END-TO-END VERIFICATION FOR SUBGRAPH SOLVING
Stephan Gocht!?, Ciaran McCreesh®, Magnus O. Myreen®,

Jakob Nordstrom?!, Andy Oertel**, Yong Kiam Tan’
ILund University 2University of Copenhagen 3University of Glasgow *Chalmers University °I°R, A*STAR

Solution: We close this issue by im-
plementing a formally verified proof
checker that can check a subset of
the rules used in the proof system.

Problem: Users have to trust the
proof checker and the translation of
the high-level graph problem into a
0-1 integer linear program (ILP) used
for the proofs.

Context: Modern subgraph solvers
consist of thousands of lines of high-
ly optimized code. How can we trust
this code? Solver outputs proof that
their result is correct.

Our Workflow Trusted Base

J Our workflow reduces the components that need to be
trusted to:

/ « Higher-order logic (HOL) definitions of input parser and
[Graph Solver J problems — easy to check
/ \ & CAKEPBGRAPH « HOL model of CAKEML environment and correspondence

O . .
ntrusted Augmented] Eredler to real system — validated extensively
Encoding Proof

|
|
|
|
|
|
_____________________ — L - - - - =
14 YO
| VERIPB l / l~)i i CAKEP
I | 1 . (o
I Verified
! Checker Elaborator | .
'\ L Encoding

' | !
? ' Verified
[v J [Kernel Proof J—:F[Checker

« HOL4 theorem prover, including its logic, implementa-
tion, and execution environment — well established

Such a trusted base gives the highest assurance standard
for formally verified software.

— \ J P

Proof Elaboration

|
|
| [v Trusted J
| :
Previous workflow New workflow | Conclusion

Our workflow to get a formally verified result is as follows:

1. Solve problem with solver and generate augmented proof.

The VERIPB proof format comes in two versions.

« Augmented proof format: Contains syntactic sugar for
easy proof logging in the solver.

e Kernel proof format: Subset of augmented format that is

2. Elaborate augmented proof with VERIPB to kernel proof. efficient to check in a formally verified checker.

3. Check kernel proof with formally verified CAKEPB. VERIPB can elaborate an augmented proof to a kernel proof.

Extensible Checking Framework

______________ — - - - - - - - - === == = — 14 \
|/ Other Domains -- - - Other Encoders - | Externally |
D e S m s T~ : Generated :—
N Subgraph Isomorphism)) R . Kernel Proof
S % \
B Max Clique 1 N
[Graph Flle(S) jﬁ > < H[PB Encoding J >[PB Normalizer]
— Max CIS) T
CAKEPBGRAPH SN Max CCIS h CAKEPB [Norm. PB Encoding]
(various frontends) N J (common backend) ;
[v" Trusted Conclusion]< [Conclusion Translator]< [PB Conclusion j< [PB Proof Checker j<—

« Common backend: Performs general reasoning with 0-1 ILPs (a.k.a. PB).

. Frontend: Translates specific problem class into 0-1 ILP and back.
Source Code

EirE s
E% E%

e Elaborating augmented proof is not substantially slower than checking. GLASCOW VERIPB CAKEPB

Experimental Results

« Our workflow is practicably viable for modern subgraph solvers.

« Checking kernel proof about the same time as elaborating on average. SUBGRAPH SOLVER (elaborator) (verified checker)

