⇔ C to mean the pair of PB constraints y ⇒ C and y ⇒ C. It is easy to check that
the constraints defined in this way have the meaning suggested by the notation used. Note
how, unlike for Boolean formulae in conjunctive normal form (CNF), full reification of a
pseudo-Boolean constraint by a literal requires only a pair of constraints.

2.2 The VeriPB Proof System
In a VeriPB proof, we begin with a set of pseudo-Boolean constraints as input – these are
assumed, as axioms, and so they must accurately describe the high-level problem being
solved. A proof is then a sequence of pseudo-Boolean constraints, where each new constraint
follows either obviously or by explicit construction from the input and any other constraints
already derived, in such a way that at least one optimal solution is always preserved.

When proof steps consist of explicit constructions, they are given as a sequence of
cutting planes steps [7], as follows. For any literal ℓi, we may freely introduce a constraint
ℓi ≥ 0. Given two constraints

∑
i aiℓi ≥ A and

∑
i biℓi ≥ B, we may add them together to

derive
∑

i(ai + bi)ℓi ≥ A + B. We may also multiply by a positive integer constant c, to get∑
i caiℓi ≥ cA, or (assuming normalised form) divide to get

∑
i

⌈
ai

c

⌉
ℓi ≥

⌈
A
c

⌉
. Finally, we can

saturate, turning (again assuming normalised form)
∑

i aiℓi ≥ A into
∑

i min (ai, A) ℓi ≥ A.
A clausal constraint, or clause, is one of the form

∑
i ℓi ≥ 1. This corresponds naturally

to a Boolean clause in CNF. By resolution, we mean deriving
∑

i xi +
∑

j yj ≥ 1 from the
clauses r +

∑
i xi ≥ 1 and r +

∑
j yj ≥ 1; this may be achieved by adding the constraints and

then saturating [21]. In particular, resolution allows us to take the clauses r ⇒
∑

i xi ≥ 1
and r +

∑
j yj ≥ 1 and derive

∑
i xi +

∑
j yj ≥ 1. Proof steps such as this that involve

implications are generally straightforward in cutting planes: for example, if we have both
r ⇒

∑
i aixi ≥ A and s⇒ r, we may easily derive that s⇒

∑
i aixi ≥ A by multiplication

and then addition. As a special case of this, if we have established that the left hand side of
an implication must be true, then we can dereify the implication and derive its right hand
side unconditionally. Another useful fact, which we use repeatedly throughout this work, is
that if we have a process for deriving a constraint D from a set of constraints Ci, then we can
reuse this process to derive a reified version of D if we are given a set of reified constraints
C ′

i; we explain this in detail in the appendix.

CP 2024

9:4 Pseudo-Boolean Reasoning About States and Transitions

An alternative to cutting planes steps is to allow the proof verifier to add constraints
that are obvious enough that they do not require an explicit derivation. A constraint C

follows by reverse unit propagation (RUP) if adding C to the existing set of constraints
leads immediately to contradiction upon achieving integer bounds consistency for each
constraint individually [9]. Obviously such constraints are implied, and this condition can be
verified efficiently, so a RUP constraint may safely be added as a proof step. (The term unit
propagation is used due to the SAT origins of proof logging [12]; if all constraints are clauses,
integer bounds consistency and unit propagation are equivalent.) As with cutting planes
proofs, RUP proof procedures can trivially be modified to work subject to reifications.

The VeriPB proof system also has a non-implicational strengthening rule [4]. We do
not use the full generality of the rule in this paper, but will use it as an extension rule.
An extension variable z reifying an arbitrary PB constraint C is a variable which has not
previously been used, which is introduced in a proof alongside the pair of constraints z ⇔ C;
the strengthening rule can be used to introduce an extension variable in this way. We
will also use strengthening to implement fusion resolution: given r ⇒

∑
i aixi ≥ A and

r ⇒
∑

i aixi ≥ A′, strengthening lets us derive that
∑

i aixi ≥ min(A, A′).
A proof of unsatisfiability ends by deriving 0 ≥ 1. For an optimisation problem with

objective expression
∑

i ciℓi, a VeriPB proof will conclude by demonstrating that the objective
lies between two integer lower and upper bounds – for an exact solution, these will be the
same. To do this, a proof step may witness a solution by giving a partial assignment to
variables. The proof checker verifies that this assignment unit propagates to a complete
feasible assignment to all variables, and then introduces a new objective-improving constraint∑

i ciℓi ≤ A− 1 where A is the calculated objective value from the assignment.
Finally, we may also delete derived constraints, under certain conditions. This will lower

the amount of memory required to verify the proof, as well as potentially speeding up
verification of RUP and strengthening steps. For soundness reasons, there are restrictions on
when constraints may be deleted (e.g. to prevent us from deleting every constraint in the
input and then claiming an optimal solution with zero cost) [4], but for the techniques used
in this paper, the verifier will allow us to delete any constraint we introduce, as well as any
extension variable by deleting its two defining constraints.

2.3 A Framework for Proofs for Backtracking Search
For a very simple backtracking search algorithm, a proof could consist of a RUP statement
for every backtrack, asserting that at least one of the guessed assignments must be false.
Alternatively, if we are using conflict-driven clause learning (CDCL), a proof consists of a
RUP step for every learned clause in turn. This applies to proofs using either DRAT or
VeriPB. However, this is only possible if every fact used by the search algorithm follows
by integer bounds consistency on the PB representation of the problem (or, for DRAT ,
from unit propagation on the CNF representation). This would suffice, e.g. for conventional
DPLL or CDCL SAT solvers, but does not work if we have stronger propagation or inference
algorithms such as domain-consistent all-different. In this case, it is necessary to help the
proof checker by interleaving additional steps within the proof [17]. The nature of these
steps depends upon the inference being performed, and can involve additional RUP steps
or (in VeriPB proofs only) explicit cutting planes steps. The aim here is to ensure that
any fact “known” to the solving algorithm is also visible to the proof checker under unit
propagation. Crucially, using PB proofs does not mean that the solving algorithm is in any
way a PB solver, nor does it need to employ any cutting planes reasoning to be able to write
cutting planes proof steps. Instead, most solvers that write VeriPB proofs are conventional
algorithms that have subsequently been augmented with, effectively, template-based print
statements.

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:5

Although variations on this technique are suitable for various forms of backtracking search,
including with backjumping and restarts, this framework does not extend to being able to
cover dynamic programming algorithms, which have a very different notion of a search space.
The remainder of this paper explores a different framework, where the structure of VeriPB
proofs represent how dynamic programming algorithms run.

3 Proofs Involving States and Transitions

The key idea we will use for the proofs in this paper is to introduce an extension variable
for each entry in a dynamic programming matrix, or for each node in a memoised recursive
search tree or a top-down decision diagram construction. Each of these extension variables
will reify the conjunction of several other extension variables, representing different parts of
the state. We will then build up implication constraints between these extension variables
that reflect the way entries in the matrix are derived, the recursive call structure, or the edges
in the decision diagram. We will additionally build up a series of at-least-one constraints,
demonstrating that the structure we have created is complete. We finish by using the
at-least-one constraint over the final row of the matrix, or the final non-terminal layer of the
decision diagram, to prove the conclusion.

