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Context: Modern subgraph solvers
consist of thousands of lines of high-
ly optimized code. How can we trust
this code? Solver outputs proof that
their result is correct.

Problem: Users have to trust the
proof checker and the translation of
the high-level graph problem into a
0-1 integer linear program (ILP) used
for the proofs.

Solution: We close this issue by im-
plementing a formally verified proof
checker that can check a subset of
the rules used in the proof system.
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Our workflow to get a formally verified result is as follows:

1. Solve problem with solver and generate augmented proof.

2. Elaborate augmented proof with VeriPB to kernel proof.

3. Check kernel proof with formally verified CakePB.

Trusted Base

Our workflow reduces the components that need to be
trusted to:

• Higher-order logic (HOL) definitions of input parser and
problems → easy to check

•HOL model of CakeML environment and correspondence
to real system → validated extensively

• HOL4 theorem prover, including its logic, implementa-
tion, and execution environment → well established

Such a trusted base gives the highest assurance standard
for formally verified software.

Proof Elaboration

The VeriPB proof format comes in two versions.

• Augmented proof format: Contains syntactic sugar for
easy proof logging in the solver.

• Kernel proof format: Subset of augmented format that is
efficient to check in a formally verified checker.

VeriPB can elaborate an augmented proof to a kernel proof.

Extensible Checking Framework
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• Common backend: Performs general reasoning with 0-1 ILPs (a.k.a. PB).

• Frontend: Translates specific problem class into 0-1 ILP and back.

Experimental Results

• Our workflow is practicably viable for modern subgraph solvers.

• Elaborating augmented proof is not substantially slower than checking.

• Checking kernel proof about the same time as elaborating on average.
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