
End-to-End Verification for Subgraph Solving
Stephan Gocht1,2, Ciaran McCreesh3, Magnus O. Myreen4,

Jakob Nordström2,1, Andy Oertel1,2, Yong Kiam Tan5

1Lund University 2University of Copenhagen 3University of Glasgow 4Chalmers University 5I2R, A*STAR

End-to-End Verification for Subgraph Solving
Stephan Gocht1,2, Ciaran McCreesh3, Magnus O. Myreen4,

Jakob Nordström2,1, Andy Oertel1,2, Yong Kiam Tan5

1Lund University 2University of Copenhagen 3University of Glasgow 4Chalmers University 5I2R, A*STAR

Context: Modern subgraph solvers
consist of thousands of lines of high-
ly optimized code. How can we trust
this code? Solver outputs proof that
their result is correct.

Problem: Users have to trust the
proof checker and the translation of
the high-level graph problem into a
0-1 integer linear program (ILP) used
for the proofs.

Solution: We close this issue by im-
plementing a formally verified proof
checker that can check a subset of
the rules used in the proof system.

Our Workflow

Graph File(s)

Graph Solver

Untrusted
Encoding

Augmented
Proof

Checker

✓?

Elaborator

Kernel Proof

Verified Encoder

Verified
Encoding

Verified
Checker

✓ Trusted
Conclusion

VeriPB

CakePBGraph

CakePB

New workflowPrevious workflow

Our workflow to get a formally verified result is as follows:

1. Solve problem with solver and generate augmented proof.

2. Elaborate augmented proof with VeriPB to kernel proof.

3. Check kernel proof with formally verified CakePB.

Trusted Base

Our workflow reduces the components that need to be
trusted to:

• Higher-order logic (HOL) definitions of input parser and
problems → easy to check

•HOL model of CakeML environment and correspondence
to real system → validated extensively

• HOL4 theorem prover, including its logic, implementa-
tion, and execution environment → well established

Such a trusted base gives the highest assurance standard
for formally verified software.

Proof Elaboration

The VeriPB proof format comes in two versions.

• Augmented proof format: Contains syntactic sugar for
easy proof logging in the solver.

• Kernel proof format: Subset of augmented format that is
efficient to check in a formally verified checker.

VeriPB can elaborate an augmented proof to a kernel proof.

Extensible Checking Framework

Other Domains

Graph File(s)

✓ Trusted Conclusion

Other Encoders

Subgraph Isomorphism

Max Clique

Max CIS

Max CCIS

Conclusion Translator

PB Encoding

PB Conclusion

PB Normalizer

Norm. PB Encoding

PB Proof Checker

Externally
Generated
Kernel Proof

CakePB
(common backend)

CakePBGraph
(various frontends)

• Common backend: Performs general reasoning with 0-1 ILPs (a.k.a. PB).

• Frontend: Translates specific problem class into 0-1 ILP and back.

Experimental Results

• Our workflow is practicably viable for modern subgraph solvers.

• Elaborating augmented proof is not substantially slower than checking.

• Checking kernel proof about the same time as elaborating on average.

Source Code

Glasgow

Subgraph Solver

VeriPB

(elaborator)

CakePB

(verified checker)