So far, this idea is not unique to VeriPB proofs. The DRAT proof system also has
an extension rule, and indeed Sinz and Biere [31], Jussila et al. [23] and Bryant [6] have
constructed DRAT proofs for binary decision diagram solvers using extension variables in a
similar but more restricted way. However, using VeriPB has many theoretical and practical
benefits when we look at more complex problems. For example, counting problems like
pigeonhole have direct proofs in VeriPB that scale trivially to arbitrarily large numbers of
pigeons, and do not require decision diagram structures for some semblance of efficiency.
Similarly, cutting planes allows us to work efficiently with reified integer linear inequalities
without requiring complex and inefficient adder and multiplier circuits. VeriPB also supports
optimisation problems, whereas the DRAT proof system only guarantees that satisfiable
instances cannot be made unsatisfiable, and would not be sound if used for optimisation
problems. Since we are looking to bring proof logging to a broader range of algorithms that
solve problems far beyond the reach of SAT solving, we will work exclusively with VeriPB.

3.1 Knapsack as a Dynamic Programming Problem
We will first illustrate how to create proofs for simple 0/1 knapsack problems. We are given
n items with weights wi and profits pi, and we want to maximise profit whilst not taking
items with a combined weight more than some constant W . For simplicity, we assume that
all weights and profits are non-negative integers. We can express this as the PB problem

xi ∈ {0, 1} i ∈ {1, . . . , n} (1)

minimise
n∑

i=1
−pixi (2)

subject to
n∑

i=1
wixi ≤W , (3)

recalling the convention that PB problems have an objective function to be minimised rather
than maximised. Note already that this PB representation is extremely straightforward, and
does not involve constructing adder and multiplier circuits as it would if we used a CNF
encoding.

CP 2024

9:6 Pseudo-Boolean Reasoning About States and Transitions

This problem has a recursive formulation. Letting P (i, w) be the maximum profit
obtainable after taking the first i items whilst having weight w still available to use, we have
the properties

P (0, w) = 0 (4)
P (i, w) = max{ (5)

P (i− 1, w), (6)
P (i− 1, w −wi) + pi if wi ≤ w}. (7)

Here, Equation (4) gives the initial condition that there is zero profit from taking no
items, regardless of weight; Equation (6) describes the option where we do not take item i;
Equation (7) describes the option where we do take item i if we are allowed to; and the max
operator in Equation (5) says that if we have two partial sums over the first i items both
using weight W − w then we need only consider the one which gives us the better profit.

This relation does not directly give us an algorithm. However, there are several stand-
ard ways of turning such a recurrence relationship into an algorithm, including dynamic
programming via a matrix built iteratively over weights; using recursion with memoisation;
or constructing a decision diagram layer by layer from the root downwards [22, 32]. From
an algorithm implementation perspective, the choice of methods can be very important;
however, for proof logging, the approach we describe works equally well for all three methods.
The important points are simply that
1. the algorithm somehow avoids calculating the same partial sums twice;
2. not all partial sums of weights and profits are necessarily calculated; and
3. there is some way of handling “dominated” states, such as the maximum operation in

Equation (5).
For ease of explanation, and because it allows the widest range of techniques to be demon-
strated, we will assume a layer-by-layer construction, starting by considering whether or not
we take the first item, and then building this up to decide what combination of the first two
items we will take, and then the first three items, and so on. Within layer i, we will consider
every possible partial sum of the first i weights that does not already exceed our bound
W , and associate that with the maximum possible partial sum of profits using exactly that
weight. We call this information a state, no matter whether it is implemented as a node in a
decision diagram, a memoised function call, or an entry in a matrix. We call partial sums of
either weights or profits partial states, and view the full state as being the conjunction of
partial weight and profit states.

The idea behind our VeriPB proof is that we will introduce an extension variable Si
w,p

for each state on layer i with partial sum of weights w and partial sum of profits p. For
convenience, we will also introduce these variables for states that will be ignored due to the
maximum rule. Recall that an extension variable is introduced by reifying a constraint; in
our case, this constraint will be

Si
w,p ⇔W i

w + P i
p ≥ 2 (8)

where W i
w and P i

p are themselves also extension variables,

W i
w ⇔

i∑
j=1

wjxj ≥ w and (9)

P i
p ⇔

i∑
j=1

pjxj ≤ p. (10)

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:7

In other words, Si
w,p is defined to be true if and only if the sum of the taken weights for the

first i items is at least w, and the sum of the taken profits for the first i items is at most p.
The reason for this choice of inequalities will become evident when we look at the maximum
rule.

Merely introducing extension variables tells us nothing about which states could actually
occur. The remainder of the proof consists of deriving implicational relationships between
extension variables (which correspond to edges in a decision diagram), and then in proving
that each layer is complete (that is, that we have an extension variable for every possible
state that has not been eliminated).

The first set of implications that we derive correspond to deciding not to take item xi.
We in turn derive

W i−1
w ∧ xi ⇒W i

w using a cutting planes addition rule, and then (11)
P i−1

p ∧ xi ⇒ P i
p similarly, and finally (12)

Si−1
w,p ∧ xi ⇒ Si

w,p follows by RUP. (13)

For the base case, the first part of the conjunction is trivially true and is instead omitted,
whilst for subsequent layers we will already have created the earlier extension variables, either
due to the algorithm’s layer-by-layer construction, or iteration, or recursion.

Next, suppose we cannot take item i due to the partial sum of weights exceeding W

(recalling that for simplicity, we are forbidding negative weights). If this is the case, we derive

W i−1
w ⇒ xi using cutting planes and RUP, and then (14)

Si−1
w,p ⇒ xi and (15)

Si−1
w,p ⇒ Si

w,p both follow by RUP. (16)

This cutting planes addition step is between the forward implication constraint defining W i−1
w ,

and the constraint giving the bound on W that is part of the input axiom. Because none of
the remaining weight coefficients are negative, a simple bounds consistency calculation shows
that if we have used too much weight already by layer i then there is no way of assigning the
remaining xi variables that will bring our weight sum back to be no more than W .

Finally, suppose we can take item i. Letting w′ = w + wi and p′ = p + pi be our new
weights and profits respectively, we instead derive

W i−1
w ∧ xi ⇒W i

w′ using cutting planes, and (17)
P i−1

p ∧ xi ⇒ P i
p′ similarly, then (18)

Si−1
w,p ∧ xi ⇒ Si

w′,p′ follows by RUP, as does (19)
Si−1

w,p ⇒ Si
w,p + Si

w′,p′ ≥ 1. (20)

Until this point, we have been ignoring the maximum rule. If we have two states on the
same layer with the same w, and one with profit p and another with profit p′ > p, we will
derive that

Si
w,p ⇒ Si

w,p′ . (21)

What this implication means is, “if there is an assignment to the first i xi variables where the
weight sums to at least w and the profit to no more than p, then there is an assignment where
the weight sums to at least w and the profit sums to no more than some larger profit p′”. This
is almost vacuous, and can easily be proved in cutting planes by unwrapping the conjunctions.

CP 2024

9:8 Pseudo-Boolean Reasoning About States and Transitions

In fact, in our proofs we can also do this for a distinct pair of states Si
w,p ⇒ Si

w′,p′ where
w′ ≤ w and p′ ≥ p; this can be detected efficiently in a layer-by-layer algorithm, but not so
easily with other approaches.

