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Solution: We close this issue by im-
plementing a formally verified proof
checker that can check a subset of
the rules used in the proof system.

Problem: Users have to trust the
proof checker and the translation of
the high-level graph problem into a
0-1 integer linear program (ILP) used
for the proofs.

Context: Modern subgraph solvers
consist of thousands of lines of high-
ly optimized code. How can we trust
this code? Solver outputs proof that
their result is correct.
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« HOL4 theorem prover, including its logic, implementa-
tion, and execution environment — well established

Such a trusted base gives the highest assurance standard
for formally verified software.
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Our workflow to get a formally verified result is as follows:

1. Solve problem with solver and generate augmented proof.

The VERIPB proof format comes in two versions.

« Augmented proof format: Contains syntactic sugar for
easy proof logging in the solver.

e Kernel proof format: Subset of augmented format that is

2. Elaborate augmented proof with VERIPB to kernel proof. efficient to check in a formally verified checker.

3. Check kernel proof with formally verified CAKEPB. VERIPB can elaborate an augmented proof to a kernel proof.

Extensible Checking Framework
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« Common backend: Performs general reasoning with 0-1 ILPs (a.k.a. PB).

. Frontend: Translates specific problem class into 0-1 ILP and back.
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e Elaborating augmented proof is not substantially slower than checking. GLASCOW VERIPB CAKEPB

Experimental Results

« Our workflow is practicably viable for modern subgraph solvers.

« Checking kernel proof about the same time as elaborating on average. SUBGRAPH SOLVER  (elaborator)  (verified checker)