Now we have described the relationship between states on the same and subsequent layers.
The last part of the structure of our proof consists in deriving an at-least-one constraint over
the final layer, asserting that our diagram is complete. Again, we make use of an inductive
argument, by first deriving at-least-one constraints over the first layer, then the second layer,
and so on. This is a simple sequence of resolution steps: given∑

(w,p) on layer i−1

Si−1
w,p ≥ 1 (22)

we may resolve every variable on

Si−1
w,p ⇒ Si

w,p from Equation (16), or
Si−1

w,p ⇒ Si
w,p + Si

w′,p′ ≥ 1 from Equation (20)

to derive the desired∑
(w,p) on layer i

Si
w,p ≥ 1. (23)

This sets us up to provide a conclusion for our proof. Our algorithm execution will have
solved the problem at this point, so we know an optimal assignment with profit P ⋆ that
we can use to obtain a solution-improving constraint

∑
i−pixi ≤ −P ⋆ − 1. This in turn

contradicts each component of Equation (23), showing unsatisfiability.
To bring this together, we illustrate one way of implementing a proof-logging knapsack

solving algorithm in Algorithm 1. We stress, however, that the techniques we have described
are not in any way tied to this particular algorithm design. In particular, the same proof
framework can be used for matrix-based dynamic programming where each weight is con-
sidered in turn, as well as for recursion with memoisation. For a matrix, more states will be
created, both in the solving algorithm and in the proof, whilst for recursion the states will be
constructed in an order corresponding to the recursive search execution, rather than layer by
layer. Similarly, although we chose to apply (a more general version of) the maximum rule as
a single pass at the end of constructing each layer, we could instead derive the appropriate
implication whenever the maximum rule is used.

Until this point, we have not discussed deletions. To save memory, matrix and decision
diagram approaches to dynamic programming sometimes need only keep the current and
previous layers (or columns). We can do this in our proof too: when we start building layer
i ≥ 3, we can tell the proof verifier that we promise we will no longer need to access any
constraint and extension variable defined in layer i− 2, and so these constraints may now be
deleted. This will help the proof verifier use less memory, and can also speed up verification –
proof steps using RUP or that introduce extension variables are not, strictly speaking, of
constant complexity to verify in the worst case; we return to this in Section 4. With this
caveat aside, the proofs we have written are efficient, in that we write effectively only a
constant amount of data in the proof for each computation carried out by the algorithm.

3.2 A General Framework
In the same way that interleaving inference and backtrack constraints gives a general
framework for proof logging for backtracking search algorithms, we are now in a position to
describe how to generate proofs for dynamic programming and decision diagram algorithms.
For a given problem and solving algorithm, we need to be able to do seven things.

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:9

Algorithm 1 One way of solving the knapsack problem, with proof logging, using a layer-by-layer
decision diagram style construction.

S0 ← {S0
0,0}

for i← 1 . . . n do // i.e. for each layer in turn
for all Si

w,p ∈ Si−1 do // i.e. for each state in the previous layer
Extend W i

w ⇔
∑i

j=1 wjxj ≥ w, P i
p ⇔

∑i
j=1 pjxj ≤ p, and then

Si
w,p ⇔W i

w ∧ P i
p if they do not already exist

// Consider not taking item i

Si ← Si ∪ {Si
w,p}

Derive W i−1
w ∧ xi ⇒W i

w and P i−1
p ∧ xi ⇒ P i

p by cutting planes addition, then
Si−1

w,p ∧ xi ⇒ Si
w,p by RUP

// Now see whether we could take item i

if w + wi > W then // We cannot take item i

Derive W i−1
w ⇒ xi by addition, then Si−1 ⇒ xi and Si−1

w,p ⇒ Si
w,p by RUP

else // We could take item i

Let (w′, p′) = (w + wi, p + pi)
Extend W i

w′ ⇔
∑i

j=1 wjxj ≥ w′, P i
p′ ⇔

∑i
j=1 pjxj ≤ p′, and then

Si
w′,p′ ⇔W i

w′ ∧ P i
p′ if they do not already exist

Si ← Si ∪ {Si
w′,p′}

Derive W i−1
w ∧ xi ⇒W i

w′ and P i−1
p ∧ xi ⇒ P i

p′ by addition, then
Si−1

w,p ∧ xi ⇒ Si
w′,p′ and Si−1

w,p ⇒ Si
w,p ∨ Si

w′,p′ by RUP
for all Si

w,p ∈ Si that is dominated by some other Si
w′,p′ do

Derive Si
w,p ⇒ Si

w′,p′ by unwrapping
Si ← Si \ {Si

w,p}
Derive

∑
Si ≥ 1 by resolving on each variable in

∑
Si−1 ≥ 1

Delete every constraint created on layer Si−1

if Sn is empty then
Conclude infeasibility

else
Log how we obtain the state with the best profit
Derive that every Sn

w,p contradicts the solution-improving constraint
Conclude optimality

1. Represent the problem as a set of PB inequalities and a PB objective to minimise.
2. Generate an extension variable for each new state, as it is encountered (whether that state

is a node, a matrix entry, or a memoised recursive call). This is also done for infeasible
states.

3. Generate an implication constraint S′ ∧ c⇒ S linking each new state S to its predecessor
S′, showing that if we were in state S′ and we choose a given condition c, then we arrive
at this new state.

4. For any state S that is infeasible, generate a proof S ⇒ ⊥ that being in this state implies
contradiction. (In practice, this can sometimes be combined into the previous step instead,
as we did in Equation (16).)

5. For any state S that is dominated, subsumed, or similar by a better state S′, generate a
proof that S ⇒ S′.

6. Show that we have considered every feasible state on a layer, or generated a complete
column in a matrix, by creating an at-least-one constraint over the extension variables.

7. Derive a conclusion using the at-least-one constraint over the final layer or column.

CP 2024

9:10 Pseudo-Boolean Reasoning About States and Transitions

The first requirement is generally straightforward, since the representation only needs to
be correct, not useful for solving purposes. However, note that this means that our starting
point is a problem, not an algorithm or a recurrence relation for solving that problem: we
are certifying solutions that are found using dynamic programming, rather than specifically
certifying the execution of a dynamic program. Ideally, this representation step should
generally be carried out independently of how we then decide to go on and find a solution.

For the second requirement, we need to ask what kinds of state can be represented using
extension variables in a VeriPB proof. For knapsack, the states represented a conjunction of
pseudo-Boolean inequalities. However, this technique is much more general. For example,
Bergman et al. [2] give an example of a decision diagram solver where states represent sets of
vertices from a graph: these can be represented as conjunctions of Boolean variables, using a
pair of reified inequalities to express a reified equality constraint. Similarly, we can reuse
the encoding described by Gocht et al. [17] to represent anything that could be described in
constraint programming terms using integer variables. It is not so obvious how to represent
rational or real numbers in VeriPB, although in some circumstances these could be handled
by scaling.

For the third requirement, if our conditions and states correspond cleanly to sets of
Boolean variables then this is trivial: we are simply extending a set of inequalities by adding
in additional fixed variables. For the fourth requirement, this may also be trivial, or we may
need to reuse the constraint programming techniques of Gocht et al. [17] to show that a
given partial state is infeasible. The sixth requirement needs only that we can show that we
have indeed considered every possibility moving between layers or columns – for Boolean
variables, this is immediate, whilst for encoded integer variables we can make use of the
at-least-one constraint over each option. The seventh requirement comes down to showing
that, given an optimal full state S and a suboptimal full state S′, S′ does not beat S – this
should follow naturally from the objective function. For each of these requirements, we rely
heavily upon the ability to cleanly wrap and unwrap reified constraints, and to reason as if
reifications were not present using the technique described in Theorem 1 in the appendix.
It is worth stressing that these properties, and the resulting ease of producing this kind of
proof, are a specific characteristic of extended cutting planes, and they do not hold for many
other proof systems.

This leaves the fifth requirement, being able to reason about dominated states. This
potentially requires more creativity – and this should not be surprising, since alongside
tracking states, merging states is the other feature which distinguishes dynamic programming
style algorithms from backtracking search. Fortunately, the VeriPB proof system provides us
with a suite of tools for these scenarios. In many cases, fusion resolution under implications
(which, given s∧r ⇒

∑
i aixi ≥ A and s∧r ⇒

∑
i aixi ≥ A′ lets us infer that s⇒

∑
i aixi ≥

min(A, A′) by resolving away the r) is sufficient, but VeriPB’s strengthening rule also allows
sophisticated symmetry and dominance arguments [4].

At least so long as we are working with Booleans and integers, we have found this
framework to be powerful enough for a wide range of problems. For example, weighted
interval scheduling problems [25] have a natural recursive formulation using a maximum
operation and sums, and dynamic programming gives a polynomial time solving algorithm.
Proof logging for this problem is simpler than knapsack: the states are a simple sum, rather
than a conjunction of sums.

Or, suppose we want to find the longest path in a directed acyclic graph. This also has
a simple dynamic programming formulation, where nodes are visited in topological order.
The longest path ending at a given node is then calculated by looking at each predecessor

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:11

node and adding its longest path cost to the cost of its edge to our given node, and taking
the maximum of these costs. In this case, our proof would use the costs as state variables,
and rather than having two options at each transition, would be selecting between one
option per incoming edge on the node. Note also that the proof process implicitly checks the
correctness of the topological sort: if either the implementation were faulty, or the concept
mathematically flawed (e.g. if we tried to do this in a graph with cycles), then the proof
process would fail.

Of course, this does not mean that we can provide efficient proof logging for every dynamic
programming or decision diagram algorithm that might ever be invented, just as it would
not be reasonable to claim that efficient proof logging is definitely possible for every single
backtracking search algorithm – for example, we do not yet know whether it is practically
feasible to reason about real or floating point numbers in VeriPB. Nor does this automate
the process of adding proof logging to a solver. However, in the same way that the framework
of interleaving RUP backtracking steps with explicit derivations for reasoning has vastly
simplified adding proof logging to a wide range of search algorithms, we can say that these
techniques will vastly reduce the conceptual and implementation hurdles required to use
proof logging for state- and transition-based algorithms.

3.3 Knapsack as a Constraint
We return now to knapsack, but in a more general setting. As well as being an interesting
stand-alone problem, knapsack appears as a constraint in some constraint programming
toolkits. Trick [34] describes a propagator for a single 0/1 integer linear inequality where the
sum is a variable, whilst Fahle and Sellmann [11], Sellmann [30], Katriel et al. [24], Malitsky
et al. [27], and Malitsky et al. [26] work on exactly two integer linear equalities that sum
to two different variables, and do not restrict to 0/1 variables for the items. MiniZinc also
defines the constraint this way [33], whilst XCSP3 [5] allows for more than two inequalities.
In all cases, the multiplier vector(s) are integer constants – sometimes these are required to
be non-negative.

Propagators based upon Trick’s approach can achieve either bounds or domain consistency
on the sum variables, as well as domain consistency on the item variables. This is done by
building a decision diagram, and then, by working from the final layer and moving backwards,
deleting any nodes and edges that do not lead to a feasible state; what remains is a diagram
where every path from the first layer to the final layer corresponds to a solution to the
constraint. Once this is built, on some layers there may only be edges corresponding to the
layer’s item being accepted, or only edges corresponding to the layer’s item being rejected;
in this case, the associated item variable is forced.

Gocht et al. [17] described a framework for proof logging for constraint programming
solvers using VeriPB. This framework supports integer variables, and a number of global
constraints, including integer linear inequalities. To add a new constraint propagator to this
framework, we must have two things. Firstly, we must be able to express the semantics of
the constraint in PB form – this is trivial, because integer linear inequalities are already
supported. Secondly, we must have a way of justifying all reasoning that can be carried
out by its propagator. This will follow a similar pattern to proof logging for a standalone
knapsack solver, but with different states and a more complicated conclusion.

For a standalone knapsack solver, recall that our states Si
w,p represented that the partial

sum of the first i items has weight at least w, and profit at most p. For a constraint, we
instead want to track states that have weight exactly w, and profit exactly p. To do this, we
can introduce the four extension variables

CP 2024

9:12 Pseudo-Boolean Reasoning About States and Transitions

W↑i
w ⇔

i∑
j=1

wjxj ≥ w W↓i
w ⇔

i∑
j=1

wjxj ≤ w (24)

P↑i
p ⇔

i∑
j=1

pjxj ≥ p P↓i
p ⇔

i∑
j=1

pjxj ≤ p (25)

which allow us to define

Si
w,p ⇔W↑i

w + W↓i
w + P↑i

p + P↓i
p ≥ 4. (26)

When building the structure of the proof, there are five differences.
1. We must construct implications for all four partial states, rather than just two.
2. We must bear in mind that we might be inside a backtracking search, and so some of

the information we have about variables might be conditional. Fortunately this is not
a concern: recall that any RUP or cutting planes proof can trivially and efficiently be
extended to operate under assumptions.

3. We might be dealing with constraint programming variables whose domains are not
0/1. This means there may be more than two edges coming out of a state. To derive
the implications for partial sums, we follow Gocht et al.’s approach of introducing
direct variables as required, and then we use an additional cutting planes multiplication
operation. We must also take care when deriving the at-least-one constraint over each
layer, because this relies upon exhaustively branching. Again, this is dealt with by Gocht
et al.’s framework, which allows us to obtain an at-most-one constraint for any constraint
programming variable’s values.

4. We may now only merge states with exact matches on weights and profits. This is true
both algorithmically and in proof terms – reassuringly, if we were to forget this condition
when implementing the propagation algorithm, we would quickly find it impossible to
construct the appropriate implication steps in the proof.

5. We cannot delete intermediate layers as we go: we want to reason about the diagram as a
whole, so it stands to reason that the structure of the diagram must remain in the proof.
However, we can delete every intermediate constraint once the conclusions are derived.

Rather than establishing a proof of optimality, a knapsack propagator’s proof aims to
show lack of support for some variables’ values. By looking at the possible weights and
profits on the final layer of the decision diagram, we can recognise that either some bounds
or some specific values are unsupported by the constraint; we can derive these facts inside a
proof by resolving over the at-least-one constraint on the final layer. This gives us either
bounds or domain consistency on the sum variables, as we prefer.

The backwards pass, which shows lack of support on the item values, is also straightfor-
ward – since our propagation algorithm works backwards from the final layer, eliminating
infeasible nodes, it is sufficient to use RUP steps to show that the corresponding states must
be false. Once this has been done, eliminating values from item variables also follows by
RUP. This closely resembles the steps used by McIlree and McCreesh [29] to generate proofs
from propagations for the regular language membership constraint.

4 Implementations and Evaluation

Before presenting the results of our empirical evaluation, it is important to ask what the
purpose of such an evaluation should be. Rather than trying to implement the world’s fastest
dynamic programming algorithms or propagators, or even to tell you when to use these

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:13

0
100
200
300
400
500
600
700
800
900

1000

3600000 100000 200000 300000

V
er

ifi
ca

ti
on

ti
m

e
(s

)

Number of states + transitions

Original proof
y = 1/31830 x1.34

Kernel proof
y = 1/922 x1.01

10

50

100

150

200

250

N
um

be
r

of
it

em
s

in
in

st
an

ce

Figure 1 Verification times for knapsack problem instances with between 10 and 250 items (shown
using colour). The power law fit lines show the original proof and the rewritten kernel proof times,
plotted against the number of states plus transitions required to solve the instance.

techniques, the main aim of this paper is to demonstrate that if you choose to use these
techniques, then certifying correctness using pseudo-Boolean proof logging is viable. To
show this, we have implemented1 stand-alone solvers for three problems: knapsack, longest
path in a directed acyclic graph, and interval scheduling. For knapsack, we implemented
both top-down and matrix-based algorithms, whilst for the other two problems we used
only a matrix. With the aim of the paper in mind, our key measure of success from these
implementations is that we were able to add proof logging to each solver simply by adding
in statements to log information that was already present, without needing to extend or
change the underlying algorithm. To validate our implementations, we tested them on a
large number of randomly generated instances and were able to verify every proof produced.

Our proofs in each case are generated efficiently, having cost and length roughly linear in
the amount of work done by the solver. However, the constant factor slowdown needed to
write these proofs to disk is potentially large. Creating a new entry in a dynamic programming
table for a problem such as knapsack can be extremely fast, requiring only a few additions,
comparisons, and memory accesses. However, to justify an entry and the transition leading
to it, we need to write several lines of text to a file. For an efficiently implemented algorithm,
this can easily lead to more than an order of magnitude slowdown. This is much worse than
for, e.g. SAT solving, because a CDCL solver does much more computation per proof step
than a simple knapsack algorithm.

But what about proof verification time – is that also roughly linear in proof size? This
turns out to be a more complex question. When using only explicit cutting planes derivations,
we would expect the cost of verifying each proof step to depend only upon the number
of operations. However, verifying reverse unit propagation or strengthening steps requires
achieving bounds consistency over the active set of inequalities, which is not a constant-time
operation. In the top line of Figure 1 we show the verification times required for 1,200
randomly generated knapsack problem instances with between 10 and 250 items, with random
weights and profits both between 1 and 10, and a maximum weight of between 50 and 1000,
solved using the top-down approach. (These parameters were selected to give instances where
dynamic programming is a good choice of solving technique, so that we can measure the
scalability of proof verification: we are trying to challenge the proof verifier, not the solver.)

1 https://doi.org/10.5281/zenodo.12574620

CP 2024

https://doi.org/10.5281/zenodo.12574620

9:14 Pseudo-Boolean Reasoning About States and Transitions

We measure verification time as a function of the number of states plus transitions required
to solve each instance, since this is in effect “the amount of work” the solver took to solve an
instance. The fit line suggests that verification scales worse than linearly, but better than
quadratically.

Similarly to how DRAT proofs can be converted to LRAT proofs, VeriPB is able to rewrite
proofs into a simplified “kernel format” that does not require any propagations to verify:
reverse unit propagation steps are rewritten to cutting planes derivations, and strengthening
rule applications are also given explicit cutting planes subproofs for each proof goal [15].
Carrying out this simplification is not computationally more expensive than verifying the
proof, and introduces only a small additional slowdown for outputting the rewritten proof to
disk. In Figure 1 we also plot the time taken to verify these rewritten proofs, achieving the
lower line. Now, the power law fit line suggests that verification time scales extremely close
to linearly with proof size, with a verification rate of a little below a thousand states and
transitions per second (which we expect to vary considerably based upon hardware and disk
speeds). In principle, solvers could output these kernel proofs directly, avoiding the need for
proof rewriting if an important concern is the initial proof verification time; however, this
would require considerably more work from solver authors.

Finally, we have also implemented the knapsack constraint inside the Glasgow Constraint
Solver, using a top-down construction. Our implementation supports arbitrarily many
simultaneous inequalities, and is not restricted to 0/1 variables. It achieves domain consistency
on every variable. Again, we were able to do this without having to restrict or alter the
underlying propagation algorithm: VeriPB proofs are powerful enough to conveniently express
the reasoning we wanted to carry out, and we did not have to design an algorithm specifically
to make proof logging possible. To validate the implementation, we used the same system as
other constraints in the Glasgow Subgraph Solver, where curated and randomly generated
test data is combined with proof checking inside a continuous integration framework; we
have successfully verified thousands of proofs in this manner. In terms of performance, any
measurements are extremely sensitive to disk write speeds and to details of implementation,
to the extent that using shorter variable names inside proofs can have a significant effect
upon running times. However, to give indicative figures, verifying knapsack propagation
proofs is typically between twenty and fifty times more expensive than producing them; this
is somewhat more expensive than for some other propagators [17, 29], likely due to the large
number of extension variables used in the proofs.

5 Conclusion

We have shown that the VeriPB proof system supports convenient and efficient proofs for a
range of dynamic programming algorithms, and that it can do so regardless of whether the
algorithms use a matrix, recursion and memoisation, or a top-down construction, and even
when we are inside a dynamic programming propagator in a constraint programming toolkit.
We saw that the cutting planes proof system makes it both natural and efficient to reason
about reified linear inequalities, whilst extension variables give us the power to describe the
logical relationships between states.

The knapsack propagation example showed how different conclusions could be inferred,
depending upon how states were represented: when solving the knapsack problem directly,
we tracked less information, thus allowing more states to be merged, whilst for constraint
propagation our states were more expressive. This example could be extended further, e.g.
to relaxed and restricted decision diagrams, where we are allowed to violate some constraints

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:15

and only achieve a lower or upper bound rather than an exact solution. In such a setting, our
ability to compose proofs and to run proofs conditional upon assumptions or guesses would
be very helpful, since modern decision diagram based solvers can construct many decision
diagrams during the solving process.

An interesting open question is how to extend this work to cover problems where we
want to count solutions, rather than finding an optimal solution. Once a decision diagram
or dynamic programming matrix has been constructed, solution counts are often easily
accessible. However, this property does not immediately transfer through to proofs. In
the same way that DRAT proofs can only be used to reason “without loss of satisfaction”,
VeriPB proofs establish “without loss of optimality”. This means that solutions can be
removed, so long it can be shown that another equally-good-or-better solution exists (for
example, through symmetry or dominance breaking). We believe it is important to give
solver authors the ability to write proofs that correspond precisely to the real-world problem
being solved. As such, we would like to see an appropriate theoretical foundation that will
allow solvers to produce proofs either for optimality reasoning or for counting, with only
minimal changes that reflect the algorithmic differences needed in the two settings. We would
also be interested to know whether VeriPB can reasonably be used to work with rational or
real numbers, either by scaling or more advanced techniques.

References

1 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande.
Certified core-guided MaxSAT solving. In Brigitte Pientka and Cesare Tinelli, editors,
Automated Deduction - CADE 29 - 29th International Conference on Automated Deduction,
Rome, Italy, July 1-4, 2023, Proceedings, volume 14132 of Lecture Notes in Computer Science,
pages 1–22. Springer, 2023. doi:10.1007/978-3-031-38499-8_1.

2 David Bergman, André A. Ciré, Ashish Sabharwal, Horst Samulowitz, Vijay A. Saraswat,
and Willem Jan van Hoeve. Parallel combinatorial optimization with decision diagrams. In
Helmut Simonis, editor, Integration of AI and OR Techniques in Constraint Programming -
11th International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings,
volume 8451 of Lecture Notes in Computer Science, pages 351–367. Springer, 2014. doi:
10.1007/978-3-319-07046-9_25.

3 David Bergman, André A. Ciré, Willem-Jan van Hoeve, and John N. Hooker. Decision
Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms.
Springer, 2016. doi:10.1007/978-3-319-42849-9.

4 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance
and symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res., 77:1539–1589,
2023. doi:10.1613/JAIR.1.14296.

5 Frédéric Boussemart, Christophe Lecoutre, and Cédric Piette. XCSP3: an integrated format
for benchmarking combinatorial constrained problems. CoRR, abs/1611.03398, 2016. arXiv:
1611.03398.

6 Randal E. Bryant. Tbuddy: A proof-generating BDD package. In Alberto Griggio and
Neha Rungta, editors, 22nd Formal Methods in Computer-Aided Design, FMCAD 2022,
Trento, Italy, October 17-21, 2022, pages 49–58. IEEE, 2022. doi:10.34727/2022/ISBN.
978-3-85448-053-2_10.

7 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

CP 2024

https://doi.org/10.1007/978-3-031-38499-8_1
https://doi.org/10.1007/978-3-319-07046-9_25
https://doi.org/10.1007/978-3-319-07046-9_25
https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1613/JAIR.1.14296
https://arxiv.org/abs/1611.03398
https://arxiv.org/abs/1611.03398
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10

9:16 Pseudo-Boolean Reasoning About States and Transitions

8 Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming
results. In Friedrich Eisenbrand and Jochen Könemann, editors, Integer Programming and
Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON,
Canada, June 26-28, 2017, Proceedings, volume 10328 of Lecture Notes in Computer Science,
pages 148–160. Springer, 2017. doi:10.1007/978-3-319-59250-3_13.

9 Chiu Wo Choi, Warwick Harvey, J. H. M. Lee, and Peter J. Stuckey. Finite domain bounds
consistency revisited. In AI 2006: Advances in Artificial Intelligence, 19th Australian Joint
Conference on Artificial Intelligence, Hobart, Australia, December 4-8, 2006, Proceedings, pages
49–58, 2006. doi:10.1007/11941439_9.

10 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-
Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor, Automated Deduction
- CADE 26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden,
August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages
220–236. Springer, 2017. doi:10.1007/978-3-319-63046-5_14.

11 Torsten Fahle and Meinolf Sellmann. Cost based filtering for the constrained knapsack problem.
Ann. Oper. Res., 115(1-4):73–93, 2002. doi:10.1023/A:1021193019522.

12 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In International Sym-
posium on Artificial Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale, Florida, USA,
January 2-4, 2008, 2008. URL: http://isaim2008.unl.edu/PAPERS/TechnicalProgram/
ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf.

13 Stephan Gocht. Certifying Correctness for Combinatorial Algorithms: by Using Pseudo-
Boolean Reasoning. PhD thesis, Lund University, Sweden, 2022. URL: https://lup.lub.lu.
se/record/3550cb96-83d5-4fc7-9e62-190083a3c10a.

14 Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and
James Trimble. Certifying solvers for clique and maximum common (connected) subgraph
problems. In Helmut Simonis, editor, Principles and Practice of Constraint Programming -
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020,
Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,
2020. doi:10.1007/978-3-030-58475-7_20.

15 Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and
Yong Kiam Tan. End-to-end verification for subgraph solving. In Michael J. Wooldridge,
Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial
Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 8038–8047. AAAI Press,
2024. doi:10.1609/AAAI.V38I8.28642.

16 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets
cutting planes: Solving with certified solutions. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
1134–1140. ijcai.org, 2020. doi:10.24963/ijcai.2020/158.

17 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In Christine Solnon, editor, 28th International Conference on Principles and Practice
of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel, volume
235 of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPICS.CP.2022.25.

18 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
boolean proofs. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pages 3768–3777. AAAI Press, 2021. doi:10.1609/AAAI.V35I5.16494.

19 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 181–188. IEEE, 2013. URL: https://ieeexplore.ieee.org/
document/6679408/.

https://doi.org/10.1007/978-3-319-59250-3_13
https://doi.org/10.1007/11941439_9
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1023/A:1021193019522
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
https://lup.lub.lu.se/record/3550cb96-83d5-4fc7-9e62-190083a3c10a
https://lup.lub.lu.se/record/3550cb96-83d5-4fc7-9e62-190083a3c10a
https://doi.org/10.1007/978-3-030-58475-7_20
https://doi.org/10.1609/AAAI.V38I8.28642
https://doi.org/10.24963/ijcai.2020/158
https://doi.org/10.4230/LIPICS.CP.2022.25
https://doi.org/10.1609/AAAI.V35I5.16494
https://ieeexplore.ieee.org/document/6679408/
https://ieeexplore.ieee.org/document/6679408/

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:17

20 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with exten-
ded resolution. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th
International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.
Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer,
2013. doi:10.1007/978-3-642-38574-2_24.

21 John N. Hooker. Generalized resolution for 0-1 linear inequalities. Ann. Math. Artif. Intell.,
6(1-3):271–286, 1992. doi:10.1007/BF01531033.

22 John N. Hooker. Decision diagrams and dynamic programming. In Carla P. Gomes and
Meinolf Sellmann, editors, Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, 10th International Conference, CPAIOR 2013,
Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings, volume 7874 of Lecture Notes in
Computer Science, pages 94–110. Springer, 2013. doi:10.1007/978-3-642-38171-3_7.

23 Toni Jussila, Carsten Sinz, and Armin Biere. Extended resolution proofs for symbolic
SAT solving with quantification. In Armin Biere and Carla P. Gomes, editors, Theory and
Applications of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA,
USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer Science,
pages 54–60. Springer, 2006. doi:10.1007/11814948_8.

24 Irit Katriel, Meinolf Sellmann, Eli Upfal, and Pascal Van Hentenryck. Propagating knapsack
constraints in sublinear time. In Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages 231–236.
AAAI Press, 2007. URL: http://www.aaai.org/Library/AAAI/2007/aaai07-035.php.

25 Antoon W.J. Kolen, Jan Karel Lenstra, Christos H. Papadimitriou, and Frits C.R. Spieksma.
Interval scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–543, 2007. doi:
10.1002/nav.20231.

26 Yuri Malitsky, Meinolf Sellmann, and Radoslaw Szymanek. Filtering bounded knapsack
constraints in expected sublinear time. In Maria Fox and David Poole, editors, Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia,
USA, July 11-15, 2010, pages 141–146. AAAI Press, 2010. doi:10.1609/AAAI.V24I1.7560.

27 Yuri Malitsky, Meinolf Sellmann, and Willem Jan van Hoeve. Length-lex bounds consistency
for knapsack constraints. In Peter J. Stuckey, editor, Principles and Practice of Constraint
Programming, 14th International Conference, CP 2008, Sydney, Australia, September 14-18,
2008. Proceedings, volume 5202 of Lecture Notes in Computer Science, pages 266–281. Springer,
2008. doi:10.1007/978-3-540-85958-1_18.

28 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying al-
gorithms. Comput. Sci. Rev., 5(2):119–161, 2011. doi:10.1016/J.COSREV.2010.09.009.

29 Matthew J. McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints.
In Roland H. C. Yap, editor, 29th International Conference on Principles and Practice of
Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada, volume 280 of
LIPIcs, pages 26:1–26:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPICS.CP.2023.26.

30 Meinolf Sellmann. Approximated consistency for knapsack constraints. In Francesca Rossi,
editor, Principles and Practice of Constraint Programming - CP 2003, 9th International
Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003, Proceedings, volume
2833 of Lecture Notes in Computer Science, pages 679–693. Springer, 2003. doi:10.1007/
978-3-540-45193-8_46.

31 Carsten Sinz and Armin Biere. Extended resolution proofs for conjoining bdds. In Dima
Grigoriev, John Harrison, and Edward A. Hirsch, editors, Computer Science - Theory and
Applications, First International Symposium on Computer Science in Russia, CSR 2006, St.
Petersburg, Russia, June 8-12, 2006, Proceedings, volume 3967 of Lecture Notes in Computer
Science, pages 600–611. Springer, 2006. doi:10.1007/11753728_60.

32 Steven Skiena. The Algorithm Design Manual, Third Edition. Texts in Computer Science.
Springer, 2020. doi:10.1007/978-3-030-54256-6.

CP 2024

https://doi.org/10.1007/978-3-642-38574-2_24
https://doi.org/10.1007/BF01531033
https://doi.org/10.1007/978-3-642-38171-3_7
https://doi.org/10.1007/11814948_8
http://www.aaai.org/Library/AAAI/2007/aaai07-035.php
https://doi.org/10.1002/nav.20231
https://doi.org/10.1002/nav.20231
https://doi.org/10.1609/AAAI.V24I1.7560
https://doi.org/10.1007/978-3-540-85958-1_18
https://doi.org/10.1016/J.COSREV.2010.09.009
https://doi.org/10.4230/LIPICS.CP.2023.26
https://doi.org/10.4230/LIPICS.CP.2023.26
https://doi.org/10.1007/978-3-540-45193-8_46
https://doi.org/10.1007/978-3-540-45193-8_46
https://doi.org/10.1007/11753728_60
https://doi.org/10.1007/978-3-030-54256-6

9:18 Pseudo-Boolean Reasoning About States and Transitions

33 Peter J. Stuckey, Kim Marriott, and Guido Tack. The MiniZinc handbook section 4.2.1: Global
constraints, 2023. URL: https://www.minizinc.org/doc-2.5.3/en/lib-globals.html.

34 Michael A. Trick. A dynamic programming approach for consistency and propagation for
knapsack constraints. Ann. Oper. Res., 118(1-4):73–84, 2003. doi:10.1023/A:1021801522545.

35 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory
and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,
2014. doi:10.1007/978-3-319-09284-3_31.

A Proofs Under Implications

In various pseudo-Boolean (PB) proof logging projects, it has been useful to rely on the
assumption that if we have an efficient proof procedure for deriving a constraint D from a
set of constraints F , then we can convert this into an efficient procedure for deriving R⇒ D

from the set of constraints {R ⇒ C : C ∈ F} for some conjunction of literals R. In this
appendix we formalise and generalise this property, showing that efficient cutting-planes
proofs can be “unrestricted” to construct analogous efficient proofs where the premises and
conclusion are subject to (potentially different) conditions using reification.

A.1 Notation
A (partial) assignment is a (partial) function from variables to {0, 1}; we extend an assign-
ment ρ from variables to literals in the natural way by respecting the meaning of negation,
and for literals ℓ over variables x not in the domain of ρ, denoted x ̸∈ dom(ρ), we use the
convention ρ(ℓ) = ℓ. For notational convenience, we can also view ρ as the set of literals
{ℓ : ρ(ℓ) = 1} assigned true by ρ. Applying ρ to a constraint C =

∑
i aiℓi ≥ K yields

C↾ρ
.=

∑
ℓi:ρ(ℓi)=ℓi

aiℓi ≥ K −
∑

ℓj∈ρ(ℓj)=1

aj (27)

substituting literals as specified by ρ. We extend this notation to applying assignments to F

in the natural way F↾ρ =
⋃

C∈F C↾ρ.
We will write Vars(C), Vars(F), Lits(C) and Lits(F) to denote the sets of variables or

literals appearing in a PB constraint C or formula F .

A.2 Constructing Proofs Under Implications
We can now state our main result in its general form.

▶ Theorem 1. Let F be a PB formula over n variables, ρ be a partial assignment, and suppose
that from F↾ρ we can derive a constraint D using a cutting planes and RUP derivation of
length L. Then we can construct a derivation of length O(n · L) from F of the constraint∧

ℓ∈ρ

ℓ⇒ D. (28)

In what follows, we assume all constraints are normalised. We will first show the following.

▶ Lemma 2. For any PB constraint C and partial assignment ρ, we can always derive∧
ℓ∈ρ ℓ⇒ C↾ρ from C using a cutting planes derivation of length O(|Vars(C)|).

https://www.minizinc.org/doc-2.5.3/en/lib-globals.html
https://doi.org/10.1023/A:1021801522545
https://doi.org/10.1007/978-3-319-09284-3_31

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:19

Proof. First, let us write C as∑
ℓi∈Lits(C) :

ρ(ℓi)=ℓ

aiℓi +
∑

ℓj∈Lits(C) :
ρ(ℓj)=1

bjℓj +
∑

ℓk∈Lits(C) :
ρ(ℓk)=ℓ

ckℓk ≥ K. (29)

Then, if we let B =
∑

ℓj∈Lits(C) :
ρ(ℓj)=1

bj , we note that C↾ρ is the constraint

∑
ℓi∈Lits(C) :

ρ(ℓi)=ℓ

aiℓi ≥ K −B (30)

and
∧

ℓ∈ρ ℓ⇒ C↾ρ is the constraint∑
ℓj∈Lits(C) :

ρ(ℓj)=1

(K −B)ℓj +
∑

ℓk∈Lits(C) :
ρ(ℓk)=0

(K −B)ℓk +
∑

ℓi∈Lits(C) :
ρ(ℓi)=ℓ

aiℓi ≥ K −B (31)

To derive Equation (31) from Equation (29) we can proceed as follows.
1. For all j, add the literal axioms amounting to bjℓj ≥ 0 to Equation (29) yielding∑

ℓk∈Lits(C) :
ρ(ℓk)=ℓ

ckℓk +
∑

ℓi∈Lits(C) :
ρ(ℓi)=ℓ

aiℓi ≥ K −B (32)

2. Saturate to ensure that for all k, ck ≤ K −B.
3. Add literal axioms ℓk ≥ 0 and ℓj ≥ 0 as needed to obtain Equation (31).
This amounts to at most one weakening step per variable appearing in C, along with one
saturation step, and hence has length O(|Vars(C)|). ◀

We are now able to prove the main result.

Proof. Let π = (D1, . . . , DL = D) be the derivation of D from F↾ρ, and denote by πs the
set {D1, . . . , Ds−1} of constraints prior to derivation step s. Each Ds is one of the following:

An axiom (constraint in F↾ρ).
A literal axiom.
The result of a cutting planes operation, with antecedents in πs.
A RUP constraint with respect to F↾ρ ∪ πs.

We will proceed by structural induction on π and show that for any Ds we can construct a
length O(n · s) derivation that

∧
ℓ∈ρ ℓ⇒ Ds from F .

For the base cases, we consider an axiom Da ∈ F↾ρ. We must have some constraint
C ∈ F such that C↾ρ = Da. Hence we can derive C as an axiom, and then by Lemma 2 we
can derive

∧
ℓ∈ρ ℓ⇒ C↾ρ, i.e.

∧
ℓ∈ρ ℓ⇒ Da, in O(|Vars(C)|) ⊆ O(n) steps. Note that if Da

is instead a literal axiom then
∧

ℓ∈ρ ℓ⇒ Da is also a literal axiom, because the reification
coefficients will all be zero.

Now assume for any non-axiom constraint Ds we have already constructed a derivation
of length O(n · (s − 1)) deriving all the constraints in π′

s =
{∧

ℓ∈ρ ℓ ⇒ Di : Di ∈ πs

}
. We

now consider different cases depending on how Ds was derived in π.

Case 1: Ds is the result of adding two constraints Di, Dj ∈ πs.
Then by assumption

∧
ℓ∈ρ ℓ⇒ Di, and

∧
ℓ∈ρ ℓ⇒ Dj have already been derived. If we let

Ki and Kj be the degrees of Di and Dj respectively, we can write these in the form∑
ℓ∈ρ

Kiℓ̄ + Di (33)

CP 2024

9:20 Pseudo-Boolean Reasoning About States and Transitions

and ∑
ℓ∈ρ

Kj ℓ̄ + Dj , (34)

and so adding these together yields∑
ℓ∈ρ

(Ki + Kj)ℓ̄ + Ds. (35)

If Ks is the degree of Ds, note that we must have Ks ≤ Ki + Kj , since cancellation of
matching literals when adding Di and Dj can only reduce the degree of their sum. Hence
if we apply saturation to Equation (35) we obtain

∑
ℓ∈ρ Ksℓ + Ds, i.e.

∧
ℓ∈ρ ℓ⇒ Ds, as

required.
Case 2: Ds is result of multiplying a constraint Di ∈ πs by a scalar λ.

Then by assumption
∧

ℓ∈ρ ℓ⇒ Di has already been derived, and again we can write this
as ∑

ℓ∈ρ

Kiℓ̄ + Di (36)

where Ki is the degree of Ki. If we multiply this by λ we obtain∑
ℓ∈ρ

λKiℓ̄ + λDi (37)

which is precisely
∧

ℓ∈ρ ℓ⇒ Ds, as required.
Case 3: Ds is the result of dividing a constraint Di ∈ πs by a scalar λ.

Then again by assumption
∧

ℓ∈ρ ℓ⇒ Di has already been derived, and this time we will
write this in full as∑

ℓ∈ρ

Kiℓ̄ +
∑

j

ajℓj ≥ Ki. (38)

If we divide this by λ we obtain∑
ℓ∈ρ

⌈(Ki/λ)⌉ℓ̄ +
∑

j

⌈aj/λ⌉ℓj ≥ ⌈(Ki/λ)⌉, (39)

which is precisely
∧

ℓ∈ρ ℓ⇒ Ds, as required.
Case 4: Ds is the result of applying saturation to a constraint Di ∈ πs.

Once again by assumption
∧

ℓ∈ρ ℓ⇒ Di has already been derived, and we can write this
in full as above in Equation (38). After applying saturation to this we obtain∑

ℓ∈ρ

min(Ki, Ki)ℓ̄ +
∑

j

min(aj , Ki)ℓj ≥ Ki. (40)

which is precisely
∧

ℓ∈ρ ℓ⇒ Ds, as required.
Case 5: Ds is the result of applying weakening (adding literal axioms) to a constraint

Di ∈ πs.
In this case we can view the added literal axioms as another degree-0 constraint Dj , which
we can always derive, and so the fact we can obtain

∧
ℓ∈ρ ℓ⇒ Ds follows immediately

from Case 1.

E. Demirović, C. McCreesh, M. J. McIlree, J. Nordström, A. Oertel, and K. Sidorov 9:21

Case 6: Ds is a RUP constraint.
Write Ds =

∑
i aiℓi ≥ K and let A =

∑
i ai. Then

∧
ℓ∈ρ ℓ⇒ Ds is the constraint∑

ℓ∈ρ

Kℓ̄ +
∑

i

aiℓi ≥ K, (41)

and its negation is∑
ℓ∈ρ

Kℓ +
∑

i

aiℓi ≥ A + 1 + (|ρ| − 1)K. (42)

We can see that for Equation (42) to be satisfied, all the reification literals ℓ ∈ ρ must be
set to true. Recalling that all constraints in π′

s =
{∧

ℓ∈ρ ℓ⇒ Di : Di ∈ πs

}
are all assumed

to have been previously derived, we can see that performing unit propagation will reduce
constraints in F ∪ π′

s ∪ ¬(
∧

ℓ∈ρ ℓ⇒ D) to be precisely the constraints in F↾ρ ∪ πs ∪ ¬D.
Since by assumption deriving Ds from F↾ρ ∪ πs by RUP was a legitimate derivation step,
continued unit propagation on the constraint database must result in a contradiction.
Hence we can derive

∧
ℓ∈ρ ℓ⇒ D from F ∪ π′

s as a single RUP step.

In all of these cases, we only need a constant number (at most two) proof steps, to
derive

∧
ℓ∈ρ ℓ⇒ Ds, from what was assumed to already be derived, and so by starting from

the axioms and applying induction we can construct a derivation which includes all of the
constraints in π′

L =
{∧

ℓ∈ρ ℓ⇒ Di : Di ∈ π
}

and in particular our desired
∧

ℓ∈ρ ℓ⇒ DL.

Since each of the L constraints in π′
L requires at most O(n) intermediate derivation steps,

our constructed derivation has length at most O(n · L). ◀

With Theorem 1 established we easily obtain the following useful corollary.

▶ Corollary 3. Let F be a PB formula over n variables and let R be a set of literals over
distinct variables not appearing in F (i.e. for any ℓ ∈ R, ℓ /∈ R and ℓ /∈ Lits(F)). Then let
R(F) be a set of reified constraints {RC ⇒ C : C ∈ F}, where each reifying term RC is a
conjunction of literals in R.

Then, if we can derive a constraint D from F using a cutting planes and RUP derivation
of length L, we can construct a derivation of length O(L ·n) of the constraint

∧
C∈F RC ⇒ D

from R(F).

Proof. Take the partial assignment ρ setting ℓ = 1 for each ℓ ∈ R and apply Theorem 1. ◀

Finally, we conclude with a closer look at when the O(n ·L) worst case in Theorem 1 will
actually occur.

▶ Observation 4. In practice, we can often consider the length of the constructed derivation
in Theorem 1 to be O(L) rather than O(n · L). This is because the O(n) overhead occurs
only in the base case when transforming an axiom from the initial formula to the required
form by adding literal axioms (n in the worst case) and saturating as described in Lemma 2.
We can achieve the same transformation in O(1) steps when a syntactic implication rule is
implemented, as is the case for the VeriPB proof checker. This automatically checks that
literal axioms can be added to a previously derived constraint to obtain a specified constraint.

CP 2024

	1 Introduction
	2 Background
	2.1 Pseudo-Boolean Preliminaries
	2.2 The VeriPB Proof System
	2.3 A Framework for Proofs for Backtracking Search

	3 Proofs Involving States and Transitions
	3.1 Knapsack as a Dynamic Programming Problem
	3.2 A General Framework
	3.3 Knapsack as a Constraint

	4 Implementations and Evaluation
	5 Conclusion
	A Proofs Under Implications
	A.1 Notation
	A.2 Constructing Proofs Under Implications

